590
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

Wild berries and related wild small fruits as traditional healthy foods

ORCID Icon &

References

  • Abuduaibifu, A., and C. E. Tamer. 2019. Evaluation of physicochemical and bioaccessibility properties of goji berry kombucha. Journal of Food Processing and Preservation 43 (9):me14077. doi: 10.1111/jfpp.14077.
  • Aguilera, J. M. 2021. The concept of alimentation and transdisciplinary research. Journal of the Science of Food and Agriculture 101 (5):1727–31. doi: 10.1002/jsfa.10823.
  • Ahmed, M. E., H. B. B. Hamid, H. E. Babikir, and A. A. Agab Eldor. 2012. Effects of Grewia tenax (Guddaim) as a natural food on the hemoglobin level and growth among displaced children of Darfur State, Western Sudan. Journal of Medicine and Medical Sciences 3 (11):729–33.
  • Akter, A. A., S. Oh, J.-B. Eun, and M. Ahmed. 2011. Nutritional compositions and health promoting phytochemicals of camu-camu (Myrciaria dubia) fruit: A review. Food Research International 44 (7):1728–32. doi: 10.1016/j.foodres.2011.03.045.
  • Alba, K., G. M. Campbell, and V. Kontogiorgos. 2019. Dietary fibre from berry‐processing waste and its impact on bread structure: A review. Journal of the Science of Food and Agriculture 99 (9):4189–99. doi: 10.1002/jsfa.9633.
  • Alves, E., A. Simoes, and M. R. Domingues. 2021. Fruit seeds and their oils as promising sources of value-added lipids from agro-industrial byproducts: Oil content, lipid composition, lipid analysis, biological activity and potential biotechnological applications. Critical Reviews in Food Science and Nutrition 61 (8):1305–39. doi: 10.1080/10408398.2020.1757617.
  • Asprilla-Perea, J., J. M. Diaz-Puente, and S. Martín-Fernández. 2022. Estimating the potential of wild foods for nutrition and food security planning in tropical areas: Experimentation with a method in Northwestern Colombia. Ambio 51 (4):955–71. doi: 10.1007/s13280-021-01624-9.
  • Bahukhandi, A., A. Barola, and K. C. Sekar. 2020. Antioxidant activity and polyphenolics of Fragaria nubicola: A wild edible fruit species of Himalaya. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 90 (4):761–7. doi: 10.1007/s40011-019-01142-5.
  • Bardone, E. 2013. Strawberry fields forever: Foraging for the changing meaning of wild berries in Estonian food culture. Ethnologia Europaea 43 (2):30–46. doi: 10.16995/ee.1114.
  • Barney, D. L. 2003. Prospects for domesticating Western huckleberries. Small Fruits Review 2 (1):15–29. doi: 10.1300/J301v02n01_03.
  • Battino, M., T. Y. Forbes-Hernández, M. Gasparrini, S. Afrin, D. Cianciosi, J. Zhang, P. P. Manna, P. Reboredo-Rodríguez, A. Varela Lopez, J. L. Quiles, et al. 2019. Relevance of functional foods in the Mediterranean diet: The role of olive oil, berries and honey in the prevention of cancer and cardiovascular diseases. Critical Reviews in Food Science and Nutrition 59 (6):893–920. doi: 10.1080/10408398.2018.1526165.
  • Becker, R., and A. Szakiel. 2019. Phytochemical characteristics and potential therapeutic properties of blue honeysuckle Lonicera caerulea L. (Caprifoliaceae). Journal of Herbal Medicine 16:100237. doi: 10.1016/j.hermed.2018.10.002.
  • Bere, E. 2007. Wild berries: A good source of omega-3. European Journal of Clinical Nutrition 61 (3):431–3. doi: 10.1038/sj.ejcn.1602512.
  • Bharucha, Z., and J. Pretty. 2010. The roles and values of wild foods in agricultural systems. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 365 (1554):2913–26. doi: 10.1098/rstb.2010.0123.
  • Bishayee, A., Y. Haskell, C. Do, K. S. Siveen, N. Mohandas, G. Sethi, and G. D. Stoner. 2016. Potential benefits of edible berries in the management of aerodigestive and gastrointestinal tract cancers: Preclinical and clinical evidence. Critical Reviews in Food Science and Nutrition 56 (10):1753–75. doi: 10.1080/10408398.2014.982243.
  • Bobis, O., G. A. Nayik, J. A. Wagay, U. Farooq, A. Zehra, and V. Nanda. 2020. Cranberry. In Antioxidants in fruits: Properties and health benefits, eds. G. A. Nayik, and A. Gull, 479–505. Singapore: Springer. doi: 10.1007/978-981-15-7285-2_25.
  • Bortolotto, C., and B. Ubertazzi. 2018. Editorial: Foodways as intangible cultural heritage. International Journal of Cultural Property 25 (4):409–18. doi: 10.1017/S0940739119000055.
  • Boulanger-Lapointe, N., J. Gérin-Lajoie, L. Siegwart Collier, S. Desrosiers, C. Spiech, G. H. R. Henry, L. Hermanutz, E. Lévesque, and A. Cuerrier. 2019. Berry plants and berry picking in Inuit Nunangat: Traditions in a changing socio-ecological landscape. Human Ecology 47 (1):81–93. doi: 10.1007/s10745-018-0044-5.
  • Brauch, J. E., M. Buchweitz, R. M. Schweiggert, and R. Carle. 2016. Detailed analyses of fresh and dried maqui (Aristotelia chilensis (Mol.) Stuntz) berries and juice. Food Chemistry 190:308–16. doi: 10.1016/j.foodchem.2015.05.097.
  • Brondizio, E. S. 2020. The global açaí: A chronicle of possibilities and predicaments of an Amazonian superfood. In Critical Approaches to Superfoods, eds. E. McDonell and R. Wilk, 149–68. Bloomsbury Academic, London. doi: 10.5040/9781350123908.
  • Burgos-Edwards, A., F. Jiménez-Aspee, S. Thomas-Valdés, G. Schmeda-Hirschmann, and C. Theoduloz. 2017. Qualitative and quantitative changes in polyphenol composition and bioactivity of Ribes magellanicum and R. punctatum after in vitro gastrointestinal digestion. Food Chemistry 237:1073–82. doi: 10.1016/j.foodchem.2017.06.060.
  • Brcic, K., K. Jurica, U. Gasic, A. Dramicanin, Z. Tesic, and D. O. Milojkovic. 2021. Comparative study on the phenolic fingerprint and antioxidant activity of strawberry tree (Arbutus unedo L.) leaves and fruits. Plants 11 (1):25. doi: 10.3390/plants11010025.
  • Carrillo-Perdomo, E., A. Aller, S. M. Cruz-Quintana, F. Giampieri, and J. M. Alvarez-Suarez. 2015. Andean berries from Ecuador: A review on botany, agronomy, chemistry and health potential. Journal of Berry Research 5 (2):49–69. doi: 10.3233/JBR-140093.
  • Carvalho, M. J., C. S. Gouveia, A. C. Vieira, A. C. Pereira, M. A. Carvalho, and J. C. Marques. 2017. Nutritional and phytochemical composition of Vaccinium padifolium Sm wild berries and radical scavenging activity. Journal of Food Science 82 (11):2554–61. doi: 10.1111/1750-3841.13928.
  • Cekic, C., and M. Özgen. 2010. Comparison of antioxidant capacity and phytochemical properties of wild and cultivated red raspberries (Rubus idaeus L.). Journal of Food Composition and Analysis 23 (6):540–4. doi: 10.1016/j.jfca.2009.07.002.
  • Chamorro, M. F., and A. Ladio. 2020. Native and exotic plants with edible fleshy fruits utilized in Patagonia and their role as sources of local functional foods. BMC Complementary Medicine and Therapies 20 (1):155. doi: 10.1186/s12906-020-02952-1.
  • Choi, S. E., and J. Garza. 2021. Consumer likings of different miracle fruit products on different sour foods. Foods 10 (2):406. doi: 10.3390/foods10020406.
  • Coba, S., D. Coronel, K. Verdugo, M. Paredes, E. Yugsi, and L. Huachi. 2012. Estudio etnobotanico del mortiño (Vaccinium floribundum Kunth) como alimento ancestral y potencial alimento funcional. La Granja 16 (2):5–13. doi: 10.17163/lgr.n16.2012.01.
  • Correddu, F., M. Maldini, R. Addis, G. L. Petretto, M. Palomba, G. Battacone, G. Pulina, A. Nudda, and G. Pintore. 2019. Myrtus communis liquor byproduct as a source of bioactive compounds. Foods 8 (7):237. doi: 10.3390/foods8070237.
  • Crecente-Campo, J., M. Nunes-Damaceno, M. Romero-Rodríguez, and M. Vázquez-Odériz. 2012. Color, anthocyanin pigment, ascorbic acid and total phenolic compound determination in organic versus conventional strawberries. Journal of Food Composition and Analysis 28 (1):23–30. doi: 10.1016/j.jfca.2012.07.004.
  • Dalzotto, D., P. Boeri, R. Monasterio, M. Porro, S. Sharry, D. Barrio, and L. Piñuel. 2018. Contenido de polifenoles y actividad antioxidante del calafate (Berberis microphylla). In Libro de Resúmenes, 867. Córdova, Argentina: VII Congreso Internacional Ciencia y Tecnología de los Alimentos. Accessed July 23, 2022. https://rid.unrn.edu.ar/bitstream/20.500.12049/7045/3/Libro-de-Res%C3%BAmenes-VII-CICYTAC-2018-867.pdf.
  • Debelo, H., M. Li, and M. G. Ferruzzi. 2020. Processing influences on food polyphenol profiles and biological activity. Current Opinion in Food Science 32:90–102. doi: 10.1016/j.cofs.2020.03.001.
  • Dias, M. I., L. Barros, P. Morales, C. Montaña, M. J. Alves, M. B. P. P. Oliveira, C. Santos-Buelga, and I. C. F. R. Ferreira. 2016. Wild Fragaria vesca L. fruits: A rich source of bioactive phytochemicals. Food & Function 7 (11):4523–32. doi: 10.1039/c6fo01042c.
  • Dos Santos, E. B., D. C. da Costa Maynard, R. P. Zandonadi, A. Raposo, and R. B. A. Botelho. 2022. Sustainability recommendations and practices in school feeding: A systematic review. Foods 11 (2):176. doi: 10.3390/foods11020176.
  • Ducruet, J., P. Rébénaque, S. Diserens, A. Kosińska-Cagnazzo, I. Héritier, and W. Andlauer. 2017. Amber ale beer enriched with goji berries – The effect on bioactive compound content and sensorial properties. Food Chemistry 226:109–18. doi: 10.1016/j.foodchem.2017.01.047.
  • Edwards, C. A., J. Havlik, W. Cong, W. T. Mullen, T. Preston, D. J. Morrison, and E. Combet. 2017. Polyphenols and health: Interactions between fibre, plant polyphenols and the gut microbiota. Nutrition Bulletin 42 (4):356–60. doi: 10.1111/nbu.12296.
  • EFSA. 2021. Safety of dried fruits of Synsepalum dulcificum as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal 16 (6):6600. doi: 10.2903/j.efsa.2021.6600.
  • Ellong, E. N., C. Billard, S. Adenet, and K. Rochefort. 2015. Polyphenols, carotenoids, vitamin c content in tropical fruits and vegetables and impact of processing methods. Food and Nutrition Sciences 06 (03):299–313. doi: 10.4236/fns.2015.63030.
  • Everett, H. 2008. A welcoming wilderness: The role of wild berries in the construction of Newfoundland and Labrador as a tourist destination. Ethnologies 29 (1–2):49–80. doi: 10.7202/018745ar.
  • Fanzo, J., C. Rudie, I. Sigman, S. Grinspoon, T. G. Benton, M. E. Brown, N. Covic, K. Fitch, C. D. Golden, D. Grace, et al. 2022. Sustainable food systems and nutrition in the 21st century: A report from the 22nd annual Harvard Nutrition Obesity Symposium. The American Journal of Clinical Nutrition 115 (1):18–33. doi: 10.1093/ajcn/nqab315.
  • FAO. 2019. The state of the world’s biodiversity for food and agriculture, eds. J. Bélanger and D. Pilling. FAO Commission on Genetic Resources for Food and Agriculture Assessments, Rome, Italy. http://www.fao.org/3/CA3129EN/CA3129EN.pdf. Accessed January 10, 2022.
  • FAOSTAT. 2021. Food and Agriculture Organization. http://www.fao.org/faostat/en/#data/QC. Accessed December 20, 2021.
  • Fernández-Ruiz, V., P. Morales, B. M. Ruiz-Rodríguez, and E. T. Isasa. 2016. Nutrients and bioactive compounds in wild fruits through different continents. In Wild plants, mushrooms and nuts, eds. I. C. F. R. Ferreira, P. Morales and L. Barros, 263–314. New York: John Wiley & Sons Inc. doi: 10.1002/9781118944653.ch8.
  • Finn, C. E., J. B. Retamales, G. A. Lobos, and J. F. Hancock. 2013. The Chilean strawberry (Fragaria chiloensis): Over 1000 years of domestication. HortScience 48 (4):418–21. doi: 10.21273/HORTSCI.48.4.418.
  • Foito, A., G. J. McDougall, and D. Stewart. 2018. Evidence for health benefits of berries. Annual Plant Reviews Online 1:1–43. doi: 10.1002/9781119312994.apr0600.
  • Fredes, C., G. Montenegro, J. P. Zoffoli, M. Gómez, and P. Robert. 2012. Polyphenol content and antioxidant activity of maqui (Aristotelia chilensis [Molina] Stuntz) during fruit development and maturation in Central Chile. Chilean Journal of Agricultural Research 72 (4):582–9. doi: 10.4067/S0718-58392012000400019.
  • Garden-Robinson, J. 2020. Jams and Jellies from Native (Wild) Fruits (FN1423, Revised August 2020). North Dakota State University, Fargo, North Dakota. https://www.ag.ndsu.edu/publications/food-nutrition/jams-and-jellies-from-native-wild-fruits. Accessed January 5, 2022.
  • Garzón, G. A., C. E. Narváez-Cuenca, J. P. Vincken, and H. Gruppen. 2017. Polyphenolic composition and antioxidant activity of açai (Euterpe oleracea Mart.) from Colombia. Food Chemistry 217:364–72. doi: 10.1016/j.foodchem.2016.08.107.
  • Garzón, G. A. 2012. Colombian bilberry (Vaccinium meridionale Swartz): Chemical composition, antioxidant activity, anthocyanin and non-anthocyanin phenolic composition as compared to other Vaccinium species. In Berries: Properties, consumption and nutrition, ed. C. Tuberoso, 157–67. New York: Nova Biomedical Books.
  • Garzón, G. A., K. M. Riedl, and S. J. Schwartz. 2009. Determination of anthocyanins, total phenolic content, and antioxidant activity in Andes berry (Rubus glaucus Benth). Journal of Food Science 74 (3):C227–C232. doi: 10.1111/j.1750-3841.2009.01092.x.
  • Gâtlan, A.-M., and G. Gutt. 2021. Sea buckthorn in plant based diets. An analytical approach of sea buckthorn fruits composition: Nutritional value, applications, and health benefits. International Journal of Environmental Research and Public Health 18 (17):8986. doi: 10.3390/ijerph18178986.
  • Giampieri, F., S. Tulipani, J. M. Alvarez-Suarez, J. L. Quiles, B. Mezzetti, and M. Battino. 2012. Strawberry: Composition, nutritional quality, and impact on human health. Nutrition (Burbank, Los Angeles County, Calif.) 28 (1):9–19. doi: 10.1016/j.nut.2011.08.009.
  • Giovanelli, G., S. Limbo, and S. Buratti. 2014. Effects of new packaging solutions on physico-chemical, nutritional and aromatic characteristics of red raspberries (Rubus idaeus L.) in postharvest storage. Postharvest Biology and Technology 98:72–81. doi: 10.1016/j.postharvbio.2014.07.002.
  • Gołba, M., A. Sokol-Letowska, and A. Z. Kucharska. 2020. Health properties and composition of honeysuckle berry Lonicera caerulea L. An update on recent studies. Molecules 25 (3):749. doi: 10.3390/molecules25030749.
  • Golovinskaia, O., and C.-K. Wang. 2021. Review of functional and pharmacological activities of berries. Molecules 26 (13):3904. doi: 10.3390/molecules26133904.
  • Goraya, R. K., and U. Bajwa. 2015. Enhancing the functional properties and nutritional quality of ice cream with processed amla (Indian gooseberry). Journal of Food Science and Technology 52 (12):7861–71. doi: 10.1007/s13197-015-1877-1.
  • Govers, C., M. B. Kasikci, A. A. van der Sluis, and J. J. Mes. 2018. Review of the health effects of berries and their phytochemicals on the digestive and immune systems. Nutrition Reviews 76 (1):29–46. doi: 10.1093/nutrit/nux039.
  • Grace, M. H., D. Esposito, K. L. Dunlap, and M. A. Lila. 2014. Comparative analysis of phenolic content and profile, antioxidant capacity, and anti-inflammatory bioactivity in wild Alaskan and commercial Vaccinium berries. Journal of Agricultural and Food Chemistry 62 (18):4007–17. doi: 10.1021/jf403810y.
  • Gündüz, K. 2016. Strawberry: Phytochemical composition of strawberry (Fragaria x ananassa). In Nutritional composition of fruit cultivars, eds. M. S. J. Simmonds and V. R. Preedy, 733–52. Amsterdam: Academic Press.
  • Gupta-Elera, G., A. Garrett, A. Martinez, R. D. Kraus, R. Robison, and K. O’Neill. 2012. A comparison of antioxidant properties in organic and conventional blueberries. Journal of Food Research 1 (3):1–7. doi: 10.5539/jfr.v1n3p1.
  • He, Z., J. S. Tan, S. Abbasiliasi, O. M. Lai, Y. J. Tam, and A. B. Ariff. 2016. Phytochemicals, nutritionals and antioxidant properties of miracle fruit Synsepalum dulcificum. Industrial Crops and Products 86:87–94. doi: 10.1016/j.indcrop.2016.03.032.
  • Hummer, K. E. 2013. Manna in winter: Indigenous Americans, huckleberries, and blueberries. HortScience 48 (4):413–7. doi: 10.21273/HORTSCI.48.4.413.
  • Inglett, G. E., B. Dowling, J. J. Albrecht, and F. A. Hoglan. 1965. Taste modifiers, taste-modifying properties of miracle fruit (Synsepalum dulcificum). Journal of Agricultural and Food Chemistry 13 (3):284–7. doi: 10.1021/jf60139a026.
  • Islam, T., X. Yu, Y. S. Badwal, and B. Xu. 2017. Comparative studies on phenolic profiles, antioxidant capacities carotenoid contents of red goji berry (Lycium barbarum) and black goji berry (Lycium ruthenicum). Chemistry Central Journal 11 (1):59. doi: 10.1186/s13065-017-0287-z.
  • Janick, J. 2013. Development of new world crops by Indigenous Americans. HortScience 48 (4):406–12. doi: 10.21273/HORTSCI.48.4.406.
  • Jiménez-Aspee, F., S. Thomas-Valdés, A. Schulz, A. Ladio, C. Theoduloz, and G. Schmeda-Hirschmann. 2016. Antioxidant activity and phenolic profiles of the wild currant Ribes magellanicum from Chilean and Argentinean Patagonia. Food Science & Nutrition 4 (4):595–610. doi: 10.1002/fsn3.323.
  • Johanson, M. 2021. The untapped power of Patagonian berries. https://www.bbc.com/travel/article/20210503-the-untapped-power-of-patagonian-berries. Accessed January 10, 2022.
  • Jurendić, T., and M. Ščetar. 2021. Aronia melanocarpa products and by-products for health and nutrition: A review. Antioxidants 10 (7):1052. doi: 10.3390/antiox10071052.
  • Jurgiel-Małecka, G., M. Gibczyńska, H. Siwek, and A. Buchwał. 2017. Comparison of fruits chemical composition of selected cultivars wild strawberry (Fragaria vesca L.). European Journal of Horticultural Science 82 (4):204–10., doi: 10.17660/eJHS.2017/82.4.6.
  • Kalle, R., R. Sõukand, and A. Pieroni. 2020. Devil is in the details: Use of wild food plants in historical Võromaa and Setomaa, present-day Estonia. Foods 9 (5):570. doi: 10.3390/foods9050570.
  • Kalt, W., A. Cassidy, L. R. Howard, R. Krikorian, A. J. Stull, F. Tremblay, and R. Zamora-Ros. 2020. Recent research on the health benefits of blueberries and their anthocyanins. Advances in Nutrition (Bethesda, Md.) 11 (2):224–36. doi: 10.1093/advances/nmz065.
  • Karlund, A., U. Moor, M. Sandell, and R. Karjalainen. 2014. The impact of harvesting, storage and processing factors on health-promoting phytochemicals in berries and fruits. Processes 2 (3):596–624. doi: 10.3390/pr2030596.
  • Karppinen, K., L. Zoratti, N. Nguyenquynh, H. Häggman, and L. Jaakola. 2016. On the developmental and environmental regulation of secondary metabolism in Vaccinium spp. berries. Frontiers in Plant Science 7:655. doi: 10.3389/fpls.2016.0065.
  • Kobori, R., S. Yakami, T. Kawasaki, and A. Saito. 2021. Changes in the polyphenol content of red raspberry fruits during ripening. Horticulturae 7 (12):569. doi: 10.3390/horticulturae7120569.
  • Korkalo, L., K. Nissinen, E. Skaffari, H. Vepsäläinen, R. Lehto, R. Kaukonen, L. Koivusilta, N. Sajaniemi, E. Roos, and M. Erkkola. 2019. The contribution of preschool meals to the diet of Finnish preschoolers. Nutrients 11 (7):1531. doi: 10.3390/nu11071531.
  • Koskela, A., M. J. Anttonen, T. H. Soininen, N. M. M. Savirant, S. Auriola, R. Julkunen-Tiitto, and R. O. Karjalainen. 2010. Variation in the anthocyanin concentration of wild populations of crowberries (Empetrum nigrum L. subsp. hermaphroditum). Journal of Agricultural and Food Chemistry 58 (23):12286–91. doi: 10.1021/jf1037695.
  • Kowalska, K. 2021. Lingonberry (Vaccinium vitis-idaea L.) fruit as a source of bioactive compounds with health-promoting effects - A review. International Journal of Molecular Sciences 22 (10):5126. doi: 10.3390/ijms22105126.
  • Kucich, D. A., and M. M. Wicht. 2016. South African indigenous fruits – Underutilized resource for boosting daily antioxidant intake among local indigent populations? South African Journal of Clinical Nutrition 29 (4):150–6. doi: 10.1080/16070658.2016.1219470.
  • Kuhnlein, H. V. 1989. Nutrient values in indigenous wild berries used by the Nuxalk people of Bella Coola, British Columbia. Journal of Food Composition and Analysis 2 (1):28–36. doi: 10.1016/0889-1575(89)90059-8.
  • Kulczyński, B., and A. Gramza-Michałowska. 2016. Goji berry (Lycium barbarum): Composition and health effects: A review. Polish Journal of Food and Nutrition Sciences 66 (2):67–75. doi: 10.1515/pjfns-2015-0040.
  • Lasekan, O. 2014. Exotic berries as a functional food. Current Opinion in Clinical Nutrition and Metabolic Care 17 (6):589–95. doi: 10.1097/MCO.0000000000000109.
  • Lätti, A. K., P. S. Kainulainen, S. Hayirlioglu-Ayaz, F. A. Ayaz, and K. R. Riihinen. 2009. Characterization of anthocyanins in Caucasian blueberries (Vaccinium arctostaphylos L.) native to Turkey. Journal of Agricultural and Food Chemistry 57 (12):5244–9. doi: 10.1021/jf9005627.
  • Lavefve, L. L., R. Howard, and F. Carbonero. 2020. Berry polyphenols metabolism and impact on human gut microbiota and health. Food & Function 11 (1):45–65. doi: 10.1039/c9fo01634a.
  • Leahu, A., C. E. Hretcanu, A. J. Roșu, and C. Ghinea. 2019. Traditional uses of wild berries in the Bukovina region (Romania). Food & Environment Safety (Romania) 18 (4):279–86. http://fens.usv.ro/index.php/FENS/article/view/686.
  • Li, Y., J.-J. Zhang, D.-P. Xu, T. Zhou, Y. Zhou, S. Li, and H.-B. Li. 2016. Bioactivities and health benefits of wild fruits. International Journal of Molecular Sciences 17 (8):1258. doi: 10.3390/ijms17081258.
  • Łuczaj, Ł., A. Pieroni, J. Tardío, M. Pardo-de-Santayana, R. Sõukand, I. Svanberg, and R. Kalle. 2012. Wild food plant use in 21st century Europe: The disappearance of old traditions and the search for new cuisines involving wild edibles. Acta Societatis Botanicorum Poloniae 81 (4):359–70. doi: 10.5586/asbp.2012.031.
  • Maikhuri, R. K., D. Dhyani, Y. Tyagi, D. Singh, V. S. Negi, and L. S. Rawat. 2012. Determination of nutritional and energy value of Viburnum mullaha Buch.-Ham. Ex D. Don (Indian cranberry). Ecology of Food and Nutrition 51 (3):218–26. doi: 10.1080/03670244.2012.635566.
  • Marjanovic-Balaban, Z., S. Grujic, M. Jasic, and D. Vujadinovic. 2012. Testing of chemical composition of wild berries. Book of Proceedings, Symposium “Agrosym 2012”; Jahorina, Bosnia and Herzegovina; 15–17 November, 2012, 154–60. doi: 10.7251/AGSY1203154BUDK634.1/.7.
  • Maroyi, A., and A. Cheikhyoussef. 2017. Traditional knowledge of wild edible fruits in Southern Africa: A comparative use patterns in Namibia and Zimbabwe. Indian Journal of Traditional Knowledge 16 (3):385–92.
  • McDonell, E. 2019. Creating the culinary frontier: A critical examination of Peruvian chefs’ narratives of lost/discovered foods. Anthropology of Food 14 (14):10183. doi: 10.4000/aof.10183.
  • Menezes, E., R. Deliza, H. L. Chan, and J. X. Guinard. 2011. Preferences and attitudes towards açaí-based products among North American consumers. Food Research International 44 (7):1997–2008. doi: 10.1016/j.foodres.2011.02.048.
  • Mezadri, T., D. Villaño, M. S. Fernández-Pachón, M. C. García-Parrilla, and A. M. Troncoso. 2008. Antioxidant compounds and antioxidant activity in acerola (Malpighia emarginata DC.) fruits and derivatives. Journal of Food Composition and Analysis 21 (4):282–90. doi: 10.1016/j.jfca.2008.02.002.
  • Mezadri, T., A. Pérez-Gálvez, and D. Hornero-Méndez. 2005. Carotenoid pigments in acerola fruits (Malpighia emarginata DC.) and derived products. European Food Research and Technology 220 (1):63–9. doi: 10.1007/s00217-004-1042-y.
  • Mikulic-Petkovsek, M., V. Schmitzer, A. Slatnar, F. Stampar, and R. Veberic. 2012. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. Journal of Food Science 77 (10):C1064–C1070. doi: 10.1111/j.1750-3841.2012.02896.x.
  • Misaka, T. 2013. Molecular mechanisms of the action of miraculin, a taste-modifying protein. Seminars in Cell & Developmental Biology 24 (3):222–5. doi: 10.1016/j.semcdb.2013.02.008.
  • Motti, R. 2022. Wild edible plants: A challenge for future diet and health. Plants 11 (3):344. doi: 10.3390/plants11030344.
  • Moyer, R., K. Hummer, C. Finn, B. Frei, and R. Wrolstad. 2002. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. Journal of Agricultural and Food Chemistry 50 (3):519–25. doi: 10.1021/jf011062r.
  • Nazhand, A., M. Lucarini, A. Durazzo, M. Zaccardelli, S. Cristarella, S. B. Souto, A. M. Silva, P. Severino, E. B. Souto, and A. Santini. 2020. Hawthorn (Crataegus spp.): An updated overview on its beneficial properties. Forests 11 (5):564. doi: 10.3390/f11050564.
  • Neri-Numa, I. A., R. A. Soriano Sancho, A. P. A. Pereira, and G. M. Pastore. 2018. Small Brazilian wild fruits: Nutrients, bioactive compounds, health-promotion properties and commercial interest. Food Research International (Ottawa, Ont.) 103:345–60. doi: 10.1016/j.foodres.2017.10.053.
  • Niki, E. 2021. Factors affecting in vitro and in vivo antioxidant effects. Experimental conditions and nature of oxidants determine antioxidant efficacy. Journal of Berry Research 11 (4):601–9. doi: 10.3233/JBR-200695.
  • Nile, S. H., and S. W. Park. 2014. Edible berries: Bioactive components and their effect on human health. Nutrition (Burbank, Los Angeles County, Calif.) 30 (2):134–44. doi: 10.1016/j.nut.2013.04.007.
  • Nowicka, A., A. Z. Kucharska, A. Sokół-Łętowska, and I. Fecka. 2019. Comparison of polyphenol content and antioxidant capacity of strawberry fruit from 90 cultivars of Fragaria × ananassa Duch. Food Chemistry 270:32–46. doi: 10.1016/j.foodchem.2018.07.015.
  • Núñez-Colín, C. A., and M. A. Hernández-Martínez. 2011. The Mexican serviceberry (Amalenchier denticulata): A new potential berry fruit crop from semi-arid areas. Acta Horticulturae 918 (918):917–23. doi: 10.17660/ActaHortic.2011.918.120.
  • Nuñez-Mancilla, Y., M. Pérez-Won, E. Uribe, A. Vega-Gálvez, and K. Di Scala. 2013. Osmotic dehydration under high hydrostatic pressure: Effects on antioxidant activity, total phenolics compounds, vitamin C and colour of strawberry (Fragaria vesca). LWT - Food Science and Technology 52 (2):151–6. doi: 10.1016/j.lwt.2012.02.
  • Ozgen, M., R. N. Reese, A. Z. Tulio, Jr, J. C. Scheerens, and A. R. Miller. 2006. Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2’-diphenyl-1-picrylhydrazyl (DPPH) methods. Journal of Agricultural and Food Chemistry 54 (4):1151–7. doi: 10.1021/jf051960d.
  • Padmanabhan, P., J. Correa-Betanzo, and G. Paliyath. 2016. Berries and related fruits. In Encyclopedia of food and health, eds. B. Caballero, P. M. Finglas, and F. Toldrá, 364–71. Amsterdam: Elsevier. doi: 10.1016/b978-0-12-384947-2.00060-x.
  • Palencia-Argel, M., H. Rodríguez-Villamil, C. Bernal-Castro, C. Díaz-Moreno, and C. A. Fuenmayor. 2022. Probiotics in anthocyanin-rich fruit beverages: Research and development for novel synbiotic products. Critical Reviews in Food Science and Nutrition 2022:1–17. doi: 10.1080/10408398.2022.2104806.
  • Pandey, Y., and S. S. Bhatt. 2016. Overview of Himalayan yellow raspberry (Rubus ellipticus Smith.): A nutraceutical plant. Journal of Applied and Natural Science 8 (1):494–9. doi: 10.31018/jans.v8i1.824.
  • Pant, D. M., and V. Bhatt. 2020. A review on medicinal uses of wild berries. International Journal of Medical Studies 5 (8):1–4. https://ijmsonline.in/index.php/ijms/article/view/168. Accessed July 28, 2022.
  • Pap, N., M. Fidelis, L. Azevedo, M. A. V. do Carmo, D. Wang, A. Mocan, E. P. R. Pereira, D. Xavier-Santos, A. S. Sant’Ana, B. Yang, et al. 2021. Berry polyphenols and human health: Evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Current Opinion in Food Science 42:167–86. doi: 10.1016/j.cofs.2021.06.003.
  • Pareek, S., A. N. Shikov, O. N. Pozharitskaya, V. G. Makarov, G. A. González-Aguilar, S. A. Ramalho, and N. Narain. 2018. Indian gooseberry (Emblica officinalis Gaertn). In Fruit and vegetable phytochemicals: Chemistry and human health, ed. E. M. Yahia, Vol. II, 2nd ed., 1077–105. New York, NY: John Wiley & Sons Ltd. doi: 10.1002/9781119158042.ch54.
  • Pawlowska, A. M., M. de Leo, and A. Braca. 2006. Phenolics of Arbutus unedo L. (Ericaceae) fruits: Identification of anthocyanins and gallic acid derivatives. Journal of Agricultural and Food Chemistry 54 (26):10234–8. doi: 10.1021/jf062230o.
  • Peltola, R., V. Hallikainen, S. Tuulentie, A. Naskali, O. Manninen, and J. Similä. 2014. Social license for the utilization of wild berries in the context of local traditional rights and the interests of the berry industry. Barents Studies: Peoples, Economies and Politics 1 (2):24–49. http://urn.fi/URN:NBN:fi:ula-201410021424.
  • Pfukwa, T. M., O. C. Chikwanha, C. L. F. Katiyatiya, O. A. Fawole, M. Manley, and C. Mapiye. 2020. Southern African indigenous fruits and their byproducts: Prospects as food antioxidants. Journal of Functional Foods 75:104220. doi: 10.1016/j.jff.2020.104220.
  • Pieroni, A. 2021. Wild foods: A topic for food pre-history and history or a crucial component of future sustainable and just food systems? Foods 10 (4):827. doi: 10.3390/foods10040827.
  • Pouta, E., T. Sievänen, and M. Neuvonen. 2006. Recreational wild berry picking in Finland - Reflection of a rural lifestyle. Society & Natural Resources 19 (4):285–304. doi: 10.1080/08941920500519156.
  • Prakash, A., and R. Baskaran. 2018. Acerola, an untapped functional superfruit: A review on latest frontiers. Journal of Food Science and Technology 55 (9):3373–84. doi: 10.1007/s13197-018-3309-5.
  • Rahman, M. S., and S. M. S. Islam. 2021. Studies on food, health and environmental perspectives in mulberry (Morus spp.) – A review. Journal of Bio-Science 29 (1):163–79. doi: 10.3329/jbs.v29i0.54832.
  • Ravichandran, K. S., and K. Krishnaswamy. 2021. Sustainable food processing of selected North American native berries to support agroforestry. Critical Reviews in Food Science and Nutrition 11:1–26. doi: 10.1080/10408398.2021.1999901.
  • Reade, B., J. de Valicourt, and J. Evans. 2015. Fermentation art and science at the Nordic Food Lab. In Routledge handbook of sustainable food and gastronomy, eds. P. Sloan, W. Legrand and C. Hindley, 228–41. Oxon, UK: Routledge.
  • Redzepi, R., and D. Zilber. 2018. The Noma guide to fermentation (foundations of flavor). New York: Artisan.
  • Richards, R. T., and S. J. Alexander. 2006. A social history of wild huckleberry harvesting in the Pacific Northwest. General Technical Report PNW-GTR-657, Portland, OR.
  • Roberts, C. K., and K. K. Sindhu. 2009. Oxidative stress and metabolic syndrome. Life Sciences 84 (21-22):705–12. doi: 10.1016/j.lfs.2009.02.026.
  • Rodríguez-Daza, M.-C., M. Roquim, S. Dudonné, G. Pilon, E. Levy, A. Marette, D. Roy, and Y. Desjardins. 2020. Berry polyphenols and fibers modulate distinct microbial metabolic functions and gut microbiota enterotype-like clustering in obese mice. Frontiers in Microbiology 11:2032. doi: 10.3389/fmicb.2020.02032.
  • Rossi, L., M. Ferrari, D. Martone, L. Benvenuti, and A. De Santis. 2021. The promotions of sustainable lunch meals in school feeding programs: The case of Italy. Nutrients 13 (5):1571. and doi: 10.3390/nu13051571.
  • Ruiz, A., M. Zapata, C. Sabando, L. Bustamante, D. von Baer, C. Vergara, and C. Mardones. 2014. Flavonols, alkaloids, and antioxidant capacity of edible wild Berberis species from Patagonia. Journal of Agricultural and Food Chemistry 62 (51):12407–17. and doi: 10.1021/jf502929z.
  • Ruiz, A., I. Hermosín-Gutiérrez, C. Mardones, C. Vergara, E. Herlitz, M. Vega, C. Dorau, P. Winterhalter, and D. von Baer. 2010. Polyphenols and antioxidant activity of calafate (Berberis microphylla) fruits and other native berries from Southern Chile. Journal of Agricultural and Food Chemistry 58 (10):6081–9. doi: 10.1021/jf100173x.
  • Ruiz-Rodríguez, B.-M., P. Morales, V. Fernández-Ruiz, M.-C. Sánchez-Mata, M. Cámara, C. Díez-Marqués, M. Pardo-De-Santayana, M. Molina, and J. Tardío. 2011. Valorization of wild strawberry-tree fruits (Arbutus unedo L.) through nutritional assessment and natural production data. Food Research International 44 (5):1244–53. doi: 10.1016/j.foodres.2010.11.015.
  • Ruiz-Rodríguez, B. M., B. de Ancos, C. Sánchez-Moreno, V. Fernández-Ruiz, M. de Cortes Sánchez-Mata, M. Cámara, and J. Tardío. 2014. Wild blackthorn (Prunus spinosa L.) and hawthorn (Crataegus monogyna Jacq.) fruits as valuable sources of antioxidants. Fruits 69 (1):61–73. doi: 10.1051/fruits/2013102.
  • Salo, H. M., N. Nguyen, E. Alakärppä, L. Klavins, A. L. Hykkerud, K. Karppinen, L. Jaakola, M. Klavins, and H. Häggman. 2021. Authentication of berries and berry‐based food products. Comprehensive Reviews in Food Science and Food Safety 20 (5):5197–225. doi: 10.1111/1541-4337.12811.
  • Sarv, V., P. R. Venskutonis, and R. Bhat. 2020. The Sorbus spp. Underutilised plants for foods and nutraceuticals: Review on polyphenolic phytochemicals and antioxidant potential. Antioxidants 9 (9):813. doi: 10.3390/antiox9090813.
  • Schmeda-Hirschmann, G., F. Jiménez-Aspee, C. Theoduloz, and A. Ladio. 2019. Patagonian berries as native food and medicine. Journal of Ethnopharmacology 241:111979. doi: 10.1016/j.jep.2019.111979.
  • Schreckinger, M. E., J. Lotton, M. A. Lila, and E. Gonzalez de Mejia. 2010. Berries from South America: A comprehensive review on chemistry, health potential, and commercialization. Journal of Medicinal Food 13 (2):233–46. doi: 10.1089/jmf.2009.0233.
  • Schulp, C. J. E., W. Thuiller, and P. H. Verburg. 2014. Wild food in Europe: A synthesis of knowledge and data of terrestrial wild food as an ecosystem service. Ecological Economics 105:292–305. doi: 10.1016/j.ecolecon.2014.06.018.
  • Shivembe, A., and D. Ojinnaka. 2017. Determination of vitamin C and total phenolic in fresh and freeze dried blueberries and the antioxidant capacity of their extracts. Integrative Food, Nutrition and Metabolism 4 (6):1–5. doi: 10.15761/IFNM.1000197.
  • Skrovankova, S., D. Sumczynski, J. Mlcek, T. Jurikova, and J. Sochor. 2015. Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences 16 (10):24673–706. doi: 10.3390/ijms161024673.
  • Shenstone, E., Z. Lippman, and J. Van Eck. 2020. A review of nutritional properties and health benefits of Physalis species. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 75 (3):316–25. doi: 10.1007/s11130-020-00821-3.
  • SITRA. 2008. Berries in the World. Introduction to the international markets of berries https://media.sitra.fi/2017/02/28141842/Berries20in20the20world-2.pdf. Accessed July 13, 2022.
  • Smith, E., S. Ahmed, V. Dupuis, M. R. Crane, M. Eggers, M. Pierre, K. Flagg, and C. Byker Shanks. 2019. Contribution of wild foods to diet, food security, and cultural values amidst climate change. Journal of Agriculture, Food Systems, and Community Development 9:1–24. doi: 10.5304/jafscd.2019.09B.011.
  • Sulieman, A. M. E., and A. A. Mariod. 2019. Grewia tenax (Guddaim): Phytochemical constituents, bioactive compounds, traditional and medicinal uses. In Wild Fruits: Composition, Nutritional Value and Products, ed. A. Mariod, 165–73. Springer, Cham. doi: 10.1007/978-3-030-31885-7_14.
  • Sun, Q., N. Wang, W. Xu, and H. Zhou. 2021. Ribes himalense as potential source of natural bioactive compounds: Nutritional, phytochemical, and antioxidant properties. Food Science & Nutrition 9 (6):2968–84. doi: 10.1002/fsn3.2256.
  • Sun, W., M. H. Shahrajabian, and Q. Cheng. 2021. Barberry (Berberis vulgaris), a medicinal fruit and food with traditional and modern pharmaceutical uses. Israel Journal of Plant Sciences 68 (1-2):61–71. doi: 10.1163/22238980-bja10019.
  • Taruscio, T., D. Barney, and J. Exon. 2004. Content and profile of flavanoid and phenolic acid compounds in conjunction with the antioxidant capacity for a variety of Northwest Vaccinium berries. Journal of Agricultural and Food Chemistry 52 (10):3169–76. doi: 10.1021/jf0307595.
  • Toussaint-Samat, M. 1992. A History of Foods. Blackwell Publ. Ltd., London.
  • Vaara, M., O. Saastamoinen, and M. Turtiainen. 2013. Changes in wild berry picking in Finland between 1997 and 2011. Scandinavian Journal of Forest Research 28 (6):586–95. doi: 10.1080/02827581.2013.786123.
  • Vasconcelos Costa, A. G., D. F. Garcia-Diaz, P. Jimenez, and P. I. Silva. 2013. Bioactive compounds and health benefits of exotic tropical red–black berries. Journal of Functional Foods 5 (2):539–49. doi: 10.1016/j.jff.2013.01.029.
  • Vaneková, Z., and J. M. Rollinger. 2022. Bilberries: Curative and miraculous – A review on bioactive constituents and clinical research. Frontiers in Pharmacology 13:909914. doi: 10.3389/fphar.2022.909914.
  • Veberic, R., A. Slatnar, J. Bizjak, F. Stampar, and M. Mikulic-Petkovsek. 2015. Anthocyanin composition of different wild and cultivated berry species. LWT - Food Science and Technology 60 (1):509–17. doi: 10.1016/j.lwt.2014.08.033.
  • Vendrame, S., C. Del Bo, S. Ciappellano, P. Riso, and D. Klimis-Zacas. 2016. Berry fruit consumption and metabolic syndrome. Antioxidants (Basel, Switzerland) 5 (4):34. doi: 10.3390/antiox5040034.
  • Vidović, B. B., D. D. Milinčić, M. D. Marčetić, J. D. Djuriš, T. D. Ilić, A. Z. Kostić, and M. B. Pešić. 2022. Health benefits and applications of goji berries in functional food products development: A review. Antioxidants (Basel, Switzerland) 11 (2):248. doi: 10.3390/antiox11020248.
  • Wang, S. Y., and K. S. Lewers. 2007. Antioxidant capacity and flavonoid content in wild strawberries. Journal of the American Society for Horticultural Science 132:629–37. doi: 10.21273/JASHS.132.5.629.
  • WHO. 2020. Healthy diet. https://www.who.int/news-room/fact-sheets/detail/healthy-diet
  • Witkamp, R. F. 2022. Bioactive components in traditional foods aimed at health promotion: A route to novel mechanistic insights and lead molecules? Annual Review of Food Science and Technology 13 (1):315–36. doi: 10.1146/annurev-food-052720-092845.
  • Yang, B., and M. Kortesniemi. 2015. Clinical evidence on potential health benefits of berries. Current Opinion in Food Science 2:36–42. doi: 10.1016/j.cofs.2015.01.002.
  • Yang, Y., J. E. Hobbs, and D. C. Natcher. 2020. Assessing consumer willingness to pay for Arctic food products. Food Policy. 92:101846. doi: 10.1016/j.foodpol.2020.101846.
  • Yeung, A. W. K., N. T. Tzvetkov, G. Zengin, D. Wang, S. Xu, G. Mitrović, M. Brnčić, S. Dall’Acqua, V. Pirgozliev, A. Kijjoa, et al. 2019. The berries on the top. Journal of Berry Research 9 (1):125–39. doi: 10.3233/JBR-180357.
  • Yildiz, H., S. Ercisli, A. Hegedus, M. Akbulut, E. F. Topdas, and J. Aliman. 2014. Bioactive content and antioxidant characteristics of wild (Fragaria vesca L.) and cultivated strawberry (Fragaria × ananassa Duch.) fruits from Turkey. Journal of Applied Botany and Food Quality 87:274–8. doi: 10.5073/JABFQ.2014.087.038.
  • Zancada, J., and A. Peña. 2018. Frutos de la Patagonia. Ediciones de la Montaña, Argentina.
  • Zhao, Y. 2007. Berry Fruits: Value added products for health promotion. Boca Raton: CRC Press.
  • Zorzi, M., F. Gai, C. Medana, R. Aigotti, S. Morello, and P. G. Peiretti. 2020. Bioactive compounds and antioxidant capacity of small berries. Foods 9 (5):623. doi: 10.3390/foods9050623.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.