295
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

The effect of supercritical carbon dioxide on the physiochemistry, endogenous enzymes, and nutritional composition of fruit and vegetables and its prospects for industrial application: a overview

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon

References

  • Aghajanzadeh, S., and A. M. Ziaiifar. 2018. A review of pectin methylesterase inactivation in citrus juice during pasteurization. Trends in Food Science & Technology 71:1–12. doi: 10.1016/j.tifs.2017.10.013.
  • Amaral, G. V., E. K. Silva, R. N. Cavalcanti, L. P. Cappato, J. T. Guimaraes, V. O. Alvarenga, E. A. Esmerino, J. B. Portela, A. S. Sant’ Ana, M. Q. Freitas, et al. 2017. Dairy processing using supercritical carbon dioxide technology: Theoretical fundamentals, quality and safety aspects. Trends in Food Science & Technology 64:94–101. doi: 10.1016/j.tifs.2017.04.004.
  • Amaral, G. V., E. K. Silva, A. L. R. Costa, V. O. Alvarenga, R. N. Cavalcanti, E. A. Esmerino, J. T. Guimarães, M. Q. Freitas, A. S. Sant’Ana, R. L. Cunha, et al. 2018. Whey-grape juice drink processed by supercritical carbon dioxide technology: Physical properties and sensory acceptance. LWT 92:80–6. doi: 10.1016/j.lwt.2018.02.005.
  • Arora, B., A. Joshi, and S. Sethi. 2019. High-pressure CO2 processing of foods. In Non-thermal processing of foods, eds. O. P. Chauhan, 235–259. USA: CRC Press.
  • Ashokkumar, V., G. Flora, M. Sevanan, R. Sripriya, W. H. Chen, J.-H. Park, J. Rajesh Banu, and G. Kumar. 2023. Technological advances in the production of carotenoids and their applications – A critical review. Bioresource Technology 367:128215. doi: 10.1016/j.biortech.2022.128215.
  • Bagheri, H., and S. Abbaszadeh. 2020. Effect of cold plasma on quality retention of fresh-cut produce. Journal of Food Quality 2020:1–8. doi: 10.1155/2020/8866369.
  • Baykuş, G., M. P. Akgün, and S. Unluturk. 2021. Effects of ultraviolet-light emitting diodes (UV-LEDs) on microbial inactivation and quality attributes of mixed beverage made from blend of carrot, carob, ginger, grape and lemon juice. Innovative Food Science & Emerging Technologies 67:102572. doi: 10.1016/j.ifset.2020.102572.
  • Benito-Román, Ó., M. T. Sanz, A. E. Illera, R. Melgosa, and S. Beltrán. 2020. Polyphenol oxidase (PPO) and pectin methylesterase (PME) inactivation by high pressure carbon dioxide (HPCD) and its applicability to liquid and solid natural products. Catalysis Today 346:112–20. doi: 10.1016/j.cattod.2018.12.051.
  • Benito-Román, Ó., M. Teresa Sanz, R. Melgosa, E. de Paz, I. Escudero, and S. Beltrán. 2019. Studies of polyphenol oxidase inactivation by means of high pressure carbon dioxide (HPCD). The Journal of Supercritical Fluids 147:310–21. doi: 10.1016/j.supflu.2018.07.026.
  • Bertolini, F. M., G. Morbiato, P. Facco, K. Marszałek, É. Pérez-Esteve, J. Benedito, A. Zambon, and S. Spilimbergo. 2020. Optimization of the supercritical CO2 pasteurization process for the preservation of high nutritional value of pomegranate juice. The Journal of Supercritical Fluids 164:104914. doi: 10.1016/j.supflu.2020.104914.
  • Briongos, H., A. E. Illera, M. T. Sanz, R. Melgosa, S. Beltrán, and A. G. Solaesa. 2016. Effect of high pressure carbon dioxide processing on pectin methylesterase activity and other orange juice properties. LWT 74:411–9. doi: 10.1016/j.lwt.2016.07.069.
  • Buszewski, B., O. Wrona, R. P. Mayya, A. M. Zakharenko, T. K. Kalenik, K. S. Golokhvast, W. Piekoszewski, and K. Rafińska. 2021. The potential application of supercritical CO2 in microbial inactivation of food raw materials and products. Critical Reviews in Food Science and Nutrition 62:1–14. doi: 10.1080/10408398.2021.1902939.
  • Buvé, C., H. T. T. Pham, M. Hendrickx, T. Grauwet, and A. Van Loey. 2021. Reaction pathways and factors influencing nonenzymatic browning in shelf-stable fruit juices during storage. Comprehensive Reviews in Food Science and Food Safety 20 (6):5698–721. doi: 10.1111/1541-4337.12850.
  • Cabeza, L. F., A. de Gracia, A. I. Fernández, and M. M. Farid. 2017. Supercritical CO2 as heat transfer fluid: A review. Applied Thermal Engineering 125:799–810. doi: 10.1016/j.applthermaleng.2017.07.049.
  • Cappelletti, M., G. Ferrentino, I. Endrizzi, E. Aprea, E. Betta, M. L. Corollaro, M. Charles, F. Gasperi, and S. Spilimbergo. 2015. High pressure carbon dioxide pasteurization of coconut water: A sport drink with high nutritional and sensory quality. Journal of Food Engineering 145:73–81. doi: 10.1016/j.jfoodeng.2014.08.012.
  • Chakraborty, S., N. Kaushik, P. S. Rao, and H. N. Mishra. 2014. High-pressure inactivation of enzymes: A review on its recent applications on fruit purees and juices. Comprehensive Reviews in Food Science and Food Safety 13 (4):578–96. doi: 10.1111/1541-4337.12071.
  • Christofi, M., A. Mauromoustakos, I. Mourtzinos, A. Lazaridou, P. Drogoudi, S. Theodoulidis, C. G. Biliaderis, and G. A. Manganaris. 2021. The effect of genotype and storage on compositional, sensorial and textural attributes of canned fruit from commercially important non-melting peach cultivars. Journal of Food Composition and Analysis 103:104080. doi: 10.1016/j.jfca.2021.104080.
  • Darvishi, H.,P. Salami,A. Fadavi, andM. K. Saba. 2020. Processing kinetics, quality and thermodynamic evaluation of mulberry juice concentration process using Ohmic heating. Food and Bioproducts Processing 123:102–10. doi: 10.1016/j.fbp.2020.06.003.
  • de Oliveira, M. S., J. N. da Cruz, S. Gomes Silva, W. A. da Costa, S. H. B. de Sousa, F. W. F. Bezerra, E. Teixeira, N. J. N. da Silva, E. H. de Aguiar Andrade, A. M. de Jesus Chaves Neto, et al. 2019. Phytochemical profile, antioxidant activity, inhibition of acetylcholinesterase and interaction mechanism of the major components of the Piper divaricatum essential oil obtained by supercritical CO2. The Journal of Supercritical Fluids 145:74–84. doi: 10.1016/j.supflu.2018.12.003.
  • Deotale, S. M., S. Dutta, J. A. Moses, and C. Anandharamakrishnan. 2021. 2.44 – Advances in Supercritical Carbon dioxide Assisted Sterilization of Biological Matrices. In Innovative food processing technologies, ed. K. Knoerzer and K. Muthukumarappan, 660–77. Oxford: Elsevier.
  • Duong, T. and M. Balaban. 2014. Optimisation of the process parameters of combined high hydrostatic pressure and dense phase carbon dioxide on enzyme inactivation in feijoa (Acca sellowiana) puree using response surface methodology. Innovative Food Science & Emerging Technologies 26:93–101. doi: 10.1016/j.ifset.2014.09.005.
  • Ferrentino, G. and S. Spilimbergo. 2015. High pressure carbon dioxide combined with high power ultrasound pasteurization of fresh cut carrot. The Journal of Supercritical Fluids 105:170–8. doi: 10.1016/j.supflu.2014.12.014.
  • Ferrentino, G. and S. Spilimbergo. 2017. Non-thermal pasteurization of apples in syrup with dense phase carbon dioxide. Journal of Food Engineering 207:18–23. doi: 10.1016/j.jfoodeng.2017.03.014.
  • Fleury, C., R. Savoire, C. Harscoat-Schiavo, A. Hadj-Sassi, and P. Subra-Paternault. 2018. Optimization of supercritical CO2 process to pasteurize dietary supplement: Influencing factors and CO2 transfer approach. The Journal of Supercritical Fluids 141:240–51. doi: 10.1016/j.supflu.2018.01.009.
  • Gomes, A., A. L. R. Costa, P. D. Rodrigues, R. J. S. d Castro, and E. K. Silva, 2022. Sonoprocessing of freshly squeezed orange juice: Ascorbic acid content, pectin methylesterase activity, rheological properties and cloud stability. Food Control. 131:108391. doi: 10.1016/j.foodcont.2021.108391.
  • Guo, Z., Y. Huang, J. Huang, S. Li, Z. Zhu, Q. Deng, and S. Cheng. 2022. Formation of protein-anthocyanin complex induced by grape skin extracts interacting with wheat gliadins: Multi-spectroscopy and molecular docking analysis. Food Chemistry 385:132702. doi: 10.1016/j.foodchem.2022.132702.
  • Haas, K., J. Obernberger, E. Zehetner, A. Kiesslich, M. Volkert, and H. Jaeger. 2019. Impact of powder particle structure on the oxidation stability and color of encapsulated crystalline and emulsified carotenoids in carrot concentrate powders. Journal of Food Engineering 263:398–408. doi: 10.1016/j.jfoodeng.2019.07.025.
  • Hashemi, S. M. B., and D. Jafarpour. 2020. Ultrasound and malic acid treatment of sweet lemon juice: Microbial inactivation and quality changes. Journal of Food Processing and Preservation 44 (11):e14866. doi: 10.1111/jfpp.14866.
  • Herianto, S., C.-Y. Hou, C.-M. Lin, and H.-L. Chen. 2021. Nonthermal plasma-activated water: A comprehensive review of this new tool for enhanced food safety and quality. Comprehensive Reviews in Food Science and Food Safety 20:583–626.
  • Herrera-Balandrano, D. D., Z. Chai, T. Beta, J. Feng, and W. Huang. 2021. Blueberry anthocyanins: An updated review on approaches to enhancing their bioavailability. Trends in Food Science & Technology 118:808–21. doi: 10.1016/j.tifs.2021.11.006.
  • Hojnik Podrepšek, G., Ž. Knez, and M. Leitgeb. 2020. The influence of supercritical carbon dioxide on graham flour enzyme polyphenol oxidase activity. Molecules 25 (24):5981. doi: 10.3390/molecules25245981.
  • Hosseini, S. F., L. Ramezanzade, and D. J. McClements. 2021. Recent advances in nanoencapsulation of hydrophobic marine bioactives: Bioavailability, safety, and sensory attributes of nano-fortified functional foods. Trends in Food Science & Technology 109:322–39. doi: 10.1016/j.tifs.2021.01.045.
  • Iftikhar, T., M. E. Wagner, and S. S. H. Rizvi. 2014. Enhanced inactivation of pectin methyl esterase in orange juice using modified supercritical carbon dioxide treatment. International Journal of Food Science & Technology 49 (3):804–10. doi: 10.1111/ijfs.12368.
  • Illera, A. E., M. T. Sanz, S. Beltrán, and R. Melgosa. 2019. High pressure CO2 solubility in food model solutions and fruit juices. The Journal of Supercritical Fluids 143:120–5.
  • Illera, A. E., M. T. Sanz, S. Beltrán, R. Melgosa, A. G. Solaesa, and M. O. Ruiz. 2018. Evaluation of HPCD batch treatments on enzyme inactivation kinetics and selected quality characteristics of cloudy juice from Golden delicious apples. Journal of Food Engineering 221:141–50. doi: 10.1016/j.jfoodeng.2017.10.017.
  • Illera, A. E., M. T. Sanz, E. Trigueros, S. Beltrán, and R. Melgosa. 2018. Effect of high pressure carbon dioxide on tomato juice: Inactivation kinetics of pectin methylesterase and polygalacturonase and determination of other quality parameters. Journal of Food Engineering 239:64–71. doi: 10.1016/j.jfoodeng.2018.06.027.
  • Iqbal, A., A. Murtaza, W. Hu, I. Ahmad, A. Ahmed, and X. Xu. 2019. Activation and inactivation mechanisms of polyphenol oxidase during thermal and non-thermal methods of food processing. Food and Bioproducts Processing 117:170–82. doi: 10.1016/j.fbp.2019.07.006.
  • Iqbal, A., A. Murtaza, Z. Muhammad, A. E. Elkhedir, M. Tao, and X. Xu. 2018. Inactivation, aggregation and conformational changes of polyphenol oxidase from quince (Cydonia oblonga Miller) juice subjected to thermal and high-pressure carbon dioxide treatment. Molecules 23 (7):1743. doi: 10.3390/molecules23071743.
  • Javad, S., R. Gopirajah, and S. S. H. Rizvi. 2022. High internal phase oil-in-water emulsions stabilized by supercritical carbon dioxide extruded whey protein concentrate. Food Chemistry 372:131362. doi: 10.1016/j.foodchem.2021.131362.
  • Kohli, P., M. Kalia, and R. J. J. Gupta. 2015. Pectin methylesterases: A review. Journal of Bioprocessing & Biotechniques 5:1.
  • Li, S., D. Lei, Z. Zhu, J. Cai, M. Manzoli, L. Jicsinszky, G. Grillo, and G. Cravotto. 2021. Complexation of maltodextrin-based inulin and green tea polyphenols via different ultrasonic pretreatment. Ultrasonics Sonochemistry 74:105568. doi: 10.1016/j.ultsonch.2021.105568.
  • Li, S., J. Li, Z. Zhu, S. Cheng, J. He, and O. Lamikanra. 2020. Soluble dietary fiber and polyphenol complex in lotus root: Preparation, interaction and identification. Food Chemistry 314:126219.
  • Li, N., X. Wu, W. Zhuang, L. Xia, Y. Chen, C. Wu, Z. Rao, L. Du, R. Zhao, M. Yi, et al. 2021. Tomato and lycopene and multiple health outcomes: Umbrella review. Food Chemistry 343:128396.
  • Li, J., L. Zhu, A. Murtaza, A. Iqbal, J. Zhang, X. Xu, S. Pan, and W. Hu. 2022. The effect of high pressure carbon dioxide on the inactivation kinetics and structural alteration of phenylalanine ammonia-lyase from Chinese water chestnut: An investigation using multi-spectroscopy and molecular docking methods. Innovative Food Science & Emerging Technologies 77:102970. doi: 10.1016/j.ifset.2022.102970.
  • Liu, J., J. Bi, D. J. McClements, X. Liu, J. Yi, J. Lyu, M. Zhou, R. Verkerk, M. Dekker, X. Wu, et al. 2020. Impacts of thermal and non-thermal processing on structure and functionality of pectin in fruit- and vegetable- based products: A review. Carbohydrate Polymers 250:116890.
  • Liu, C., B. Hu, Y. Cheng, Y. Guo, W. Yao, and H. Qian. 2021. Carotenoids from fungi and microalgae: A review on their recent production, extraction, and developments. Bioresource Technology 337:125398.
  • Ma, W., J. Li, A. Murtaza, A. Iqbal, J. Zhang, L. Zhu, X. Xu, S. Pan, and W. Hu. 2022. High-pressure carbon dioxide treatment alleviates browning development by regulating membrane lipid metabolism in fresh-cut lettuce. Food Control. 134:108749. doi: 10.1016/j.foodcont.2021.108749.
  • Manzocco, L., S. Plazzotta, S. Spilimbergo, and M. C. Nicoli. 2017. Impact of high-pressure carbon dioxide on polyphenol oxidase activity and stability of fresh apple juice. LWT - Food Science and Technology 85:363–371. doi: 10.1016/j.lwt.2016.11.052.
  • Marszałek, K., P. Doesburg, S. Starzonek, J. Szczepańska, Ł. Woźniak, J. M. Lorenzo, S. Skąpska, S. Rzoska, and F. J. Barba. 2019. Comparative effect of supercritical carbon dioxide and high pressure processing on structural changes and activity loss of oxidoreductive enzymes. Journal of CO2 Utilization 29:46–56. doi: 10.1016/j.jcou.2018.11.007.
  • Marszałek, K., B. Kruszewski, Ł. Woźniak, and S. Skąpska. 2017. The application of supercritical carbon dioxide for the stabilization of native and commercial polyphenol oxidases and peroxidases in cloudy apple juice (cv. Golden Delicious). Innovative Food Science & Emerging Technologies 39:42–8. doi: 10.1016/j.ifset.2016.11.006.
  • Marszałek, K., J. Krzyżanowska, Ł. Woźniak, and S. Skąpska. 2017. Kinetic modelling of polyphenol oxidase, peroxidase, pectin esterase, polygalacturonase, degradation of the main pigments and polyphenols in beetroot juice during high pressure carbon dioxide treatment. LWT - Food Science and Technology 85:412–7. doi: 10.1016/j.lwt.2016.11.018.
  • Marszałek, K., S. Skąpska, Ł. Woźniak, and B. Sokołowska. 2015. Application of supercritical carbon dioxide for the preservation of strawberry juice: Microbial and physicochemical quality, enzymatic activity and the degradation kinetics of anthocyanins during storage. Innovative Food Science & Emerging Technologies 32:101–9. doi: 10.1016/j.ifset.2015.10.005.
  • Marszałek, K., Ł. Woźniak, F. J. Barba, S. Skąpska, J. M. Lorenzo, A. Zambon, and S. Spilimbergo. 2018. Enzymatic, physicochemical, nutritional and phytochemical profile changes of apple (Golden Delicious L.) juice under supercritical carbon dioxide and long-term cold storage. Food Chemistry 268:279–86. doi: 10.1016/j.foodchem.2018.06.109.
  • Mikołajczak, N.,M. Tańska, andD. Ogrodowska. 2021. Phenolic compounds in plant oils: A review of composition, analytical methods, and effect on oxidative stability. Trends in Food Science & Technology 113:110–38. doi: 10.1016/j.tifs.2021.04.046.
  • Moon, K. M., E.-B. Kwon, B. Lee, andC. Y. Kim. 2020. Recent Trends in Controlling the Enzymatic Browning of Fruit and Vegetable Products. Molecules 25 (12):2754. doi: 10.3390/molecules25122754.
  • Mouahid, A., I. Bombarda, M. Claeys-Bruno, S. Amat, E. Myotte, J.-P. Nisteron, C. Crampon, and E. Badens. 2021. Supercritical CO2 extraction of Moroccan argan (Argania spinosa L.) oil: Extraction kinetics and solubility determination. Journal of CO2 Utilization 46:101458. doi: 10.1016/j.jcou.2021.101458.
  • Murtaza, A., A. Iqbal, Z. Linhu, Y. Liu, X. Xu, S. Pan, and W. Hu. 2019. Effect of high-pressure carbon dioxide on the aggregation and conformational changes of polyphenol oxidase from apple (Malus domestica) juice. Innovative Food Science & Emerging Technologies 54:43–50. doi: 10.1016/j.ifset.2019.03.001.
  • Njus, D., P. M. Kelley, Y.-J. Tu, and H. B. Schlegel. 2020. Ascorbic acid: The chemistry underlying its antioxidant properties. Free Radical Biology & Medicine 159:37–43. doi: 10.1016/j.freeradbiomed.2020.07.013.
  • Ortuño, C., T. Duong, M. Balaban, and J. Benedito. 2013. Combined high hydrostatic pressure and carbon dioxide inactivation of pectin methylesterase, polyphenol oxidase and peroxidase in feijoa puree. The Journal of Supercritical Fluids 82:56–62. doi: 10.1016/j.supflu.2013.06.005.
  • Oulé, K. M., M. Dickman, and J. Arul. 2013. Properties of Orange Juice with Supercritical Carbon Dioxide Treatment. International Journal of Food Properties 16 (8):1693–710. doi: 10.1080/10942912.2011.604893.
  • Paniagua-Martínez, I., A. Mulet, M. A. García-Alvarado, and J. Benedito. 2018. Orange juice processing using a continuous flow ultrasound-assisted supercritical CO2 system: Microbiota inactivation and product quality. Innovative Food Science & Emerging Technologies 47:362–70. doi: 10.1016/j.ifset.2018.03.024.
  • Paravisini, L., and D. G. Peterson. 2019. Mechanisms non-enzymatic browning in orange juice during storage. Food Chemistry 289:320–7. doi: 10.1016/j.foodchem.2019.03.049.
  • Pohl, P., A. Dzimitrowicz, P. Cyganowski, and P. Jamroz. 2022. Do we need cold plasma treated fruit and vegetable juices? A case study of positive and negative changes occurred in these daily beverages. Food Chemistry 375:131831. doi: 10.1016/j.foodchem.2021.131831.
  • Poojary, M., S. Roohinejad, M. Koubaa, F. Barba, P. Passamonti, A. R. Jambrak, I. Oey, and R. Greiner. 2016. Impact of pulsed electric fields on enzymes. In Handbook of Electroporation. Cham: Springer. doi: 10.1007/978-3-319-26779-1_173-1.
  • Punia Bangar, S., M. Trif, F. Ozogul, M. Kumar, V. Chaudhary, M. Vukic, M. Tomar, and S. Changan. 2022. Recent developments in cold plasma-based enzyme activity (browning, cell wall degradation, and antioxidant) in fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety 21 (2):1958–78. doi: 10.1111/1541-4337.12895.
  • Ram, S., M. Mitra, F. Shah, S. R. Tirkey, and S. Mishra. 2020. Bacteria as an alternate biofactory for carotenoid production: A review of its applications, opportunities and challenges. Journal of Functional Foods 67:103867. doi: 10.1016/j.jff.2020.103867.
  • Ribeiro, N., G. C. Soares, V. Santos-Rosales, A. Concheiro, C. Alvarez-Lorenzo, C. A. García-González, and A. L. Oliveira. 2020. A new era for sterilization based on supercritical CO2 technology. Journal of Biomedical Materials Research Part B: Applied Biomaterials 108 (2):399–428. doi: 10.1002/jbm.b.34398.
  • Salari, S., and S. M. Jafari. 2020. The influence of ohmic heating on degradation of food bioactive ingredients. Food Engineering Reviews 12 (2):191–208. doi: 10.1007/s12393-020-09217-0.
  • Salehi, F. 2020. Physico-chemical properties of fruit and vegetable juices as affected by pulsed electric field: A review. International Journal of Food Properties 23 (1):1036–50. doi: 10.1080/10942912.2020.1775250.
  • Silva, E. K., H. S. Arruda, M. N. Eberlin, G. M. Pastore, and M. A. A. Meireles. 2019. Effects of supercritical carbon dioxide and thermal treatment on the inulin chemical stability and functional properties of prebiotic-enriched apple juice. Food Research International (Ottawa, Ont.) 125:108561. doi: 10.1016/j.foodres.2019.108561.
  • Silva, E. K., M. A. A. Meireles, and M. D. A. Saldaña. 2020. Supercritical carbon dioxide technology: A promising technique for the non-thermal processing of fresh fruit and vegetable juices. Trends in Food Science & Technology 97:381–90. doi: 10.1016/j.tifs.2020.01.025.
  • Soares, G. C., D. A. Learmonth, M. C. Vallejo, S. P. Davila, P. González, R. A. Sousa, and A. L. Oliveira. 2019. Supercritical CO2 technology: The next standard sterilization technique? Materials Science & Engineering. C, Materials for Biological Applications 99:520–40. doi: 10.1016/j.msec.2019.01.121.
  • Sobota, A., A. Wirkijowska, and P. Zarzycki. 2020. Application of vegetable concentrates and powders in coloured pasta production. International Journal of Food Science & Technology 55 (6):2677–87. doi: 10.1111/ijfs.14521.
  • Song, Q., R. Li, X. Song, M. P. Clausen, V. Orlien, and D. Giacalone. 2022. The effect of high-pressure processing on sensory quality and consumer acceptability of fruit juices and smoothies: A review. Food Research International (Ottawa, Ont.) 157:111250.
  • Spilimbergo, S., D. Komes, A. Vojvodic, B. Levaj, and G. Ferrentino. 2013. High pressure carbon dioxide pasteurization of fresh-cut carrot. The Journal of Supercritical Fluids 79:92–100. doi: 10.1016/j.supflu.2012.12.002.
  • Szczepańska, J., F. J. Barba, S. Skąpska, and K. Marszałek. 2020. High pressure processing of carrot juice: Effect of static and multi-pulsed pressure on the polyphenolic profile, oxidoreductases activity and colour. Food Chemistry 307:125549. doi: 10.1016/j.foodchem.2019.125549.
  • Tao, Y.,D.-W. Sun,A. Górecki,W. Błaszczak,G. Lamparski,R. Amarowicz,J. Fornal, andT. Jeliński. 2016. A preliminary study about the influence of high hydrostatic pressure processing in parallel with oak chip maceration on the physicochemical and sensory properties of a young red wine. Food Chemistry 194:545–54. doi: 10.1016/j.foodchem.2015.07.041.
  • Terefe, N. S., R. Buckow, and C. Versteeg. 2014. Quality-related enzymes in fruit and vegetable products: effects of novel food processing technologies, part 1: High-pressure processing. Critical Reviews in Food Science and Nutrition 54 (1):24–63. doi: 10.1080/10408398.2011.566946.
  • Tewari, S., R. Sehrawat, P. K. Nema, and B. P. Kaur. 2017. Preservation effect of high pressure processing on ascorbic acid of fruits and vegetables: A review. Journal of Food Biochemistry 41 (1):e12319. doi: 10.1111/jfbc.12319.
  • Thiruvengadam, M., I.-M. Chung, R. Samynathan, S. R. H. Chandar, B. Venkidasamy, T. Sarkar, M. Rebezov, O. Gorelik, M. A. Shariati, and J. Simal-Gandara. 2022. A comprehensive review of beetroot (Beta vulgaris L.) bioactive components in the food and pharmaceutical industries. Critical Reviews in Food Science and Nutrition 16:1–33. doi: 10.1080/10408398.2022.2108367.
  • Trych, U., M. Buniowska-Olejnik, and K. Marszałek. 2022. Bioaccessibility of betalains in beetroot (Beta vulgaris L.) juice under different high-pressure techniques. Molecules 27 (20):7093. doi: 10.3390/molecules27207093.
  • Trych, U., M. Buniowska, S. Skąpska, I. Kapusta, and K. Marszałek. 2022. Bioaccessibility of antioxidants in blackcurrant juice after treatment using supercritical carbon dioxide. Molecules 27 (3):1036. doi: 10.3390/molecules27031036.
  • Viganó, J., A. P. F. Machado, and J. Martínez. 2015. Sub- and supercritical fluid technology applied to food waste processing. The Journal of Supercritical Fluids 96:272–86.
  • Wang, W., L. Rao, X. Wu, Y. Wang, L. Zhao, and X. Liao. 2021. Supercritical carbon dioxide applications in food processing. Food Engineering Reviews 13 (3):570–91. doi: 10.1007/s12393-020-09270-9.
  • Wibowo, S., T. Grauwet, J. S. Santiago, J. Tomic, L. Vervoort, M. Hendrickx, and A. Van Loey. 2015. Quality changes of pasteurised orange juice during storage: A kinetic study of specific parameters and their relation to colour instability. Food Chemistry 187:140–51. doi: 10.1016/j.foodchem.2015.03.131.
  • Xu, H., Y. Zhu, M. Du, Y. Wang, S. Ju, R. Ma, and Z. Jiao. 2021. Subcellular mechanism of microbial inactivation during water disinfection by cold atmospheric-pressure plasma. Water Research 188:116513.
  • Yang, W., Y. Guo, M. Liu, X. Chen, X. Xiao, S. Wang, P. Gong, Y. Ma, and F. Chen. 2022. Structure and function of blueberry anthocyanins: A review of recent advances. Journal of Functional Foods 88:104864. doi: 10.1016/j.jff.2021.104864.
  • Yildiz, G., G. Izli, and R. M. Aadil. 2020. Comparison of chemical, physical, and ultrasound treatments on the shelf life of fresh‐cut quince fruit (Cydonia oblonga Mill). Journal of Food Processing and Preservation 44(3):e14366. doi: 10.1111/jfpp.14366.
  • Yuk, H. G., F. Sampedro, X. Fan, and D. J. Geveke. 2014. Nonthermal processing of orange juice using a pilot-plant scale supercritical carbon dioxide system with a gas-liquid metal contactor. Journal of Food Processing and Preservation 38 (1):630–8. doi: 10.1111/jfpp.12013.
  • Zendehboudi, A., Z. Ye, A. Hafner, T. Andresen, and G. Skaugen. 2021. Heat transfer and pressure drop of supercritical CO2 in brazed plate heat exchangers of the tri-partite gas cooler. International Journal of Heat and Mass Transfer 178:121641. doi: 10.1016/j.ijheatmasstransfer.2021.121641.
  • Zhang, J., A. Iqbal, A. Murtaza, X. Zhou, X. Xu, S. Pan, and W. Hu. 2021. Effect of high pressure carbon dioxide on the browning inhibition of sugar-preserved orange peel. Journal of CO2 Utilization 46:101467. doi: 10.1016/j.jcou.2021.101467.
  • Zhang, Y., R. Pandiselvam, H. Zhu, D. Su, H. Wang, Z. Ai, A. Kothakota, A. M. Khaneghah, and Y. Liu. 2022. Impact of radio frequency treatment on textural properties of food products: An updated review. Trends in Food Science & Technology 124:154–66. doi: 10.1016/j.tifs.2022.04.014.
  • Zhou, L., Y. Wang, F. Liu, X. Bi, and X. Liao. 2014. Effect of high pressure carbon dioxide on the properties of water-soluble pectin in peach juice. Food Hydrocolloids. 40:173–81. doi: 10.1016/j.foodhyd.2014.02.016.
  • Zhou, T., Y. Wang, H. Zheng, B. Du, and L. Zheng. 2022. Sustainable and eco-friendly strategies for polyester-cotton blends dyeing in supercritical CO2. Journal of CO2 Utilization 55:101816. doi: 10.1016/j.jcou.2021.101816.
  • Zou, H., T. Lin, X. Bi, L. Zhao, Y. Wang, andX. Liao. 2016. Comparison of high hydrostatic pressure, high-pressure carbon dioxide and high-temperature short-time processing on quality of mulberry juice. Food and Bioprocess Technology 9 (2):217–31. doi: 10.1007/s11947-015-1606-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.