691
Views
7
CrossRef citations to date
0
Altmetric
Review

Optimization of spray drying process parameters for the food bioactive ingredients

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • A-Sun, K., B. Thumthanaruk, S. Lekhavat, and R. Jumnongpon. 2016. Effect of spray drying conditions on physical characteristics of coconut sugar powder. International Food Research Journal 23 (3):1315.
  • Aburas, H. M. A. 2004. A fuzzy modeling approach for a spray drying production process. Journal of the Korean Ceramic Society 41 (12):873–9.
  • Aghbashlo, M., and S. Hosseinpour. 2015. ANN principles and applications in modeling and control of food dryers. In Drying technologies for foods: Fundamentals and applications, ed. P. K. Nema. India: New India Publishing Agency.
  • Aghbashlo, M., S. Hosseinpour, and A. S. Mujumdar. 2015. Application of artificial neural networks (ANNs) in drying technology: A comprehensive review. Drying Technology 33 (12):1397–462. doi: 10.1080/07373937.2015.1036288.
  • Aghbashlo, M., H. Mobli, S. Rafiee, and A. Madadlou. 2013. An artificial neural network for predicting the physiochemical properties of fish oil microcapsules obtained by spray drying. Food Science and Biotechnology 22 (3):677–85. doi: 10.1007/s10068-013-0131-8.
  • Ahad, T., F. A. Masoodi, A. Gull, S. M. Wani, and M. N. Shafi. 2021. Optimization of process parameters for spray drying of ginger oleoresin powder using response surface methodology. Journal of Food Processing and Preservation 45 (4):e15190. doi: 10.1111/jfpp.15190.
  • Ahi, M., M. S. Hatamipour, and A. Goodarzi. 2010. Optimization of leavening activity of baker’s yeast during the spray-drying process. Drying Technology 28 (4):490–4. doi: 10.1080/07373931003613726.
  • Al-Mahasneh, M., M. Aljarrah, T. Rababah, and M. Alu’datt. 2016. Application of hybrid neural fuzzy system (ANFIS) in food processing and technology. Food Engineering Reviews 8 (3):351–66. doi: 10.1007/s12393-016-9141-7.
  • Alexander, F. J., and A. L. Garcia. 1997. The direct simulation Monte Carlo method. Computers in Physics 11 (6):588–93. doi: 10.1063/1.168619.
  • Aliakbarian, B., F. C. Sampaio, J. T. de Faria, C. G. Pitangui, F. Lovaglio, A. A. Casazza, A. Converti, and P. Perego. 2018. Optimization of spray drying microencapsulation of olive pomace polyphenols using Response Surface Methodology and Artificial Neural Network. LWT 93:220–8. doi: 10.1016/j.lwt.2018.03.048.
  • Anekella, K., and V. Orsat. 2013. Optimization of microencapsulation of probiotics in raspberry juice by spray drying. LWT – Food Science and Technology 50 (1):17–24. doi: 10.1016/j.lwt.2012.08.003.
  • Aragüez‐Fortes, Y., L. M. Robaina‐Morales, and J. A. Pino. 2019. Optimization of the spray‐drying parameters for developing guava powder. Journal of Food Process Engineering 42 (6):e13230. doi: 10.1111/jfpe.13230.
  • Arepally, D., and T. K. Goswami. 2019. Effect of inlet air temperature and gum Arabic concentration on encapsulation of probiotics by spray drying. LWT 99:583–93. doi: 10.1016/j.lwt.2018.10.022.
  • Arpagaus, C. 2019a. Nano spray drying of bioactive food ingredients. Proceedings of Eurodrying, 2019, 7th.
  • Arpagaus, C. 2019b. Production of food bioactive-loaded nanoparticles by nano spray drying. In Nanoencapsulation of food ingredients by specialized equipment, 151–211. London, UK: Elsevier.
  • Assadpour, E., and S.-M. Jafari. 2017. Spray drying of folic acid within nano-emulsions: Optimization by Taguchi approach. Drying Technology 35 (9):1152–60. doi: 10.1080/07373937.2016.1242016.
  • Atalar, I., and M. Dervisoglu. 2015. Optimization of spray drying process parameters for kefir powder using response surface methodology. LWT – Food Science and Technology 60 (2):751–7. doi: 10.1016/j.lwt.2014.10.023.
  • Azadeh, A., N. Neshat, and M. Saberi. 2010. An intelligent approach for improved predictive control of spray drying process. Paper presented at the 2010 IEEE 14th International Conference on Intelligent Engineering Systems. doi: 10.1109/INES.2010.5483859.
  • Azin, M., R. Moravej, and D. Zareh. 2007. Production of xylanase by Trichoderma longibrachiatum on a mixture of wheat bran and wheat straw: Optimization of culture condition by Taguchi method. Enzyme and Microbial Technology 40 (4):801–5. doi: 10.1016/j.enzmictec.2006.06.013.
  • Bai, X., C. Li, L. Yu, Y. Jiang, M. Wang, S. Lang, and D. Liu. 2019. Development and characterization of soybean oil microcapsules employing kafirin and sodium caseinate as wall materials. LWT 111:235–41. doi: 10.1016/j.lwt.2019.05.032.
  • Bakar, J., S. Ee, K. Muhammad, D. M. Hashim, and N. Adzahan. 2013. Spray-drying optimization for red pitaya peel (Hylocereus polyrhizus). Food and Bioprocess Technology 6 (5):1332–42. doi: 10.1007/s11947-012-0842-5.
  • Baker, C., H. Lababidi, and K. Masters. 2004. A fuzzy expert system for the selection of spray-drying equipment. Drying Technology 22 (1-2):237–58. doi: 10.1081/DRT-120028231.
  • Balasubramani, P., P. Palaniswamy, R. Visvanathan, V. Thirupathi, A. Subbarayan, and J. P. Maran. 2015. Microencapsulation of garlic oleoresin using maltodextrin as wall material by spray drying technology. International Journal of Biological Macromolecules 72:210–7. doi: 10.1016/j.ijbiomac.2014.08.011.
  • Balasubramani, P., R. Viswanathan, and M. Vairamani. 2013. Response surface optimisation of process variables for microencapsulation of garlic (Allium sativum L.) oleoresin by spray drying. Biosystems Engineering 114 (3):205–13. doi: 10.1016/j.biosystemseng.2012.12.008.
  • Balci-Torun, F., and F. Ozdemir. 2021. Encapsulation of strawberry flavour and physicochemical characterization of the encapsulated powders. Powder Technology 380:602–12. doi: 10.1016/j.powtec.2020.11.060.
  • Baldinger, A., L. Clerdent, J. Rantanen, M. Yang, and H. Grohganz. 2012. Quality by design approach in the optimization of the spray-drying process. Pharmaceutical Development and Technology 17 (4):389–97. doi: 10.3109/10837450.2010.550623.
  • Banga, J. R., E. Balsa-Canto, C. G. Moles, and A. A. Alonso. 2003. Improving food processing using modern optimization methods. Trends in Food Science & Technology 14 (4):131–44. doi: 10.1016/S0924-2244(03)00048-7.
  • Banjare, I. S., K. Gandhi, K. Sao, and R. Sharma. 2019. Optimization of spray-drying conditions for the preparation of whey protein concentrate–iron complex using response surface methodology. International Journal of Food Properties 22 (1):1411–24. doi: 10.1080/10942912.2019.1651735.
  • Bao, T., Y. Xu, V. Gowd, J. Zhao, J. Xie, W. Liang, and W. Chen. 2016. Systematic study on phytochemicals and antioxidant activity of some new and common mulberry cultivars in China. Journal of Functional Foods 25:537–47. doi: 10.1016/j.jff.2016.07.001.
  • Barbosa, J., S. Borges, M. Amorim, M. Pereira, A. Oliveira, M. Pintado, and P. Teixeira. 2015. Comparison of spray drying, freeze drying and convective hot air drying for the production of a probiotic orange powder. Journal of Functional Foods 17:340–51. doi: 10.1016/j.jff.2015.06.001.
  • Barrado, E., M. Vega, R. Pardo, P. Grande, and J. L. Del Valle. 1996. Optimisation of a purification method for metal-containing wastewater by use of a Taguchi experimental design. Water Research 30 (10):2309–14. doi: 10.1016/0043-1354(96)00119-4.
  • Bassetto, E., A. P. Jacomino, A. L. Pinheiro, and R. A. Kluge. 2005. Delay of ripening of ‘Pedro Sato’guava with 1-methylcyclopropene. Postharvest Biology and Technology 35 (3):303–8. doi: 10.1016/j.postharvbio.2004.08.003.
  • Başyiğit, B., H. Sağlam, Ş. Kandemir, A. Karaaslan, and M. Karaaslan. 2020. Microencapsulation of sour cherry oil by spray drying: Evaluation of physical morphology, thermal properties, storage stability, and antimicrobial activity. Powder Technology 364:654–63. doi: 10.1016/j.powtec.2020.02.035.
  • Bazaria, B., and P. Kumar. 2018. Optimization of spray drying parameters for beetroot juice powder using response surface methodology (RSM). Journal of the Saudi Society of Agricultural Sciences 17 (4):408–15. doi: 10.1016/j.jssas.2016.09.007.
  • Behboudi-Jobbehdar, S., C. Soukoulis, L. Yonekura, and I. Fisk. 2013. Optimization of spray-drying process conditions for the production of maximally viable microencapsulated L. acidophilus NCIMB 701748. Drying Technology 31 (11):1274–83. doi: 10.1080/07373937.2013.788509.
  • Belwal, T., H. P. Devkota, S. Ramola, H. C. Andola, and I. D. Bhatt. 2020. Chapter Ten - Optimization of extraction methodologies and purification technologies to recover phytonutrients from food. In Phytonutrients in Food, eds. S. M. Nabavi, I. Suntar, D. Barreca, and H. Khan, 217–35. Cambridge, UK: Woodhead Publishing.
  • Beshkova, D., E. Simova, G. Frengova, Z. Simov, and Z. P. Dimitrov. 2003. Production of volatile aroma compounds by kefir starter cultures. International Dairy Journal 13 (7):529–35. doi: 10.1016/S0958-6946(03)00058-X.
  • Borges, L. L., F. S. Martins, E. C. Conceição, and D. Silveira. 2017. Optimization of the spray‐drying process for developing jabuticaba waste powder employing response surface methodology. Journal of Food Process Engineering 40 (1):e12276. doi: 10.1111/jfpe.12276.
  • Braga, V., L. R. Guidi, R. C. de Santana, and M. F. Zotarelli. 2020. Production and characterization of pineapple-mint juice by spray drying. Powder Technology 375:409–19. doi: 10.1016/j.powtec.2020.08.012.
  • Broeckx, G., S. Kiekens, K. Jokicevic, E. Byl, T. Henkens, D. Vandenheuvel, S. Lebeer, and F. Kiekens. 2020. Effects of initial cell concentration, growth phase, and process parameters on the viability of Lactobacillus rhamnosus GG after spray drying. Drying Technology 38 (11):1474–92. doi: 10.1080/07373937.2019.1648290.
  • Chegini, G., J. Khazaei, B. Ghobadian, and A. Goudarzi. 2008. Prediction of process and product parameters in an orange juice spray dryer using artificial neural networks. Journal of Food Engineering 84 (4):534–43. doi: 10.1016/j.jfoodeng.2007.06.007.
  • Chen, Q., J. Bi, Y. Zhou, X. Liu, X. Wu, and R. Chen. 2014. Multi-objective optimization of spray drying of jujube (Zizyphus jujuba Miller) powder using response surface methodology. Food and Bioprocess Technology 7 (6):1807–18. doi: 10.1007/s11947-013-1171-z.
  • Chow, M. Y., P. C. Kwok, R. Yang, and H.-K. Chan. 2020. Predicting the composition and size distribution of dry particles for aerosols and sprays of suspension: A Monte Carlo approach. International Journal of Pharmaceutics 582:119311. doi: 10.1016/j.ijpharm.2020.119311.
  • Cortés-Rojas, D. F., C. R. F. Souza, and W. P. Oliveira. 2015. Optimization of spray drying conditions for production of Bidens pilosa L. dried extract. Chemical Engineering Research and Design 93:366–76. doi: 10.1016/j.cherd.2014.06.010.
  • Daneshvar, N., A. R. Khataee, M. H. Rasoulifard, and M. Pourhassan. 2007. Biodegradation of dye solution containing Malachite Green: Optimization of effective parameters using Taguchi method. Journal of Hazardous Materials 143 (1-2):214–9. doi: 10.1016/j.jhazmat.2006.09.016.
  • Das, A., and J. Kumar. 2021. Population balance modeling of volume and time dependent spray fluidized bed aggregation kernel using Monte Carlo simulation results. Applied Mathematical Modelling 92:748–69. doi: 10.1016/j.apm.2020.11.020.
  • Dash, K., G. B. Raj, and M. Gayary. 2020. Application of neural networks in optimizing different food processes case study. In Mathematical and statistical applications in food engineering, 346–62. Florida, US: CRC Press.
  • Davis, R., and P. John. 2018. Application of Taguchi-based design of experiments for industrial chemical processes. In Statistical approaches with emphasis on design of experiments applied to chemical processes. London, UK: InTech.
  • de Barros Fernandes, R. V., S. V. Borges, and D. A. Botrel. 2014. Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydrate Polymers 101:524–32. doi: 10.1016/j.carbpol.2013.09.083.
  • Dernedde, M., M. Peglow, and E. Tsotsas. 2013. Stochastic modeling of fluidized bed agglomeration: Determination of particle moisture content. Drying Technology 31 (15):1764–71. doi: 10.1080/07373937.2013.810638.
  • Ding, Z., T. Tao, X. Yin, S. Prakash, X. Wang, Y. Zhao, J. Han, and Z. Wang. 2020. Improved encapsulation efficiency and storage stability of spray dried microencapsulated lutein with carbohydrates combinations as encapsulating material. LWT 124:109139. doi: 10.1016/j.lwt.2020.109139.
  • dos Santos, D. X., A. A. Casazza, B. Aliakbarian, R. Bedani, S. M. I. Saad, and P. Perego. 2019. Improved probiotic survival to in vitro gastrointestinal stress in a mousse containing Lactobacillus acidophilus La-5 microencapsulated with inulin by spray drying. LWT 99:404–10. doi: 10.1016/j.lwt.2018.10.010.
  • Du, J., G. Strenzke, A. Bück, and E. Tsotsas. 2022. Monte Carlo modeling of spray agglomeration in a cylindrical fluidized bed: From batch-wise to continuous processes. Powder Technology 396:113–26. doi: 10.1016/j.powtec.2021.10.051.
  • Elshennawy, A. K. 2004. Quality in the new age and the body of knowledge for quality engineers. Total Quality Management & Business Excellence 15 (5-6):603–14. doi: 10.1080/14783360410001680099.
  • Encina, C., G. Márquez-Ruiz, F. Holgado, B. Giménez, C. Vergara, and P. Robert. 2018. Effect of spray-drying with organic solvents on the encapsulation, release and stability of fish oil. Food Chemistry 263:283–91. doi: 10.1016/j.foodchem.2018.05.026.
  • Erbay, Z., N. Koca, F. Kaymak-Ertekin, and M. Ucuncu. 2015. Optimization of spray drying process in cheese powder production. Food and Bioproducts Processing 93:156–65. doi: 10.1016/j.fbp.2013.12.008.
  • Erdogdu, F. 2008. Optimization in food engineering. Florida, USA: CRC Press.
  • Eski, A., Z. Demirbağ, and İ. Demir. 2019. Microencapsulation of an indigenous isolate of Bacillus thuringiensis by spray drying. Journal of Microencapsulation 36 (1):1–9. doi: 10.1080/02652048.2019.1572238.
  • Evans, L., and E. Lb. 1982. Optimization theory and its application in food processing.
  • Fazaeli, M., Z. Emam-Djomeh, A. K. Ashtari, and M. Omid. 2012. Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing 90 (4):667–75. doi: 10.1016/j.fbp.2012.04.006.
  • Fazaeli, M., Z. Emam-Djomeh, M. Omid, and A. Kalbasi-Ashtari. 2013. Prediction of the physicochemical properties of spray-dried black mulberry (Morus nigra) juice using artificial neural networks. Food and Bioprocess Technology 6 (2):585–90. doi: 10.1007/s11947-011-0648-x.
  • Ferrari, A., S. Gutiérrez, and G. Sin. 2016. Modeling a production scale milk drying process: Parameter estimation, uncertainty and sensitivity analysis. Chemical Engineering Science 152:301–10. doi: 10.1016/j.ces.2016.06.019.
  • Ferreira, S. L. C., M. M. Silva Junior, C. S. A. Felix, D. L. F. da Silva, A. S. Santos, J. H. Santos Neto, C. T. de Souza, R. A. Cruz Junior, and A. S. Souza. 2019. Multivariate optimization techniques in food analysis–A review. Food Chemistry 273:3–8. doi: 10.1016/j.foodchem.2017.11.114.
  • Finotello, G., J. T. Padding, K. A. Buist, A. Schijve, A. Jongsma, F. Innings, and J. Kuipers. 2020. Numerical investigation of droplet-droplet collisions in a water and milk spray with coupled heat and mass transfer. Drying Technology 38 (12):1597–619. doi: 10.1080/07373937.2019.1651732.
  • Fisher, R. 1935. The factorial design in experimentation. In The design of experiments, 93–4. UK: Macmillan Publishers.
  • Gallo, L., J. M. Llabot, D. Allemandi, V. Bucalá, and J. Piña. 2011. Influence of spray-drying operating conditions on Rhamnus purshiana (Cáscara sagrada) extract powder physical properties. Powder Technology 208 (1):205–14. doi: 10.1016/j.powtec.2010.12.021.
  • Gammone, M. A., G. Riccioni, G. Parrinello, and N. D’Orazio. 2018. Omega-3 polyunsaturated fatty acids: Benefits and endpoints in sport. Nutrients 11 (1):46. doi: 10.3390/nu11010046.
  • Ganeshpurkar, A., V. Pandey, S. Asati, R. Maheshwari, M. Tekade, and R. K. Tekade. 2018. Experimental design and analysis of variance. In Dosage form design parameters, 281–301. Cambridge, UK: Elsevier.
  • Geranpour, M., E. Assadpour, and S. M. Jafari. 2020. Recent advances in the spray drying encapsulation of essential fatty acids and functional oils. Trends in Food Science & Technology 102:71–90. doi: 10.1016/j.tifs.2020.05.028.
  • Geranpour, M., E. Assadpour, S. M. Jafari, and C. Arpagaus. 2021. Spray drying encapsulation of essential fatty acids and functional oils. In Spray drying encapsulation of bioactive materials, 211–40. Florida, USA: CRC Press.
  • Ghosh, M., S. Srivastava, R. K. Raigar, and H. N. Mishra. 2020. Multilayer perceptron neural networking for prediction of quality attributes of spray-dried vegetable oil powder. Soft Computing 24 (13):9821–33. doi: 10.1007/s00500-019-04494-2.
  • Gil-Chávez, J., S. S. P. Padhi, U. Hartge, S. Heinrich, and I. Smirnova. 2020. Optimization of the spray-drying process for developing aquasolv lignin particles using response surface methodology. Advanced Powder Technology 31 (6):2348–56. doi: 10.1016/j.apt.2020.03.027.
  • Gómez-Aldapa, C. A., J. Castro-Rosas, E. Rangel-Vargas, R. O. Navarro-Cortez, Z. E. Cabrera-Canales, L. Díaz-Batalla, F. Martínez-Bustos, F. A. Guzmán-Ortiz, and R. N. Falfan-Cortes. 2019. A modified Achira (Canna indica L.) starch as a wall material for the encapsulation of Hibiscus sabdariffa extract using spray drying. Food Research International 119 (1):547–53. doi: 10.1016/j.foodres.2018.10.031.
  • Guiné, R. 2019. The use of artificial neural networks (ANN) in food process engineering. ETP International Journal of Food Engineering 5:15–21. doi: 10.18178/ijfe.5.1.15-21.
  • Hardy, J., M. Parmentier, and J. Fanni. 1999. Functionality of nutrients and thermal treatments of food. The Proceedings of the Nutrition Society 58 (3):579–85. doi: 10.1017/s0029665199000762.
  • Hernández-López, Z., E. Rangel-Vargas, J. Castro-Rosas, C. A. Gómez-Aldapa, A. Cadena-Ramírez, O. A. Acevedo-Sandoval, A. J. Gordillo-Martínez, and R. N. Falfán-Cortés. 2018. Optimization of a spray-drying process for the production of maximally viable microencapsulated Lactobacillus pentosus using a mixture of starch-pulque as wall material. LWT 95:216–22. doi: 10.1016/j.lwt.2018.04.075.
  • Hong, Y.-K., L. Huang, W. B. Yoon, F. Liu, and J. Tang. 2016. Mathematical modeling and Monte Carlo simulation of thermal inactivation of non-proteolytic Clostridium botulinum spores during continuous microwave-assisted pasteurization. Journal of Food Engineering 190:61–71. doi: 10.1016/j.jfoodeng.2016.06.012.
  • Horuz, E., A. Altan, and M. Maskan. 2012. Spray drying and process optimization of unclarified pomegranate (Punica granatum) juice. Drying Technology 30 (7):787–98. doi: 10.1080/07373937.2012.663434.
  • Hotel, A. C. P., and A. Cordoba. 2001. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention 5 (1):1–10.
  • Hu, L., J. Zhang, Q. Hu, N. Gao, S. Wang, Y. Sun, and X. Yang. 2016. Microencapsulation of Brucea javanica oil: Characterization, stability and optimization of spray drying conditions. Journal of Drug Delivery Science and Technology 36:46–54. doi: 10.1016/j.jddst.2016.09.008.
  • Huang, H., S. Hao, L. Li, X. Yang, J. Cen, W. Lin, and Y. Wei. 2014. Influence of emulsion composition and spray-drying conditions on microencapsulation of tilapia oil. Journal of Food Science and Technology 51 (9):2148–54. doi: 10.1007/s13197-012-0711-2.
  • Huang, S., M.-L. Vignolles, X. D. Chen, Y. Le Loir, G. Jan, P. Schuck, and R. Jeantet. 2017. Spray drying of probiotics and other food-grade bacteria: A review. Trends in Food Science & Technology 63:1–17. doi: 10.1016/j.tifs.2017.02.007.
  • Hugget, A., P. Sébastian, and J. P. Nadeau. 1999. Global optimization of a dryer by using neural networks and genetic algorithms. AIChE Journal 45 (6):1227–38. doi: 10.1002/aic.690450609.
  • Hussain, M., J. Kumar, M. Peglow, and E. Tsotsas. 2013. Modeling spray fluidized bed aggregation kinetics on the basis of Monte-Carlo simulation results. Chemical Engineering Science 101:35–45. doi: 10.1016/j.ces.2013.06.004.
  • Hussain, M., J. Kumar, and E. Tsotsas. 2015. Modeling aggregation kinetics of fluidized bed spray agglomeration for porous particles. Powder Technology 270:584–91. doi: 10.1016/j.powtec.2014.07.015.
  • Igual, M., S. Ramires, L. Mosquera, and N. Martínez-Navarrete. 2014. Optimization of spray drying conditions for lulo (Solanum quitoense L.) Pulp. Powder Technology 256:233–8.
  • Islam, M., N. Mahmud, T. Nawas, Y. Fang, and W. Xia. 2018. Health benefits and spray drying microencapsulation process of fish oil (Omega-3). American Journal of Food Science and Nutrition Research 5 (2):29–42.
  • Izadi, M., M. H. Eskandari, M. Niakousari, S. Shekarforoush, M. A. Hanifpour, and Z. Izadi. 2014. Optimisation of a pilot‐scale spray drying process for probiotic yoghurt, using response surface methodology. International Journal of Dairy Technology 67 (2):211–9. doi: 10.1111/1471-0307.12108.
  • Jafari, S., S. M. Jafari, M. Ebrahimi, I. Kijpatanasilp, and K. Assatarakul. 2022. A decade overview and prospect of spray drying encapsulation of bioactives from fruit products: Characterization, food application and in vitro gastrointestinal digestion. Food Hydrocolloids 134:108068.
  • Jafari, S. M., C. Arpagaus, M. A. Cerqueira, and K. Samborska. 2021. Nano spray drying of food ingredients; materials, processing and applications. Trends in Food Science & Technology 109:632–46. doi: 10.1016/j.tifs.2021.01.061.
  • Jafari, S. M., S. Masoudi, and A. Bahrami. 2019. A Taguchi approach production of spray-dried whey powder enriched with nanoencapsulated vitamin D3. Drying Technology 37 (16):2059–71. doi: 10.1080/07373937.2018.1552598.
  • Jafari, S. M., S. Vakili, and D. Dehnad. 2019. Production of a functional yogurt powder fortified with nanoliposomal vitamin D through spray drying. Food and Bioprocess Technology 12 (7):1220–31. doi: 10.1007/s11947-019-02289-9.
  • Janiszewska-Turak, E. 2017. Carotenoids microencapsulation by spray drying method and supercritical micronization. Food Research International (Ottawa, Ont.) 99 (Pt 2):891–901. doi: 10.1016/j.foodres.2017.02.001.
  • Keshani, S., W. R. W. Daud, M. W. Woo, M. Z. M. Talib, A. L. Chuah, and A. Russly. 2012. Artificial neural network modeling of the deposition rate of lactose powder in spray dryers. Drying Technology 30 (4):386–97. doi: 10.1080/07373937.2011.638228.
  • Khalilian Movahhed, M., and M. Mohebbi. 2016. Spray drying and process optimization of carrot–celery juice. Journal of Food Processing and Preservation 40 (2):212–25. doi: 10.1111/jfpp.12598.
  • Khoudoli, G. A., I. M. Porter, J. J. Blow, and J. R. Swedlow. 2004. Optimisation of the two-dimensional gel electrophoresis protocol using the Taguchi approach. Proteome Science 2 (1):6. doi: 10.1186/1477-5956-2-6.
  • Khuri, A. I. 2006. Response surface methodology and related topics. Singapore: World scientific.
  • Khwanpruk, K., C. Akkaraphenphan, P. Wattananukit, W. Kaewket, and S. Chusai. 2018. Effect of drying air condition and feed composition on the properties of orange juice spray dried powder. MATEC Web of Conferences 192:03013. doi: 10.1051/matecconf/201819203013.
  • Kim, J.-H., J. H. Kim, and J.-B. Eun. 2021. Optimization of spray drying process parameters for production of Japanese apricot (Prunus mume Sieb. et Zucc.) juice powder. Food Science and Biotechnology 30:1075–86. doi: 10.1007/s10068-021-00950-8.
  • Koc, A. B., P. Heinemann, and G. Ziegler. 2007. Optimization of whole milk powder processing variables with neural networks and genetic algorithms. Food and Bioproducts Processing 85 (4):336–43. doi: 10.1205/fbp07074.
  • Koc, B., M. S. Yilmazer, P. Balkır, and F. K. Ertekin. 2010. Spray drying of yogurt: Optimization of process conditions for improving viability and other quality attributes. Drying Technology 28 (4):495–507. doi: 10.1080/07373931003613809.
  • Kong, F., and R. Singh. 2016. Chemical deterioration and physical instability of foods and beverages. In The stability and shelf life of food, 43–76. Cambridge, UK: Elsevier.
  • Krishnaiah, D., A. Bono, R. Sarbatly, R. Nithyanandam, and S. Anisuzzaman. 2015. Optimisation of spray drying operating conditions of Morinda citrifolia L. fruit extract using response surface methodology. Journal of King Saud University - Engineering Sciences 27 (1):26–36. doi: 10.1016/j.jksues.2012.10.004.
  • Kwapińska, M., and I. Zbiciński. 2005. Prediction of final product properties after cocurrent spray drying. Drying Technology 23 (8):1653–65. doi: 10.1081/DRT-200065075.
  • Lau, E. 2001. 5 – Preformulation studies. In Separation science and technology, eds. S. Ahuja and S. Scypinski, 3, 173–233. London, UK: Academic Press.
  • Lebrun, P., F. Krier, J. Mantanus, H. Grohganz, M. Yang, E. Rozet, B. Boulanger, B. Evrard, J. Rantanen, and P. Hubert. 2012. Design space approach in the optimization of the spray-drying process. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 80 (1):226–34. doi: 10.1016/j.ejpb.2011.09.014.
  • Lee, H.-M., S.-Y. Yang, J. Han, Y. K. Kim, Y. J. Kim, M. S. Rhee, and K.-W. Lee. 2019. Optimization of spray drying parameters and food additives to reduce glycation using response surface methodology in powdered infant formulas. Food Science and Biotechnology 28 (3):769–77. doi: 10.1007/s10068-018-0524-9.
  • Lee Kar Ming, J., F. Saleena Taip, M. Shamsul Anuar, S. Bahari Mohd Noor, and Z. Abdullah. 2020. Artificial neural network topology optimization using K-fold cross validation for spray drying of coconut milk. IOP Conference Series: Materials Science and Engineering 778 (1):012094. doi: 10.1088/1757-899X/778/1/012094.
  • Leylak, C., K. S. Özdemir, G. C. Gurakan, and Z. B. Ogel. 2021. Optimisation of spray drying parameters for Lactobacillus acidophilus encapsulation in whey and gum Arabic: Its application in ­yoghurt. International Dairy Journal 112:104865. doi: 10.1016/j.idairyj.2020.104865.
  • Liu, K., R.-L. Huang, X.-Q. Zha, Q.-M. Li, L.-H. Pan, and J.-P. Luo. 2020. Encapsulation and sustained release of curcumin by a composite hydrogel of lotus root amylopectin and chitosan. Carbohydrate Polymers 232:115810. doi: 10.1016/j.carbpol.2019.115810.
  • Liu, Y., F. Chen, and H. Guo. 2017. Optimization of bayberry juice spray drying process using response surface methodology. Food Science and Biotechnology 26 (5):1235–44. doi: 10.1007/s10068-017-0169-0.
  • Liu, Y., Y. Li, T. Shi, J. Zhao, H. Wang, T. Liu, S. Yue, J. Zhou, L. Yu, Y. Zhou, et al. 2016. The optimization of spray drying process of Lactobacillus reuteri. LWT - Food Science and Technology 68:615–8. doi: 10.1016/j.lwt.2016.01.008.
  • Looi, Y. F., S. P. Ong, A. Julkifle, and M. S. Alias. 2019. Effects of pretreatment and spray drying on the physicochemical properties and probiotics viability of Moringa (Moringa oleifera Lam) leaf juice powder. Journal of Food Processing and Preservation 43 (4):e13915. doi: 10.1111/jfpp.13915.
  • Ma, S., S. Zhao, Y. Zhang, Y. Yu, J. Liu, and M. Xu. 2013. Quality characteristic of spray-drying egg white powders. Molecular Biology Reports 40 (10):5677–83. doi: 10.1007/s11033-013-2669-1.
  • Ma, W., J. Zhang, L. Shu, X. Tan, Y. An, X. Yang, D. Wang, and Q. Gao. 2020. Optimization of spray drying conditions for the green manufacture of γ-aminobutyric acid-rich powder from Lactobacillus brevis fermentation broth. Biochemical Engineering Journal 156:107499. doi: 10.1016/j.bej.2020.107499.
  • Malekjani, N., and S. M. Jafari. 2020. Food process modeling and optimization by response surface methodology (RSM). In Mathematical and statistical applications in food engineering, 181–203. Florida, US: CRC Press.
  • Malekjani, N., and S. M. Jafari. 2022. Intelligent and probabilistic models for evaluating the release of food bioactive ingredients from carriers/nanocarriers. Food and Bioprocess Technology 15:1–22.
  • Mehran, M., S. Masoum, and M. Memarzadeh. 2020. Microencapsulation of Mentha spicata essential oil by spray drying: Optimization, characterization, release kinetics of essential oil from microcapsules in food models. Industrial Crops and Products 154:112694. doi: 10.1016/j.indcrop.2020.112694.
  • Mestry, A., A. Mujumdar, and B. Thorat. 2011. Optimization of spray drying of an innovative functional food: Fermented mixed juice of carrot and watermelon. Drying Technology 29 (10):1121–31. doi: 10.1080/07373937.2011.566968.
  • Mihajlovic, T., S. Ibric, and A. Mladenovic. 2011. Application of design of experiments and multilayer perceptron neural network in optimization of the spray-drying process. Drying Technology 29 (14):1638–47. doi: 10.1080/07373937.2011.592960.
  • Miletić, T., S. Ibrić, and Z. Đurić. 2014. Combined application of experimental design and artificial neural networks in modeling and characterization of spray drying drug: Cyclodextrin complexes. Drying Technology 32 (2):167–79. doi: 10.1080/07373937.2013.811593.
  • Ming, J. L. K., F. S. Taip, M. S. Anuar, S. B. M. Noor, and Z. Abdullah. 2020. Optimization of genetic algorithm parameter in hybrid genetic algorithm-neural network modelling: Application to spray drying of coconut milk. IOP Conference Series: Materials Science and Engineering 991 (1):012139. doi: 10.1088/1757-899X/991/1/012139.
  • Moghaddam, A. D., M. Pero, and G. R. Askari. 2017. Optimizing spray drying conditions of sour cherry juice based on physicochemical properties, using response surface methodology (RSM). Journal of Food Science and Technology 54 (1):174–84. doi: 10.1007/s13197-016-2449-8.
  • Moghbeli, S., S. M. Jafari, Y. Maghsoudlou, and D. Dehnad. 2019. Influence of pectin-whey protein complexes and surfactant on the yield and microstructural properties of date powder produced by spray drying. Journal of Food Engineering 242:124–32. doi: 10.1016/j.jfoodeng.2018.08.025.
  • Moghbeli, S., S. M. Jafari, Y. Maghsoudlou, and D. Dehnad. 2020. A Taguchi approach optimization of date powder production by spray drying with the aid of whey protein-pectin complexes. Powder Technology 359:85–93. doi: 10.1016/j.powtec.2019.10.013.
  • Montagne, D. H., P. Van Dael, M. Skanderby, and W. Hugelshofer. 2009. Infant formulae–powders and liquids. In Dairy powders and concentrated products, 294–331. US: Blackwell Publishing.
  • Moslemi, M., H. Hosseini, M. Erfan, A. M. Mortazavian, R. M. N. Fard, T. R. Neyestani, and R. Komeyli. 2014. Characterisation of spray‐dried microparticles containing iron coated by pectin/resistant starch. International Journal of Food Science & Technology 49 (7):1736–42. doi: 10.1111/ijfs.12483.
  • Muzaffar, K., and P. Kumar. 2015. Parameter optimization for spray drying of tamarind pulp using response surface methodology. Powder Technology 279:179–84. doi: 10.1016/j.powtec.2015.04.010.
  • Myers, R. H., D. C. Montgomery, and C. M. Anderson-Cook. 2016. Response surface methodology: Process and product optimization using designed experiments. US: John Wiley & Sons.
  • Navidad-Murrieta, M. S., A. Pérez-Larios, J. A. Sanchéz-Burgos, J. A. Ragazzo-Sánchez, G. Luna-Bárcenas, and S. G. Sáyago-Ayerdi. 2020. Use of a Taguchi design in Hibiscus sabdariffa extracts encapsulated by spray-drying. Foods 9 (2):128. doi: 10.3390/foods9020128.
  • Noshad, M., M. Mohebbi, A. Koocheki, and F. Shahidi. 2015. Microencapsulation of vanillin by spray drying using soy protein isolate–maltodextrin as wall material. Flavour and Fragrance Journal 30 (5):387–91. doi: 10.1002/ffj.3253.
  • Nunes, G. L., M. d A. Etchepare, A. J. Cichoski, L. Q. Zepka, E. Jacob Lopes, J. S. Barin, É. M. d M. Flores, C. d B. da Silva, and C. R. de Menezes. 2018. Inulin, hi-maize, and trehalose as thermal protectants for increasing viability of Lactobacillus acidophilus encapsulated by spray drying. LWT 89:128–33. doi: 10.1016/j.lwt.2017.10.032.
  • O’Toole, M. G., R. M. Henderson, P. A. Soucy, B. H. Fasciotto, P. J. Hoblitzell, R. S. Keynton, W. D. Ehringer, and A. S. Gobin. 2012. Curcumin encapsulation in submicrometer spray-dried chitosan/Tween 20 particles. Biomacromolecules 13 (8):2309–14. doi: 10.1021/bm300564v.
  • Pal, S., and P. Bhattacharjee. 2018. Spray dried powder of lutein-rich supercritical carbon dioxide extract of gamma-irradiated marigold flowers: Process optimization, characterization and food application. Powder Technology 327:512–23. doi: 10.1016/j.powtec.2017.12.085.
  • Palzer, S. 2007. Agglomeration of dehydrated consumer foods. In Handbook of powder technology, Vol. 11, 591–671. New York, USA: Elsevier.
  • Palzer, S. 2011. Agglomeration of pharmaceutical, detergent, chemical and food powders—similarities and differences of materials and processes. Powder Technology 206 (1-2):2–17. doi: 10.1016/j.powtec.2010.05.006.
  • Patil, V., A. K. Chauhan, and R. P. Singh. 2014. Optimization of the spray-drying process for developing guava powder using response surface methodology. Powder Technology 253:230–6. doi: 10.1016/j.powtec.2013.11.033.
  • Pino, J. A., O. Sosa‐Moguel, E. Sauri‐Duch, and L. Cuevas‐Glory. 2019. Microencapsulation of winter squash (Cucurbita moschata Duchesne) seed oil by spray drying. Journal of Food Processing and Preservation 43 (10):e14136. doi: 10.1111/jfpp.14136.
  • Polekkad, A., M. E. E. Franklin, H. A. Pushpadass, S. N. Battula, S. N. Rao, and D. Pal. 2021. Microencapsulation of zinc by spray-drying: Characterisation and fortification. Powder Technology 381:1–16. doi: 10.1016/j.powtec.2020.12.009.
  • Pombo, J. C. P., H. H. B. R. de Medeiros, and R. da Silva Pena. 2020. Optimization of the spray drying process for developing cupuassu powder. Journal of Food Science and Technology 57 (12):4501–13. doi: 10.1007/s13197-020-04487-2.
  • Porwal, O. 2022. Box Behnken Design based formulation optimization and characterization of spray dried rutin loaded nanosuspension: State of the art. South African Journal of Botany 149:807–15. doi: 10.1016/j.sajb.2022.04.028.
  • Pralhadrao, J. V., S. Arora, B. Shilpashree, V. Sharma, A. Singh, and N. R. Panjagari. 2021. Standardization of model for the production of spray dried whey protein-zinc complex and its acceptability in milk. LWT 137:110450. doi: 10.1016/j.lwt.2020.110450.
  • Premi, M., and H. Sharma. 2017. Effect of different combinations of maltodextrin, gum arabic and whey protein concentrate on the encapsulation behavior and oxidative stability of spray dried drumstick (Moringa oleifera) oil. International Journal of Biological Macromolecules 105 (Pt 1):1232–40. doi: 10.1016/j.ijbiomac.2017.07.160.
  • Przybył, K., K. Samborska, K. Koszela, L. Masewicz, and T. Pawlak. 2021. Artificial neural networks in the evaluation of the influence of the type and content of carrier on selected quality parameters of spray dried raspberry powders. Measurement 186:110014. doi: 10.1016/j.measurement.2021.110014.
  • Pui, L., R. Karim, Y. Yusof, C. Wong, and H. Ghazali. 2020. Optimization of spray-drying parameters for the production of ‘Cempedak’ (Artocarpus integer) fruit powder. Journal of Food Measurement and Characterization 14 (6):3238–49. doi: 10.1007/s11694-020-00565-3.
  • Rieck, C., A. Buck, and E. Tsotsas. 2015. Modeling of layering growth processes using a Monte Carlo approach. IFAC-PapersOnLine 48 (1):99–104. doi: 10.1016/j.ifacol.2015.05.042.
  • Rieck, C., M. Schmidt, A. Bück, and E. Tsotsas. 2018. Monte Carlo modeling of binder‐Less spray agglomeration in fluidized beds. AIChE Journal 64 (10):3582–94. doi: 10.1002/aic.16349.
  • Rouissi, T., A. Mahmoudi, R. D. Tyagi, S. K. Brar, D. Prèvost, and R. Y. Surampalli. 2013. Optimisation of spray drying by response surface methodology for the production of Sinorhizobium meliloti powder formulation by using starch industry wastewater. Biosystems Engineering 114 (3):334–43. doi: 10.1016/j.biosystemseng.2013.01.003.
  • Roy, L., D. Bera, and V. K. Garlapati. 2020. Evolutionary optimization techniques as effective tools for process modelling in food processing. In Mathematical and statistical applications in food engineering, 5–20. Florida, US: CRC Press.
  • Sablani, S. S., A. K. Datta, M. S. Rahman, and A. S. Mujumdar. 2006. Handbook of food and bioprocess modeling techniques. Florida, US: CRC Press.
  • Sablania, V., and S. J. D. Bosco. 2018. Optimization of spray drying parameters for Murraya koenigii (Linn) leaves extract using response surface methodology. Powder Technology 335:35–41. doi: 10.1016/j.powtec.2018.05.009.
  • Saha, D., S. K. Nanda, and D. N. Yadav. 2019. Optimization of spray drying process parameters for production of groundnut milk powder. Powder Technology 355:417–24. doi: 10.1016/j.powtec.2019.07.066.
  • Şahan, T., and D. Öztürk. 2014. Investigation of Pb (II) adsorption onto pumice samples: Application of optimization method based on fractional factorial design and response surface methodology. Clean Technologies and Environmental Policy 16 (5):819–31. doi: 10.1007/s10098-013-0673-8.
  • Samborska, K., S. Poozesh, A. Barańska, M. Sobulska, A. Jedlińska, C. Arpagaus, N. Malekjani, and S. M. Jafari. 2022. Innovations in spray drying process for food and pharma industries. Journal of Food Engineering 321:110960. doi: 10.1016/j.jfoodeng.2022.110960.
  • Sasikumar, R., M. Das, and S. C. Deka. 2020. Process optimization for the production of blood fruit powder by spray drying technique and its quality evaluation. Journal of Food Science and Technology 57 (6):2269–82. doi: 10.1007/s13197-020-04264-1.
  • Sayyaadi, H. 2021. Chapter 6–Optimization basics. In Modeling, assessment, and optimization of energy systems, ed. H. Sayyaadi, 327–430. London, UK: Academic Press.
  • Schuck, P. 2009. Understanding the factors affecting spray-dried dairy powder properties and behavior. In Dairy-derived ingredients, 24–50. Cambridge, UK: Elsevier.
  • Selvamuthukumaran, M., and F. Khanum. 2014. Optimization of spray drying process for developing seabuckthorn fruit juice powder using response surface methodology. Journal of Food Science and Technology 51 (12):3731–9. doi: 10.1007/s13197-012-0901-y.
  • Šeregelj, V., G. Ćetković, J. Čanadanović-Brunet, V. T. Šaponjac, J. Vulić, S. Lević, V. Nedović, A. Brandolini, and A. Hidalgo. 2021. Encapsulation of carrot waste extract by freeze and spray drying techniques: An optimization study. LWT 138:110696. doi: 10.1016/j.lwt.2020.110696.
  • Shavakhi, F., H. C. Boo, A. Osman, and H. M. Ghazali. 2012. Effects of enzymatic liquefaction, maltodextrin concentration, and spray-dryer air inlet temperature on pumpkin powder characteristics. Food and Bioprocess Technology 5 (7):2837–47. doi: 10.1007/s11947-011-0686-4.
  • Shishir, M. R. I., and W. Chen. 2017. Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science & Technology 65:49–67. doi: 10.1016/j.tifs.2017.05.006.
  • Shishir, M. R. I., Taip, F. S. Aziz, N. A. Talib, R. A. Sarker, and M. S. H. 2016. Optimization of spray drying parameters for pink guava powder using RSM. Food Science and Biotechnology 25 (2):461–8. doi: 10.1007/s10068-016-0064-0.
  • Shokri, Z., M. R. Fazeli, M. Ardjmand, S. M. Mousavi, and K. Gilani. 2015. Factors affecting viability of Bifidobacterium bifidum during spray drying. DARU Journal of Pharmaceutical Sciences 23 (1):1–9. doi: 10.1186/s40199-014-0088-z.
  • Shrivastava, A., A. D. Tripathi, V. Paul, and D. C. Rai. 2021. Optimization of spray drying parameters for custard apple (Annona squamosa L.) pulp powder development using response surface methodology (RSM) with improved physicochemical attributes and phytonutrients. LWT 151:112091. doi: 10.1016/j.lwt.2021.112091.
  • Singh, A. K., and E. Tsotsas. 2019. Stochastic model to simulate spray fluidized bed agglomeration: A morphological approach. Powder Technology 355:449–60. doi: 10.1016/j.powtec.2019.07.075.
  • Singh, A. K., and E. Tsotsas. 2020. A tunable aggregation model incorporated in Monte Carlo simulations of spray fluidized bed agglomeration. Powder Technology 364:417–28. doi: 10.1016/j.powtec.2020.02.016.
  • Singh, A. K., and E. Tsotsas. 2022. Influence of polydispersity and breakage on stochastic simulations of spray fluidized bed agglomeration. Chemical Engineering Science 247:117022. doi: 10.1016/j.ces.2021.117022.
  • Singh, B., and B. S. Hathan. 2017. Process optimization of spray drying of beetroot Juice. Journal of Food Science and Technology 54 (8):2241–50. doi: 10.1007/s13197-017-2659-8.
  • Singh Banjare, I., K. Gandhi, K. Sao, and R. Sharma. 2019. Spray-dried whey protein concentrate-iron complex: Preparation and physicochemical characterization. Food Technology and Biotechnology 57 (3):331–40. doi: 10.17113/ftb.57.03.19.6228.
  • Singh, C. S., V. K. Paswan, and D. C. Rai. 2019. Process optimization of spray dried Jamun (Syzygium cumini L.) pulp powder. LWT 109:1–6. doi: 10.1016/j.lwt.2019.04.011.
  • Smid, J., D. Verloo, G. Barker, and A. Havelaar. 2010. Strengths and weaknesses of Monte Carlo simulation models and Bayesian belief networks in microbial risk assessment. International Journal of Food Microbiology 139:S57–S63. doi: 10.1016/j.ijfoodmicro.2009.12.015.
  • Smith, M., and T. Matsoukas. 1998. Constant-number Monte Carlo simulation of population balances. Chemical Engineering Science 53 (9):1777–86. doi: 10.1016/S0009-2509(98)00045-1.
  • Sun, C., B. Aernouts, R. Van Beers, and W. Saeys. 2021. Simulation of light propagation in citrus fruit using Monte Carlo multi-layered (MCML) method. Journal of Food Engineering 291:110225. doi: 10.1016/j.jfoodeng.2020.110225.
  • Tan, S. P., C. K. Tuyen, S. E. Parks, C. E. Stathopoulos, and P. D. Roach. 2015. Effects of the spray-drying temperatures on the physiochemical properties of an encapsulated bitter melon aqueous extract powder. Powder Technology 281:65–75. doi: 10.1016/j.powtec.2015.04.074.
  • Tanaka, F., Y. Maeda, T. Uchino, D. Hamanaka, and G. G. Atungulu. 2008. Monte Carlo simulation of the collective behavior of food particles in pneumatic drying operation. LWT - Food Science and Technology 41 (9):1567–74. doi: 10.1016/j.lwt.2007.10.020.
  • Tanfous, N. G. B., H. Kallel, M. A. Jarboui, and D. M. Fathallah. 2006. Expression in Pichia pastoris of a recombinant scFv form of MAb 107, an anti human CD11b integrin antibody. Enzyme and Microbial Technology 38 (5):636–42. doi: 10.1016/j.enzmictec.2005.07.014.
  • Tengse, D. D., B. Priya, and P. A. R. Kumar. 2017. Optimization for encapsulation of green tea (Camellia sinensis L.) extract by spray drying technology. Journal of Food Measurement and Characterization 11 (1):85–92. doi: 10.1007/s11694-016-9374-4.
  • Terrazas-Velarde, K., M. Peglow, and E. Tsotsas. 2009. Stochastic simulation of agglomerate formation in fluidized bed spray drying: A micro-scale approach. Chemical Engineering Science 64 (11):2631–43. doi: 10.1016/j.ces.2009.02.041.
  • Thakur, M., K. Pant, R. R. Naik, and V. Nanda. 2021. Optimization of spray drying operating conditions for production of functional milk powder encapsulating bee pollen. Drying Technology 39 (6):777–90. doi: 10.1080/07373937.2020.1720225.
  • Thapa, P., J. Tripathi, and S. H. Jeong. 2019. Recent trends and future perspective of pharmaceutical wet granulation for better process understanding and product development. Powder Technology 344:864–82. doi: 10.1016/j.powtec.2018.12.080.
  • Therdthai, N. 2021. Chapter 15 - Modeling and optimization of food processes. In Engineering principles of unit operations in food processing, ed. S. M. Jafari, 419–41. London, UK: Woodhead Publishing.
  • Tonon, R. V., C. Brabet, and M. D. Hubinger. 2008. Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. Journal of Food Engineering 88 (3):411–8. doi: 10.1016/j.jfoodeng.2008.02.029.
  • Tontul, I., and A. Topuz. 2017. Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science & Technology 63:91–102. doi: 10.1016/j.tifs.2017.03.009.
  • Trabelsi, K., S. Rourou, H. Loukil, S. Majoul, and H. Kallel. 2006. Optimization of virus yield as a strategy to improve rabies vaccine production by Vero cells in a bioreactor. Journal of Biotechnology 121 (2):261–71. doi: 10.1016/j.jbiotec.2005.07.018.
  • Tun Norbrillinda, M., H. Mahanom, N. Nur Elyana, and S. Nur Intan Farina. 2016. Optimization of spray drying process of Sargassum muticum color extract. Drying Technology 34 (14):1735–44. doi: 10.1080/07373937.2016.1204550.
  • Turgut, S. S., A. H. Feyissa, E. Küçüköner, and E. Karacabey. 2021. Uncertainty and sensitivity analysis by Monte Carlo simulation: Recovery of trans-resveratrol from grape cane by pressurised low polarity water system. Journal of Food Engineering 292:110366. doi: 10.1016/j.jfoodeng.2020.110366.
  • Tuyen, C. K., M. H. Nguyen, and P. D. Roach. 2010. Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. Journal of Food Engineering 98 (3):385–92.
  • Tuyen, C. K., M. H. Nguyen, P. D. Roach, and C. E. Stathopoulos. 2014. Microencapsulation of Gac oil: Optimisation of spray drying conditions using response surface methodology. Powder Technology 264:298–309.
  • Vardin, H., and M. Yasar. 2012. Optimisation of pomegranate (Punica granatum L.) juice spray‐drying as affected by temperature and maltodextrin content. International Journal of Food Science & Technology 47 (1):167–76. doi: 10.1111/j.1365-2621.2011.02823.x.
  • Vivek, K., S. Mishra, and R. C. Pradhan. 2021. Optimization of spray drying conditions for developing nondairy based probiotic sohiong fruit powder. International Journal of Fruit Science 21 (1):193–204. doi: 10.1080/15538362.2020.1864567.
  • Wang, H., X. Tong, Y. Yuan, X. Peng, Q. Zhang, S. Zhang, C. Xie, X. Zhang, S. Yan, J. Xu, et al. 2020. Effect of spray-drying and freeze-drying on the properties of soybean hydrolysates. Journal of Chemistry 2020:1–8. doi: 10.1155/2020/9201457.
  • Wang, J., and W. Wan. 2009. Experimental design methods for fermentative hydrogen production: A review. International Journal of Hydrogen Energy 34 (1):235–44. doi: 10.1016/j.ijhydene.2008.10.008.
  • Witek-Krowiak, A., K. Chojnacka, D. Podstawczyk, A. Dawiec, and K. Pokomeda. 2014. Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresource Technology 160:150–60. doi: 10.1016/j.biortech.2014.01.021.
  • Yingngam, B., W. Kacha, W. Rungseevijitprapa, P. Sudta, C. Prasitpuriprecha, and A. Brantner. 2019. Response surface optimization of spray-dried citronella oil microcapsules with reduced volatility and irritation for cosmetic textile uses. Powder Technology 355:372–85. doi: 10.1016/j.powtec.2019.07.065.
  • Yingngam, B., K. Tantiraksaroj, T. Taweetao, W. Rungseevijitprapa, N. Supaka, and A. H. Brantner. 2018. Modeling and stability study of the anthocyanin-rich maoberry fruit extract in the fast-dissolving spray-dried microparticles. Powder Technology 325:261–70. doi: 10.1016/j.powtec.2017.10.059.
  • Yoplac, I., L. Vargas, P. Robert, and A. Hidalgo. 2021. Characterization and antimicrobial activity of microencapsulated citral with dextrin by spray drying. Heliyon 7 (4):e06737. doi: 10.1016/j.heliyon.2021.e06737.
  • Youssefi, S., Z. Emam-Djomeh, and S. M. Mousavi. 2009. Comparison of artificial neural network (ANN) and response surface methodology (RSM) in the prediction of quality parameters of spray-dried pomegranate juice. Drying Technology 27 (7-8):910–7. doi: 10.1080/07373930902988247.
  • Zare, D., A. Salehi, and M. Niakousari. 2012. Determination of physical properties of sour orange juice powder produced by a spray dryer. Paper presented at the 2012 Dallas, Texas, July 29-August 1, 2012.
  • Zhang, Y., X. Shi, and Q. Jing. 2009. A method for milk powder spray-drying based on composite fuzzy control technology. Paper presented at the 2009 International Conference on Mechatronics and Automation.
  • Zouari, A., I. Mtibaa, M. Triki, M. Jridi, D. Zidi, H. Attia, and M. A. Ayadi. 2020. Effect of spray‐drying parameters on the solubility and the bulk density of camel milk powder: A response surface methodology approach. International Journal of Dairy Technology 73 (3):616–24. doi: 10.1111/1471-0307.12690.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.