632
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

Effects of green tea polyphenol extract and epigallocatechin-3-O-gallate on diabetes mellitus and diabetic complications: Recent advances

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Adeniyi, O., L. Washington, C. J. Glenn, S. G. Franklin, A. Scott, M. Aung, S. J. Niranjan, and P. E. Jolly. 2021. The use of complementary and alternative medicine among hypertensive and type 2 diabetic patients in Western Jamaica: A mixed methods study. PloS One 16 (2):e0245163. doi: 10.1371/journal.pone.0245163.
  • Ali, O. 2013. Genetics of type 2 diabetes. World Journal of Diabetes 4 (4):114–23. doi: 10.4239/wjd.v4.i4.114.
  • Al-Rawaf, H. A., S. A. Gabr, and A. H. Alghadir. 2019. Circulating hypoxia responsive microRNAs (HRMs) and wound healing potentials of green tea in diabetic and nondiabetic rat models. Evidence-Based Complementary and Alternative Medicine: eCAM 2019:9019253. doi: 10.1155/2019/9019253.
  • Alves Ferreira, M., A. P. Oliveira Gomes, A. P. Guimarães de Moraes, M. L. Ferreira Stringhini, J. F. Mota, A. Siqueira Guedes Coelho, and P. Borges Botelho. 2017. Green tea extract outperforms metformin in lipid profile and glycaemic control in overweight women: A double-blind, placebo-controlled, randomized trial. Clinical Nutrition ESPEN 22:1–6. doi: 10.1016/j.clnesp.2017.08.008.
  • American Diabetes Association. 2015. Microvascular complications and foot care. Sec. 9. In Standards of Medical Care in Diabetes. Diabetes Care 38 (Supplement_1):S58–S66. doi: 10.2337/dc15-s012.
  • American Diabetes Association. 2020. 9. Pharmacologic approaches to glycemic treatment: Standards of medical care in diabetes—2020. Diabetes Care 43 (Supplement_1):S98–S110. doi: 10.2337/dc20-S009.
  • Animaw, W., and Y. Seyoum. 2017. Increasing prevalence of diabetes mellitus in a developing country and its related factors. PloS One 12 (11):e0187670. doi: 10.1371/journal.pone.0187670.
  • Apovian, C. M., J. Okemah, and P. M. O’Neil. 2019. Body weight considerations in the management of type 2 diabetes. Advances in Therapy 36 (1):44–58. doi: 10.1007/s12325-018-0824-8.
  • Ardeleanu, V., A. Toma, K. Pafili, N. Papanas, I. Motofei, C. C. Diaconu, M. Rizzo, and A. Pantea Stoian. 2020. Current pharmacological treatment of painful diabetic neuropathy: A narrative review. Medicina 56 (1):25. doi: 10.3390/medicina56010025.
  • Avogaro, A., M. Albiero, L. Menegazzo, S. de Kreutzenberg, and G. P. Fadini. 2011. Endothelial dysfunction in diabetes: The role of reparatory mechanisms. Diabetes Care 34 (Suppl 2):S285–S90. doi: 10.2337/dc11-s239.
  • Babu, P. V. A., K. E. Sabitha, and C. S. Shyamaladevi. 2006. Green tea impedes dyslipidemia, lipid peroxidation, protein glycation and ameliorates Ca2+ -ATPase and Na+/K+ -ATPase activity in the heart of streptozotocin-diabetic rats. Chemico-Biological Interactions 162 (2):157–64. doi: 10.1016/j.cbi.2006.05.020.
  • Babu, P. V. A., H. Si, and D. Liu. 2012. Epigallocatechin gallate reduces vascular inflammation in db/db mice possibly through an NF-κB-mediated mechanism. Molecular Nutrition & Food Research 56 (9):1424–32. doi: 10.1002/mnfr.201200040.
  • Bae, J., N. Kim, Y. Shin, S.-Y. Kim, and Y.-J. Kim. 2020. Activity of catechins and their applications. Biomedical Dermatology 4 (1):8. doi: 10.1186/s41702-020-0057-8.
  • Baluchnejadmojarad, T., and M. Roghani. 2012. Chronic oral epigallocatechin-gallate alleviates streptozotocin-induced diabetic neuropathic hyperalgesia in rat: Involvement of oxidative stress. Iranian Journal of Pharmaceutical Research: IJPR 11 (4):1243–1253.
  • Barocio-Pantoja, M., P. Quezada-Fernández, D. Cardona-Müller, M. B. Jiménez-Cázarez, M. Larios-Cárdenas, O. I. González-Radillo, A. García-Sánchez, J. Carmona-Huerta, A. N. Chávez-Guzmán, P. A. Díaz-Preciado, et al. 2021. Green tea extract increases soluble RAGE and improves renal function in patients with diabetic nephropathy. Journal of Medicinal Food 24 (12):1264–70. doi: 10.1089/jmf.2020.0212.
  • Bashan, N., J. Kovsan, I. Kachko, H. Ovadia, and A. Rudich. 2009. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiological Reviews 89 (1):27–71. doi: 10.1152/physrev.00014.2008.
  • Bazyar, H., S. A. Hosseini, S. Saradar, D. Mombaini, M. Allivand, M. Labibzadeh, and M. Alipour. 2020. Effects of epigallocatechin-3-gallate of Camellia sinensis leaves on blood pressure, lipid profile, atherogenic index of plasma and some inflammatory and antioxidant markers in type 2 diabetes mellitus patients: A clinical trial. Journal of Complementary & Integrative Medicine 18 (2):405–11. doi: 10.1515/jcim-2020-0090.
  • Beagley, J., L. Guariguata, C. Weil, and A. A. Motala. 2014. Global estimates of undiagnosed diabetes in adults. Diabetes Research and Clinical Practice 103 (2):150–60. doi: 10.1016/j.diabres.2013.11.
  • Bego, T., A. Čaušević, T. Dujić, M. Malenica, Z. Velija-Asimi, B. Prnjavorac, J. Marc, J. Nekvindová, V. Palička, and S. Semiz. 2019. Association of FTO gene variant (rs8050136) with type 2 diabetes and markers of obesity, glycaemic control and inflammation. Journal of Medical Biochemistry 38 (2):153–63. doi: 10.2478/jomb-2018-0023.
  • Bhardwaj, P., D. Khanna, and P. Balakumar. 2014. Catechin averts experimental diabetes mellitus-induced vascular endothelial structural and functional abnormalities. Cardiovascular Toxicology 14 (1):41–51. doi: 10.1007/s12012-013-9226-y.
  • Bøhn, S. K., N. C. Ward, J. M. Hodgson, and K. D. Croft. 2012. Effects of tea and coffee on cardiovascular disease risk. Food and Function 3 (6):575–91. doi: 10.1039/c2fo10288a.
  • Bordoni, A., C. Boesch, C. Malpuech-Brugère, C. Orfila, and L. Tomás-Cobos. 2019. The role of bioactives in energy metabolism and metabolic syndrome. The Proceedings of the Nutrition Society 78 (3):340–50. doi: 10.1017/S0029665119000545.
  • Borges, C. M., A. Papadimitriou, D. A. Duarte, J. M. Lopes de Faria, and J. Lopes de Faria. 2016. The use of green tea polyphenols for treating residual albuminuria in diabetic nephropathy: A double-blind randomised clinical trial. Scientific Reports 6 (1):28282. doi: 10.1038/srep28282.
  • Brown, A. L., J. Lane, J. Coverly, J. Stocks, S. Jackson, A. Stephen, L. Bluck, A. Coward, and H. Hendrickx. 2009. Effects of dietary supplementation with the green tea polyphenol epigallocatechin-3-gallate on insulin resistance and associated metabolic risk factors: Randomized controlled trial. The British Journal of Nutrition 101 (6):886–94. doi: 10.1017/S0007114508047727.
  • Budreviciute, A., S. Damiati, D. K. Sabir, K. Onder, P. Schuller-Goetzburg, G. Plakys, A. Katileviciute, S. Khoja, and R. Kodzius. 2020. Management and prevention strategies for non-communicable diseases (NCDs) and their risk factors. Frontiers in Public Health 8:574111. doi: 10.3389/fpubh.2020.574111.
  • Bulboaca, A. E., P.-M. Boarescu, A. S. Porfire, G. Dogaru, C. Barbalata, M. Valeanu, C. Munteanu, R. M. Râjnoveanu, C. A. Nicula, and I. C. Stanescu. 2020. The effect of nano-epigallocatechin-gallate on oxidative stress and matrix metalloproteinases in experimental diabetes mellitus. Antioxidants (Basel, Switzerland) 9 (2):172. doi: 10.3390/antiox9020172.
  • Cabrera, C., R. Giménez, and M. C. López. 2003. Determination of tea components with antioxidant activity. Journal of Agricultural and Food Chemistry 51 (15):4427–35. doi: 10.1021/jf0300801.
  • Cai, Z.-Y., X.-M. Li, J.-P. Liang, L.-P. Xiang, K.-R. Wang, Y.-L. Shi, R. Yang, M. Shi, J.-H. Ye, J.-L. Lu, et al. 2018. Bioavailability of tea catechins and its improvement. Molecules 23 (9):2346. doi: 10.3390/molecules23092346.
  • Cai, S., Y. Zhong, Y. Li, J. Huang, J. Zhang, G. Luo, and Z. Liu. 2013. Blockade of the formation of insoluble ubiquitinated protein aggregates by EGCG3”Me in the alloxan-induced diabetic kidney. PloS One 8 (9):e75687. doi: 10.1371/journal.pone.0075687.
  • Callaghan, B. C., G. Gallagher, V. Fridman, and E. L. Feldman. 2020. Diabetic neuropathy: What does the future hold? Diabetologia 63 (5):891–7. doi: 10.1007/s00125-020-05085-9.
  • Calles-Escandon, J., and M. Cipolla. 2001. Diabetes and endothelial dysfunction: A clinical perspective. Endocrine Reviews 22 (1):36–52. doi: 10.1210/edrv.22.1.0417.
  • Chan, C. C., M. W. Koo, E. H. Ng, O. S. Tang, W. S. Yeung, and P. C. Ho. 2006. Effects of Chinese green tea on weight, and hormonal and biochemical profiles in obese patients with polycystic ovary syndrome—A randomized placebo-controlled trial. Journal of the Society for Gynecologic Investigation 13 (1):63–8. doi: 10.1016/j.jsgi.2005.10.006.
  • Chandrasekaran, K., M. Anjaneyulu, J. Choi, P. Kumar, M. Salimian, C.-Y. Ho, and J. W. Russell. 2019. Role of mitochondria in diabetic peripheral neuropathy: Influencing the NAD+-dependent SIRT1-PGC-1α-TFAM pathway. International Review of Neurobiology 145:177–209. doi: 10.1016/bs.irn.2019.04.002.
  • Chaturvedula, V. S. P., and I. Prakash. 2011. The aroma, taste, color and bioactive constituents of tea. Journal of Medicinal Plants Research 5 (11):2110–24.
  • Chen, S.-A., H.-M. Chen, Y.-D. Yao, C.-F. Hung, C.-S. Tu, and Y.-J. Liang. 2012. Topical treatment with anti-oxidants and Au nanoparticles promote healing of diabetic wound through receptor for advance glycation end-products. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 47 (5):875–83. doi: 10.1016/j.ejps.2012.08.018.
  • Chen, G., L. He, P. Zhang, J. Zhang, X. Mei, D. Wang, Y. Zhang, X. Ren, and Z. Chen. 2020. Encapsulation of green tea polyphenol nanospheres in PVA/alginate hydrogel for promoting wound healing of diabetic rats by regulating PI3K/AKT pathway. Materials Science & Engineering. C, Materials for Biological Applications 110:110686. doi: 10.1016/j.msec.2020.110686.
  • Chen, X., Y. Le, S.-Q. Tang, W.-Y. He, J. He, Y.-H. Wang, and H.-B. Wang. 2022a. Painful diabetic neuropathy is associated with compromised microglial IGF-1 signaling which can be rescued by green tea polyphenol EGCG in mice. Oxidative Medicine and Cellular Longevity 2022:6773662. doi: 10.1155/2022/6773662.
  • Chen, T., A. B. Liu, S. Sun, N. J. Ajami, M. C. Ross, H. Wang, L. Zhang, K. Reuhl, K. Kobayashi, J. C. Onishi, et al. 2019. Green tea polyphenols modify the gut microbiome in db/db mice as co-abundance groups correlating with the blood glucose lowering effect. Molecular Nutrition & Food Research 63 (8):e1801064. doi: 10.1002/mnfr.201801064.
  • Chen, X., L. Sun, D. Li, X. Lai, S. Wen, R. Chen, Z. Zhang, Q. Li, and S. Sun. 2022b. Green tea peptides ameliorate diabetic nephropathy by inhibiting the TGF-β/Smad signaling pathway in mice. Food & Function 13 (6):3258–70. doi: 10.1039/d1fo03615g.
  • Cho, N. H., J. E. Shaw, S. Karuranga, Y. Huang, J. D. da Rocha Fernandes, A. W. Ohlrogge, and B. Malanda. 2018. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice 138:271–81. doi: 10.1016/j.diabres.2018.02.023.
  • Choi, S.-W., V. T. F. Yeung, A. R. Collins, and I. F. F. Benzie. 2015. Redox-linked effects of green tea on DNA damage and repair, and influence of microsatellite polymorphism in HMOX-1: Results of a human intervention trial. Mutagenesis 30 (1):129–37. doi: 10.1093/mutage/geu022.
  • Cisneros-Yupanqui, M., and A. Lante. 2020. Tea from the food science perspective: An overview. The Open Biotechnology Journal 14 (1):78–83. doi: 10.2174/1874070702014010078.
  • Dai, W., C. Ruan, Y. Zhang, J. Wang, J. Han, Z. Shao, Y. Sun, and J. Liang. 2020. Bioavailability enhancement of EGCG by structural modification and nano-delivery: A review. Journal of Functional Foods 65 (2020):103732. doi: 10.1016/j.jff.2019.103732.
  • de Amorim, L. M. N., S. R. Vaz, G. Cesário, A. S. G. Coelho, and P. B. Botelho. 2018. Effect of green tea extract on bone mass and body composition in individuals with diabetes. Journal of Functional Foods 40:589–94. doi: 10.1016/j.jff.2017.11.039.
  • de M. Bandeira, S., L. d S. da Fonseca, G. Guedes, L. Rabelo, M. Goulart, and S. Vasconcelos. 2013. Oxidative stress as an underlying contributor in the development of chronic complications in diabetes mellitus. International Journal of Molecular Sciences 14 (2):3265–84. doi: 10.3390/ijms14023265.
  • Del Rio, D., A. J. Stewart, W. Mullen, J. Burns, M. E. Lean, F. Brighenti, and A. Crozier. 2004. HPLC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea. Journal of Agricultural and Food Chemistry 52 (10):2807–15. doi: 10.1021/jf0354848.
  • Dickinson, D., S. DeRossi, H. Yu, C. Thomas, C. Kragor, B. Paquin, E. Hahn, S. Ohno, T. Yamamoto, and S. Hsu. 2014. Epigallocatechin-3-gallate modulates anti-oxidant defense enzyme expression in murine submandibular and pancreatic exocrine gland cells and human HSG cells. Autoimmunity 47 (3):177–84. doi: 10.3109/08916934.2013.879470.
  • Ding, J., B. Gao, Z. Chen, and X. Mei. 2021. An NIR-triggered Au nanocage used for photo-thermo therapy of chronic wound in diabetic rats through bacterial membrane destruction and skin cell mitochondrial protection. Frontiers in Pharmacology 12:779944. doi: 10.3389/fphar.2021.779944.
  • Du, J., Y. Wang, Y. Tu, Y. Guo, X. Sun, X. Xu, X. Liu, L. Wang, X. Qin, M. Zhu, et al. 2020. A prodrug of epigallocatechin-3-gallate alleviates high glucose-induced pro-angiogenic factor production by inhibiting the ROS/TXNIP/NLRP3 inflammasome axis in retinal Müller cells. Experimental Eye Research 196:108065. doi: 10.1016/j.exer.2020.108065.
  • Essmat, A., and M. S. Hussein. 2021. Green tea extract for mild-to-moderate diabetic peripheral neuropathy A randomized controlled trial. Complementary Therapies in Clinical Practice 43:101317. doi: 10.1016/j.ctcp.2021.101317.
  • Eungwanichayapant, P. D., and S. Popluechai. 2009. Accumulation of catechins in tea in relation to accumulation of mRNA from genes involved in catechin biosynthesis. Plant Physiology and Biochemistry: PPB 47 (2):94–7. doi: 10.1016/j.plaphy.2008.11.002.
  • Evert, A. B., M. Dennison, C. D. Gardner, W. T. Garvey, K. H. K. Lau, J. MacLeod, J. Mitri, R. F. Pereira, K. Rawlings, S. Robinson, Jr, et al. 2019. Nutrition therapy for adults with diabetes or prediabetes: A consensus report. Diabetes Care 42 (5):731–54. doi: 10.2337/dci19-0014.
  • Fan, L., Y. He, Y. Xu, P. Li, J. Zhang, and J. Zhao. 2021. Triterpenoid saponins in tea (Camellia sinensis) plants: Biosynthetic gene expression, content variations, chemical identification and cytotoxicity. International Journal of Food Sciences and Nutrition 72 (3):308–23. doi: 10.1080/09637486.2020.1798891.
  • Feingold, K. R. 2021. Oral and injectable (non-insulin) pharmacological agents for the treatment of type 2 diabetes. In Endotext [Internet], ed. K. R. Feingold , B. Anawalt , A. Boyce. South Dartmouth: MDText.com, Inc. https://www.ncbi.nlm.nih.gov/books/NBK279141/.
  • Forbes, J. M., and M. E. Cooper. 2013. Mechanisms of diabetic complications. Physiological Reviews 93 (1):137–88. doi: 10.1152/physrev.00045.2011.
  • Forbes, J. M., and D. R. Thorburn. 2019. Mitochondrial dysfunction in diabetic kidney disease. Nature Reviews. Nephrology 14 (5):291–312. doi: 10.1038/nrneph.2018.9.
  • Fu, Z., W. Zhen, J. Yuskavage, and D. Liu. 2011. Epigallocatechin gallate delays the onset of type 1 diabetes in spontaneous non-obese diabetic mice. The British Journal of Nutrition 105 (8):1218–25. doi: 10.1017/S0007114510004824.
  • Fukino, Y., A. Ikeda, K. Maruyama, N. Aoki, T. Okubo, and H. Iso. 2008. Randomized controlled trial for an effect of green tea-extract powder supplementation on glucose abnormalities. European Journal of Clinical Nutrition 62 (8):953–60. doi: 10.1038/sj.ejcn.1602806.
  • Fukino, Y., M. Shimbo, N. Aoki, T. Okubo, and H. Iso. 2005. Randomized controlled trial for an effect of green tea consumption on insulin resistance and inflammation markers. Journal of Nutritional Science and Vitaminology 51 (5):335–42. doi: 10.3177/jnsv.51.335.
  • Gadkari, P. V., and M. Balaraman. 2015. Catechins: Sources, extraction and encapsulation: A review. Food and Bioproducts Processing 93:122–38. doi: 10.1016/j.fbp.2013.12.004.
  • Geraldes, P., and G. L. King. 2010. Activation of protein kinase C isoforms and its impact on diabetic complications. Circulation Research 106 (8):1319–31. doi: 10.1161/CIRCRESAHA.110.217117.
  • Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration. 2014. Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: A comparative risk assessment. The Lancet. Diabetes & Endocrinology 2 (8):634–47. doi: 10.1016/S2213-8587(14)70102-0.
  • Goldin, A., J. A. Beckman, A. M. Schmidt, and M. A. Creager. 2006. Advanced glycation end products: Sparking the development of diabetic vascular injury. Circulation 114 (6):597–605. doi: 10.1161/CIRCULATIONAHA.106.621854.
  • Golozar, A., H. Khademi, F. Kamangar, H. Poutschi, F. Islami, C. C. Abnet, N. D. Freedman, P. R. Taylor, P. Pharoah, P. Boffetta, et al. 2011. Diabetes mellitus and its correlates in an Iranian adult population. PloS One 6 (10):e26725. doi: 10.1371/journal.pone.0026725.
  • Gong, A.-D., S.-B. Lian, N.-N. Wu, Y.-J. Zhou, S.-Q. Zhao, L.-M. Zhang, L. Cheng, and H.-Y. Yuan. 2020. Integrated transcriptomics and metabolomics analysis of catechins, caffeine and theanine biosynthesis in tea plant (Camellia sinensis) over the course of seasons. BMC Plant Biology 20 (1):294. doi: 10.1186/s12870-020-02443-y.
  • Goyal, R., and I. Jialal. 2022. Diabetes mellitus type 2. In StatPearls. Treasure Island (FL): StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK513253/.
  • Graham, H. N. 1992. Green tea composition, consumption, and polyphenol chemistry. Preventive Medicine 21 (3):334–50. doi: 10.1016/0091-7435(92)90041-F.
  • Grotewold, E. 2006. The genetics and biochemistry of floral pigments. Annual Review of Plant Biology 57 (1):761–80. doi: 10.1146/annurev.arplant.57.032905.105248.
  • Gurung, M., Z. Li, H. You, R. Rodrigues, D. B. Jump, A. Morgun, and N. Shulzhenko. 2020. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 51:102590. doi: 10.1016/j.ebiom.2019.11.051.
  • Hahlbrock, K., and D. Scheel. 1989. Physiology and molecular biology of phenylpropanoid metabolism. Annual Review of Plant Physiology and Plant Molecular Biology 40 (1):347–69. doi: 10.1146/annurev.pp.40.060189.002023.
  • Haw, J. S., K. I. Galaviz, A. N. Straus, A. J. Kowalski, M. J. Magee, M. B. Weber, J. Wei, K. Narayan, and M. K. Ali. 2017. Long-term sustainability of diabetes prevention approaches: A systematic review and meta-analysis of randomized clinical trials. JAMA Internal Medicine 177 (12):1808–17. doi: 10.1001/jamainternmed.2017.6040.
  • Hayashi, D., L. Wang, S. Ueda, M. Yamanoue, H. Ashida, and Y. Shirai. 2020. The mechanisms of ameliorating effect of a green tea polyphenol on diabetic nephropathy based on diacylglycerol kinase α. Scientific Reports 10 (1):11790. doi: 10.1038/s41598-020-68716-6.
  • Hibi, M., H. Takase, M. Iwasaki, N. Osaki, and Y. Katsuragi. 2018. Efficacy of tea catechin-rich beverages to reduce abdominal adiposity and metabolic syndrome risks in obese and overweight subjects: A pooled analysis of 6 human trials. Nutrition Research (New York, N.Y.) 55:1–10. doi: 10.1016/j.nutres.2018.03.012.
  • Hininger-Favier, I., R. Benaraba, S. Coves, R. A. Anderson, and A. M. Roussel. 2009. Green tea extract decreases oxidative stress and improves insulin sensitivity in an animal model of insulin resistance, the fructose-fed rat. Journal of the American College of Nutrition 28 (4):355–61. doi: 10.1080/07315724.2009.10718097.
  • Hosseini, S., M. Alipour, M. Zakerkish, B. Cheraghian, and P. Ghandil. 2021. Effects of epigallocatechin gallate on total antioxidant capacity, biomarkers of systemic low-grade inflammation and metabolic risk factors in patients with type 2 diabetes mellitus: The role of FTO-rs9939609 polymorphism. Archives of Medical Science 17:1722–29. doi: 10.5114/aoms.2020.95903.
  • Hsu, C.-H., Y.-L. Liao, S.-C. Lin, T.-H. Tsai, and P. Chou. 2011. Does supplementation with green tea extract improve insulin resistance in obese type 2 diabetics? A randomized, double-blind, and placebo-controlled clinical trial. Alternative Medicine Review 16:157–63.
  • Huang, Y.-W., Q.-Q. Zhu, X.-Y. Yang, H.-H. Xu, B. Sun, X.-J. Wang, and J. Sheng. 2019. Wound healing can be improved by (-)-epigallocatechin gallate through targeting Notch in streptozotocin-induced diabetic mice. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 33 (1):953–64. doi: 10.1096/fj.201800337R.
  • Ihm, S.-H., J.-O. Lee, S.-J. Kim, K.-B. Seung, V. B. Schini-Kerth, K. Chang, and M.-H. Oak. 2009. Catechin prevents endothelial dysfunction in the prediabetic stage of OLETF rats by reducing vascular NADPH oxidase activity and expression. Atherosclerosis 206 (1):47–53. doi: 10.1016/j.atherosclerosis.2009.01.036.
  • Iso, H., C. Date, K. Wakai, M. Fukui, and A. Tamakoshi, JACC Study Group. 2006. The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults. Annals of Internal Medicine 144 (8):554–562. doi: 10.7326/0003-4819-144-8-200604180-00005.
  • James, S. L., D. Abate, K. H. Abate, S. M. Abay, C. Abbafati, N. Abbasi, H. Abbastabar, F. Abd-Allah, J. Abdela, A. Abdelalim, et al. 2018. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet 392 (10159):1789–858. doi: 10.1016/S0140-6736(18)32279-7.
  • Jay, D., H. Hitomi, and K. K. Griendling. 2006. Oxidative stress and diabetic cardiovascular complications. Free Radical Biology & Medicine 40 (2):183–92. doi: 10.1016/j.freeradbiomed.2005.06.018.
  • Jin, J.-Q., J.-Q. Ma, C.-L. Ma, M.-Z. Yao, and L. Chen. 2014. Determination of catechin content in representative Chinese tea germplasms. Journal of Agricultural and Food Chemistry 62 (39):9436–41. doi: 10.1021/jf5024559.
  • Juneja, L. 1999. L-theanine—A unique amino acid of green tea and its relaxation effect in humans. Trends in Food Science & Technology 10 (6-7):199–204. doi: 10.1016/s0924-2244(99)0004.
  • Kang, M.-Y., Y. H. Park, B. S. Kim, S. Y. Seo, B. C. Jeong, J.-I. Kim, and H. H. Kim. 2012. Preventive effects of green tea (Camellia sinensis var. assamica) on diabetic nephropathy. Yonsei Medical Journal 53 (1):138–44. doi: 10.3349/ymj.2012.53.1.138.
  • Kapoor, M. P., T. P. Rao, T. Okubo, and L. R. Juneja. 2013. Green tea: History, processing techniques, principles, traditions, features, and attractions. In Green Tea Polyphenols: Nutraceutical of Modern Life, ed. L. R. Juneja, M. P. Kapoor, T. Okubo, and T. P. Rao, 1–18. Boca Raton: CRC Press.
  • Knowler, W. C., E. Barrett-Connor, S. E. Fowler, R. F. Hamman, J. M. Lachin, E. A. Walker, and D. M. Nathan; Diabetes Prevention Program Research Group. 2002. Diabetes Prevention Program Research Group. The New England Journal of Medicine 346 (6):393–403., doi: 10.1056/NEJMoa012512.
  • Ko, K. D., K. K. Kim, and K. R. Lee. 2017. Does weight gain associated with thiazolidinedione use negatively affect cardiometabolic health? Journal of Obesity & Metabolic Syndrome 26 (2):102–6. doi: 10.7570/jomes.2017.26.2.102.
  • Kolluru, G. K., S. C. Bir, and C. G. Kevil. 2012. Endothelial dysfunction and diabetes: Effects on angiogenesis, vascular remodeling, and wound healing. International Journal of Vascular Medicine 2012:918267. doi: 10.1155/2012/918267.
  • Koyama, Y., K. Abe, Y. Sano, Y. Ishizaki, M. Njelekela, Y. Shoji, Y. Hara, and M. Isemura. 2004. Effects of green tea on gene expression of hepatic gluconeogenic enzymes in vivo. Planta Medica 70 (11):1100–2. doi: 10.1055/s-2004-832659.
  • Kumar, B., S. K. Gupta, T. C. Nag, S. Srivastava, and R. Saxena. 2012. Green tea prevents hyperglycemia-induced retinal oxidative stress and inflammation in streptozotocin-induced diabetic rats. Ophthalmic Research 47 (2):103–8. doi: 10.1159/000330051.
  • Lasaite, L., A. Spadiene, N. Savickiene, A. Skesters, and A. Silova. 2014. The effect of Ginkgo biloba and Camellia sinensis extracts on psychological state and glycemic control in patients with type 2 diabetes mellitus. Natural Product Communications 9 (9):1934578X1400900. doi: 10.1177/1934578X1400900931.
  • Lavhale, S. G., R. M. Kalunke, and A. P. Giri. 2018. Structural, functional and evolutionary diversity of 4-coumarate-CoA ligase in plants. Planta 248 (5):1063–78. doi: 10.1007/s00425-018-2965-z.
  • Liao, Y., X. Zhou, and L. Zeng. 2022. How does tea (Camellia sinensis) produce specialized metabolites which determine its unique quality and function: A review. Critical Reviews in Food Science and Nutrition 62 (14):3751–67. doi: 10.1080/10408398.2020.1868970.
  • Li, X., S. Li, M. Chen, J. Wang, B. Xie, and Z. Sun. 2018. (-)-Epigallocatechin-3-gallate (EGCG) inhibits starch digestion and improves glucose homeostasis through direct or indirect activation of PXR/CAR-mediated phase II metabolism in diabetic mice. Food & Function 9 (9):4651–63. doi: 10.1039/c8fo01293h.
  • Li, T., J. Liu, X. Zhang, and G. Ji. 2007. Antidiabetic activity of lipophilic (-)-epigallocatechin-3-gallate derivative under its role of alpha-glucosidase inhibition. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 61 (1):91–6. doi: 10.1016/j.biopha.2006.11.002.
  • Li, W.-Z., K. Stirling, J.-J. Yang, and L. Zhang. 2020b. Gut microbiota and diabetes: From correlation to causality and mechanism. World Journal of Diabetes 11 (7):293–308. doi: 10.4239/wjd.v11.i7.293.
  • Liu, Z., M. E. Bruins, W. J. C. de Bruijn, and J.-P. Vincken. 2020. A comparison of the phenolic composition of old and young tea leaves reveals a decrease in flavanols and phenolic acids and an increase in flavonols upon tea leaf maturation. Journal of Food Composition and Analysis 86:103385. doi: 10.1016/j.jfca.2019.103385.
  • Liu, Y., L. Gao, L. Liu, Q. Yang, Z. Lu, Z. Nie, Y. Wang, and T. Xia. 2012. Purification and characterization of a novel galloyltransferase involved in catechin galloylation in the tea plant (Camellia sinensis). The Journal of Biological Chemistry 287 (53):44406–17. doi: 10.1074/jbc.M112.403071.
  • Liu, C.-Y., C.-J. Huang, L.-H. Huang, I.-J. Chen, J.-P. Chiu, and C.-H. Hsu. 2014. Effects of green tea extract on insulin resistance and glucagon-like peptide 1 in patients with type 2 diabetes and lipid abnormalities: A randomized, double-blinded, and placebo-controlled trial. PloS One 9 (3):e91163. doi: 10.1371/journal.pone.0091163.
  • Liu, X., W. Xu, H. Cai, Y.-T. Gao, H. Li, B.-T. Ji, X. Shu, T. Wang, R. E. Gerszten, W. Zheng, et al. 2018. Green tea consumption and risk of type 2 diabetes in Chinese adults: The Shanghai Women’s Health Study and the Shanghai Men’s Health Study. International Journal of Epidemiology 47 (6):1887–96. doi: 10.1093/ije/dyy173.
  • Li, W., C. Zhu, T. Liu, W. Zhang, X. Liu, P. Li, and T. Zhu. 2020a. Epigallocatechin-3-gallate ameliorates glucolipid metabolism and oxidative stress in type 2 diabetic rats. Diabetes & Vascular Disease Research 17 (6):1479164120966998. doi: 10.1177/1479164120966998.
  • Mahmood, T., N. Akhtar, and B. A. Khan. 2010. The morphology, characteristics, and medicinal properties of Camellia sinensis tea. Journal of Medicinal Plants Research 4 (19):2028–33.
  • Mamluk, L., M. G. O’Doherty, P. Orfanos, G. Saitakis, J. V. Woodside, L. M. Liao, R. Sinha, P. Boffetta, A. Trichopoulou, and F. Kee. 2017. Fruit and vegetable intake and risk of incident of type 2 diabetes: Results from the consortium on health and ageing network of cohorts in Europe and the United States (CHANCES). European Journal of Clinical Nutrition 71 (1):83–91. doi: 10.1038/ejcn.2016.143.
  • Matsumoto, T., S. Watanabe, R. Kawamura, K. Taguchi, and T. Kobayashi. 2014. Epigallocatechin gallate attenuates ET-1-induced contraction in carotid artery from type 2 diabetic OLETF rat at chronic stage of disease. Life Sciences 118 (2):200–5. doi: 10.1016/j.lfs.2013.11.016.
  • Mauricio, D., N. Alonso, and M. Gratacòs. 2020. Chronic diabetes complications: The need to move beyond classical concepts. Trends in Endocrinology and Metabolism: TEM 31 (4):287–95. doi: 10.1016/j.tem.2020.01.007.
  • Mazzanti, G., A. Di Sotto, and A. Vitalone. 2015. Hepatotoxicity of green tea: An update. Archives of Toxicology 89 (8):1175–91. doi: 10.1007/s00204-015-1521-x.
  • McRae, M. P. 2018. Dietary fiber intake and type 2 diabetes mellitus: An umbrella review of meta-analyses. Journal of Chiropractic Medicine 17 (1):44–53. doi: 10.1016/j.jcm.2017.11.002.
  • Mirzaei, K., A. Hossein-Nezhad, M. Karimi, M. J. Hosseinzadeh-Attar, N. Jafari, A. Najmafshar, and B. Larijani. 2009. Effect of green tea extract on bone turnover markers in type 2 diabetic patients; a double-blind, placebo-controlled clinical trial study. DARU Journal of Pharmaceutical Sciences 1 (1):38–44.
  • Mirzaei, M., M. Rahmaninan, M. Mirzaei, A. Nadjarzadeh, and A. A. Dehghani Tafti. 2020. Epidemiology of diabetes mellitus, pre-diabetes, undiagnosed and uncontrolled diabetes in Central Iran: Results from Yazd health study. BMC Public Health 20 (1):166. doi: 10.1186/s12889-020-8267-y.
  • Mochly-Rosen, D., K. Das, and K. V. Grimes. 2012. Protein kinase C, an elusive therapeutic target? Nature Reviews. Drug Discovery 11 (12):937–57. doi: 10.1038/nrd3871.
  • Mohan, T., P. Velusamy, L. N. Chakrapani, A. K. Srinivasan, A. Singh, T. Johnson, and K. Periandavan. 2017. Impact of EGCG supplementation on the progression of diabetic nephropathy in rats: An insight into fibrosis and apoptosis. Journal of Agricultural and Food Chemistry 65 (36):8028–36. doi: 10.1021/acs.jafc.7b03301.
  • Mohan, T., K. K. S. Narasimhan, D. B. Ravi, P. Velusamy, N. Chandrasekar, L. N. Chakrapani, A. Srinivasan, P. Karthikeyan, P. Kannan, and B. Tamilarasan. 2020. Role of Nrf2 dysfunction in the pathogenesis of diabetic nephropathy: Therapeutic prospect of epigallocatechin-3-gallate. Free Radical Biology and Medicine 160:227–38. doi: 10.1016/j.freeradbiomed.2020.07.037.
  • Morgan, S. A., E. L. McCabe, L. L. Gathercole, Z. K. Hassan-Smith, D. P. Larner, I. J. Bujalska, P. M. Stewart, J. W. Tomlinson, and G. G. Lavery. 2014. 11β-HSD1 is the major regulator of the tissue-specific effects of circulating glucocorticoid excess. Proceedings of the National Academy of Sciences of the United States of America 111 (24):E2482–91. doi: 10.1073/pnas.1323681111.
  • Mostafa, T., D. Sabry, A. M. Abdelaal, I. Mostafa, and M. Taymour. 2013. Cavernous antioxidant effect of green tea, epigallocatechin-3-gallate with/without sildenafil citrate intake in aged diabetic rats. Andrologia 45 (4):272–7. doi: 10.1111/and.12005.
  • Mousavi, A., M. Vafa, T. Neyestani, M. Khamseh, and F. Hoseini. 2013. The effects of green tea consumption on metabolic and anthropometric indices in patients with Type 2 diabetes. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences 18 (12):1080–6.
  • Mozaffari-Khosravi, H., Z. Ahadi, and K. Barzegar. 2013. The effect of green tea and sour tea on blood pressure of patients with type 2 diabetes: A randomized clinical trial. Journal of Dietary Supplements 10 (2):105–15. doi: 10.3109/19390211.2013.790333.
  • Mozaffari-Khosravi, H., Z. Ahadi, and M. Fallah Tafti. 2014. The effect of green tea versus sour tea on insulin resistance, lipids profiles and oxidative stress in patients with type 2 diabetes mellitus: A randomized clinical trial. Iranian Journal of Medical Sciences 39 (5):424–32.
  • Muramatsu, K., I. Ogun, M. Isemura, K. Sugiyama, and M. Yamamoto-Maeda. 2002. Health Science of Tea. Tokyo: Japan Scientific Societies Press, 52–64.
  • Musial, C., A. Kuban-Jankowska, and M. Gorska-Ponikowska. 2020. Beneficial properties of green tea catechins. International Journal of Molecular Sciences 21 (5):1744. doi: 10.3390/ijms21051744.
  • Mutuku, A., J. Wanyoko, F. Wachira, S. Kamunya, R. Chalo, S. Kimutai, K. Moseti, and S. Karori. 2016. Influence of geographical regions on catechin and caffeine levels in tea (Camellia sinensis). American Journal of Plant Sciences 07 (03):562–71. doi: 10.4236/ajps.2016.73049.
  • Nagahora, N., Y. Ito, and T. Nagasawa. 2013. Dietary Chinese quince polyphenols suppress generation of α-dicarbonyl compounds in diabetic KK-A(y) mice. Journal of Agricultural and Food Chemistry 61 (27):6629–35. doi: 10.1021/jf401231j.
  • Nagao, T., S. Meguro, T. Hase, K. Otsuka, M. Komikado, I. Tokimitsu, T. Yamamoto, and K. Yamamoto. 2009. A catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes. Obesity (Silver Spring, Md.) 17 (2):310–7. doi: 10.1038/oby.2008.505.
  • Nakagawa, K., S. Okuda, and T. Miyazawa. 1997. Dose-dependent incorporation of tea catechins, (-)-epigallocatechin-3-gallate and (-)-epigallocatechin, into human plasma. Bioscience, Biotechnology, and Biochemistry 61 (12):1981–5. doi: 10.1271/bbb.61.1981.
  • Namal Senanayake, S. P. J. 2013. Green tea extract: Chemistry, antioxidant properties and food applications—A review. Journal of Functional Foods 5 (4):1529–41. doi: 10.1016/j.jff.2013.08.011.
  • NCD Risk Factor Collaboration (NCD-RisC). 2016. Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4.4 million participants. Lancet (London, England) 387 (10027):1513–30. doi: 10.1016/S0140-6736(16)00618-8.
  • Nie, J., C. Yu, Y. Guo, P. Pei, L. Chen, Y. Pang, H. Du, L. Yang, Y. Chen, S. Yan, et al. 2021. Tea consumption and long-term risk of type 2 diabetes and diabetic complications: A cohort study of 0.5 million Chinese adults. The American Journal of Clinical Nutrition 114 (1):194–202. doi: 10.1093/ajcn/nqab006.
  • Ninomiya, M., L. Unten, and M. Kim. 1997. Chemical and physiochemical properties of green tea polyphenols. In Chemistry and Application of Green Tea, ed. T. Yamamoto, L. R. Juneja, D. C. Chu, and M. Kim, 23–36. Boca Raton, FL: CRC Press.
  • Nishiumi, S., H. Bessyo, M. Kubo, Y. Aoki, A. Tanaka, K.-I. Yoshida, and H. Ashida. 2010. Green and black tea suppress hyperglycemia and insulin resistance by retaining the expression of glucose transporter 4 in muscle of high-fat diet-fed C57BL/6J mice. Journal of Agricultural and Food Chemistry 58 (24):12916–23. doi: 10.1021/jf102840w.
  • Norris, J. M., and S. S. Rich. 2012. Genetics of glucose homeostasis: Implications for insulin resistance and metabolic syndrome: Implications for insulin resistance and metabolic syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology 32 (9):2091–6. doi: 10.1161/ATVBAHA.112.255463.
  • Oba, S., C. Nagata, K. Nakamura, K. Fujii, T. Kawachi, N. Takatsuka, and H. Shimizu. 2010. Consumption of coffee, green tea, oolong tea, black tea, chocolate snacks and the caffeine content in relation to risk of diabetes in Japanese men and women. The British Journal of Nutrition 103 (3):453–9. doi: 10.1017/S0007114509991966.
  • Odegaard, A. O., M. A. Pereira, W.-P. Koh, K. Arakawa, H.-P. Lee, and M. C. Yu. 2008. Coffee, tea, and incident type 2 diabetes: The Singapore Chinese Health Study. The American Journal of Clinical Nutrition 88 (4):979–85. doi: 10.1093/ajcn/88.4.979.
  • Oguntibeju, O. O. 2019. Type 2 diabetes mellitus, oxidative stress and inflammation: Examining the links. International Journal of Physiology, Pathophysiology and Pharmacology 11 (3):45–63.
  • Oh, J., S.-H. Jo, J. S. Kim, K.-S. Ha, J.-Y. Lee, H.-Y. Choi, S.-Y. Yu, Y.-I. Kwon, and Y.-C. Kim. 2015. Selected tea and tea pomace extracts inhibit intestinal α-glucosidase activity in vitro and postprandial hyperglycemia in vivo. International Journal of Molecular Sciences 16 (4):8811–25. doi: 10.3390/ijms16048811.
  • Oketch-Rabah, H. A., A. L. Roe, C. V. Rider, H. L. Bonkovsky, G. I. Giancaspro, V. Navarro, M. F. Paine, J. M. Betz, R. J. Marles, S. Casper, et al. 2020. United States Pharmacopeia (USP) comprehensive review of the hepatotoxicity of green tea extracts. Toxicology Reports 7:386–402. doi: 10.1016/j.toxrep.2020.02.008.
  • Oršolić, N., D. Sirovina, G. Gajski, V. Garaj-Vrhovac, M. Jazvinšćak Jembrek, and I. Kosalec. 2013. Assessment of DNA damage and lipid peroxidation in diabetic mice: Effects of propolis and epigallocatechin gallate (EGCG). Mutation Research 757 (1):36–44. doi: 10.1016/j.mrgentox.2013.04.022.
  • Ortsäter, H., N. Grankvist, S. Wolfram, N. Kuehn, and A. Sjöholm. 2012. Diet supplementation with green tea extract epigallocatechin gallate prevents progression to glucose intolerance in db/db mice. Nutrition & Metabolism 9 (1):11. doi: 10.1186/1743-7075-9-11.
  • Othman, A. I., M. R. El-Sawi, M. A. El-Missiry, and M. H. Abukhalil. 2017. Epigallocatechin-3-gallate protects against diabetic cardiomyopathy through modulating the cardiometabolic risk factors, oxidative stress, inflammation, cell death and fibrosis in streptozotocin-nicotinamide-induced diabetic rats. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 94:362–73. doi: 10.1016/j.biopha.2017.07.129.
  • Pan, C., S. Zhou, J. Wu, L. Liu, Y. Song, T. Li, L. Ha, X. Liu, F. Wang, J. Tian, et al. 2017. NRF2 plays a critical role in both self and EGCG protection against diabetic testicular damage. Oxidative Medicine and Cellular Longevity 2017:3172692. doi: 10.1155/2017/3172692.
  • Pang, Y., I. S. B. Abeysinghe, J. He, X. He, D. Huhman, K. M. Mewan, L. W. Sumner, J. Yun, and R. A. Dixon. 2013. Functional characterization of proanthocyanidin pathway enzymes from tea and their application for metabolic engineering. Plant Physiology 161 (3):1103–16. doi: 10.1104/pp.112.212050.
  • Papatheodorou, K., M. Banach, E. Bekiari, M. Rizzo, and M. Edmonds. 2018. Complications of diabetes 2017. Journal of Diabetes Research 2018:3086167–4. doi: 10.1155/2018/3086167.
  • Park, J.-M., Y. Shin, S. H. Kim, M. Jin, and J. J. Choi. 2020. Dietary epigallocatechin-3-gallate alters the gut microbiota of obese diabetic db/db mice: Lactobacillus is a putative target. Journal of Medicinal Food 23 (10):1033–42. doi: 10.1089/jmf.2020.4700.
  • Patel, S. S., S. Beer, D. L. Kearney, G. Phillips, and B. A. Carter. 2013. Green tea extract: A potential cause of acute liver failure. World Journal of Gastroenterology 19 (31):5174–7. doi: 10.3748/wjg.v19.i31.5174.
  • Pathak, N. M., P. J. B. Millar, V. Pathak, P. R. Flatt, and V. A. Gault. 2018. Beneficial metabolic effects of dietary epigallocatechin gallate alone and in combination with exendin-4 in high fat diabetic mice. Molecular and Cellular Endocrinology 460:200–8. doi: 10.1016/j.mce.2017.07.024.
  • Peixoto, E. B., A. Papadimitriou, D. A. T. Teixeira, C. Montemurro, D. A. Duarte, K. C. Silva, P. P. Joazeiro, J. M. Lopes de Faria, J. Lopes de Faria, et al. 2015. Reduced LRP6 expression and increase in the interaction of GSK3β with p53 contribute to podocyte apoptosis in diabetes mellitus and are prevented by green tea. The Journal of Nutritional Biochemistry 26 (4):416–30. doi: 10.1016/j.jnutbio.2014.11.012.
  • Peng, L., X. Song, X. Shi, J. Li, and C. Ye. 2008. An improved HPLC method for simultaneous determination of phenolic compounds, purine alkaloids and theanine in Camellia species. Journal of Food Composition and Analysis 21 (7):559–63. doi: 10.1016/j.jfca.2008.05.002.
  • Pervin, M., K. Unno, A. Takagaki, M. Isemura, and Y. Nakamura. 2019. Function of green tea catechins in the brain: Epigallocatechin gallate and its metabolites. International Journal of Molecular Sciences 20 (15):3630. doi: 10.3390/ijms20153630.
  • Qian, F., G. Liu, F. B. Hu, S. N. Bhupathiraju, and Q. Sun. 2019. Association between plant-based dietary patterns and risk of type 2 diabetes: A systematic review and meta-analysis. JAMA Internal Medicine 179 (10):1335–44. doi: 10.1001/jamainternmed.2019.2195.
  • Qin, J., Y. Li, Z. Cai, S. Li, J. Zhu, F. Zhang, S. Liang, W. Zhang, Y. Guan, D. Shen, et al. 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490 (7418):55–60. doi: 10.1038/nature11450.
  • Qin, B., M. M. Polansky, D. Harry, and R. A. Anderson. 2010. Green tea polyphenols improve cardiac muscle mRNA and protein levels of signal pathways related to insulin and lipid metabolism and inflammation in insulin-resistant rats. Molecular Nutrition & Food Research 54(Suppl 1):S14–S23. doi: 10.1002/mnfr.200900306.
  • Qu, F., S. Liu, C. He, J. Zhou, S. Zhang, Z. Ai, Y. Chen, Z. Yu, and D. Ni. 2019. Comparison of the effects of green and black tea extracts on Na(+)/K(+) -ATPase activity in intestine of type 1 and type 2 diabetic mice. Molecular Nutrition & Food Research 63 (17):e1801039. doi: 10.1002/mnfr.201801039.
  • Quezada-Fernández, P., J. Trujillo-Quiros, S. Pascoe-González, W. A. Trujillo-Rangel, D. Cardona-Müller, C. G. Ramos-Becerra, M. Barocio-Pantoja, M. Rodríguez-de la Cerda, E. Nérida Sánchez-Rodríguez, E. G. Cardona-Muñóz, et al. 2019. Effect of green tea extract on arterial stiffness, lipid profile and sRAGE in patients with type 2 diabetes mellitus: A randomised, double-blind, placebo-controlled trial. International Journal of Food Sciences and Nutrition 70 (8):977–85. doi: 10.1080/09637486.2019.1589430.
  • Ramadan, G., N. M. El-Beih, and E. A. Abd El-Ghffar. 2009. Modulatory effects of black v. green tea aqueous extract on hyperglycaemia, hyperlipidaemia and liver dysfunction in diabetic and obese rat models. The British Journal of Nutrition 102 (11):1611–9. doi: 10.1017/s000711450999208x.
  • Raposo, D., C. Morgado, P. Pereira-Terra, and I. Tavares. 2015. Nociceptive spinal cord neurons of laminae I-III exhibit oxidative stress damage during diabetic neuropathy which is prevented by early antioxidant treatment with epigallocatechin-gallate (EGCG). Brain Research Bulletin 110:68–75. doi: 10.1016/j.brainresbull.2014.12.004.
  • Rasheed, N. O. A., L. A. Ahmed, D. M. Abdallah, and B. M. El-Sayeh. 2017. Nephro-toxic effects of intraperitoneally injected EGCG in diabetic mice: Involvement of oxidative stress, inflammation and apoptosis. Scientific Reports 7:40617. doi: 10.1038/srep40617.
  • Rasheed, N. O. A., L. A. Ahmed, D. M. Abdallah, and B. M. El-Sayeh. 2018. Paradoxical cardiotoxicity of intraperitoneally-injected epigallocatechin gallate preparation in diabetic mice. Scientific Reports 8 (1):7880. doi: 10.1038/s41598-018-25901-y.
  • Rasmussen, L., C. W. Poulsen, U. Kampmann, S. B. Smedegaard, P. G. Ovesen, and J. Fuglsang. 2020. Diet and healthy lifestyle in the management of gestational diabetes mellitus. Nutrients 12 (10):3050. doi: 10.3390/nu12103050.
  • Reinehr, T. 2013. Type 2 diabetes mellitus in children and adolescents. World Journal of Diabetes 4 (6):270–81. doi: 10.4239/wjd.v4.i6.270.
  • Ren, Z., Z. Yang, Y. Lu, R. Zhang, and H. Yang. 2020. Anti-glycolipid disorder effect of epigallocatechin-3-gallate on high-fat diet and STZ-induced T2DM in mice. Molecular Medicine Reports 21 (6):2475–83. doi: 10.3892/mmr.2020.11041.
  • Reto, M., M. E. Figueira, H. M. Filipe, and C. M. M. Almeida. 2007. Chemical composition of green tea (Camellia sinensis) infusions commercialized in Portugal. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 62 (4):139–44. doi: 10.1007/s11130-007-0054-8‌.
  • Reygaert, W. C. 2018. Green tea catechins: Their use in treating and preventing infectious diseases. BioMed Research International 2018:9105261. doi: 10.1155/2018/9105261.
  • Rice-Evans, C. A., N. J. Miller, and G. Paganga. 1997. Antioxidant properties of phenolic compounds. Trends in Plant Science. 2 (4):152–9. doi: 10.1016/S1360-1385(97)01018-2.
  • Riemersma, R. A., C. A. Rice-Evans, R. M. Tyrrell, M. N. Clifford, and M. E. Lean. 2001. Tea flavonoids and cardiovascular health. QJM: Monthly Journal of the Association of Physicians 94 (5):277–82. doi: 10.1093/qjmed/94.5.277.
  • Ross, S. A. 2013. Breaking down patient and physician barriers to optimize glycemic control in type 2 diabetes. The American Journal of Medicine 126 (9 Suppl 1):S38–S48. doi: 10.1016/j.amjmed.2013.06.012.
  • Ryu, O. H., J. Lee, K. W. Lee, H. Y. Kim, J. A. Seo, S. G. Kim, N. H. Kim, S. H. Baik, D. S. Choi, and K. M. Choi. 2006. Effects of green tea consumption on inflammation, insulin resistance and pulse wave velocity in type 2 diabetes patients. Diabetes Research and Clinical Practice 71 (3):356–8. doi: 10.1016/j.diabres.2005.08.001.
  • Saeedi, P., I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin, S. Colagiuri, L. Guariguata, A. A. Motala, K. Ogurtsova, IDF Diabetes Atlas Committee, et al. 2019. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice 157:107843. doi: 10.1016/j.diabres.2019.107843.
  • Sampath, C., M. R. Rashid, S. Sang, and M. Ahmedna. 2017. Green tea epigallocatechin 3-gallate alleviates hyperglycemia and reduces advanced glycation end products via nrf2 pathway in mice with high fat diet-induced obesity. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 87:73–81. doi: 10.1016/j.biopha.2016.12.082.
  • Sato, J., A. Kanazawa, F. Ikeda, T. Yoshihara, H. Goto, H. Abe, K. Komiya, M. Kawaguchi, T. Shimizu, T. Ogihara, et al. 2014. Gut dysbiosis and detection of “live gut bacteria” in blood of Japanese patients with type 2 diabetes. Diabetes Care 37 (8):2343–50. doi: 10.2337/dc13-2817.
  • Scholl, C., A. Lepper, T. Lehr, N. Hanke, K. L. Schneider, J. Brockmöller, T. Seufferlein, and J. C. Stingl. 2018. Population nutrikinetics of green tea extract. PloS One 13 (2):e0193074. doi: 10.1371/journal.pone.0193074.
  • Shaw, J. E., R. A. Sicree, and P. Z. Zimmet. 2010. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Research and Clinical Practice 87 (1):4–14. doi: 10.1016/j.diabres.2009.10.007.
  • Sheikhrabori, A., M. Dehghan, F. Ghaedi, and G. R. Khademi. 2017. Complementary and alternative medicine usage and its determinant factors among diabetic patients: An Iranian case. Journal of Evidence-Based Complementary & Alternative Medicine 22 (3):449–54. doi: 10.1177/2156587216675079.
  • Shi, J., S. J. Xue, Y. Kakuda, and F. Shahidi. 2009. Green tea induced thermogenesis controlling body weight. In Tea and Tea Products: Chemistry and Health-Promoting Properties, ed. C. T. Ho and J.-K. Lin, 221–32. Boca Raton, FL: CRC Press.
  • Silva, K. C., M. A. Rosales, D. E. Hamassaki, K. C. Saito, A. M. Faria, P. A. Ribeiro, J. B. Faria, and J. M. Faria. 2013. Green tea is neuroprotective in diabetic retinopathy. Investigative Ophthalmology & Visual Science 54 (2):1325–36. doi: 10.1167/iovs.12-10647.
  • Singh, N. A., A. K. A. Mandal, and Z. A. Khan. 2016. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutrition Journal 1 (1):15. doi: 10.1186/s12937-016-0179-4.
  • Sirichaiwetchakoon, K., S. Churproong, S. Kupittayanant, and G. Eumkeb. 2021. The effect of Pluchea indica (L.) Less. tea on blood glucose and lipid profile in people with prediabetes: A randomized clinical trial. Journal of Alternative and Complementary Medicine (New York, N.Y.) 27 (8):669–77. doi: 10.1089/acm.2020.0246.
  • Song, E.-K., H. Hur, and M.-K. Han. 2003. Epigallocatechin gallate prevents autoimmune diabetes induced by multiple low doses of streptozotocin in mice. Archives of Pharmacal Research 26 (7):559–63. doi: 10.1007/bf02976881.
  • Spadiene, A., N. Savickiene, L. Ivanauskas, V. Jakstas, A. Skesters, A. Silova, and H. Rodovicius. 2014. Antioxidant effects of Camellia sinensis L. extract in patients with type 2 diabetes. Journal of Food and Drug Analysis 22 (4):505–11. doi: 10.1016/j.jfda.2014.04.001.
  • Statista Research Department. 2022 (April 26). Annual tea consumption worldwide 2013-2021 | Statistic. Statista. https://www.statista.com/statistics/940102/global-tea-consumption/
  • Strelitz, J., E. R. Lawlor, Y. Wu, A. Estlin, G. Nandakumar, A. L. Ahern, and S. J. Griffin. 2022. Association between weight change and incidence of cardiovascular disease events and mortality among adults with type 2 diabetes: A systematic review of observational studies and behavioural intervention trials. Diabetologia 65 (3):424–39. doi: 10.1007/s00125-021-05605-1.
  • Sun, W., X. Liu, H. Zhang, Y. Song, T. Li, X. Liu, Y. Liu, L. Guo, F. Wang, T. Yang, et al. 2017. Epigallocatechin gallate upregulates NRF2 to prevent diabetic nephropathy via disabling KEAP1. Free Radical Biology & Medicine 108:840–57. doi: 10.1016/j.freeradbiomed.2017.04.365.
  • Sun, M., Q. Xie, X. Cai, Z. Liu, Y. Wang, X. Dong, and Y. Xu. 2020. Preparation and characterization of epigallocatechin gallate, ascorbic acid, gelatin, chitosan nanoparticles and their beneficial effect on wound healing of diabetic mice. International Journal of Biological Macromolecules 148:777–84. doi: 10.1016/j.ijbiomac.2020.01.198.
  • Takahashi, M., M. Miyashita, K. Suzuki, S-r Bae, H.-K. Kim, T. Wakisaka, Y. Matsui, M. Takeshita, and K. Yasunaga. 2014. Acute ingestion of catechin-rich green tea improves postprandial glucose status and increases serum thioredoxin concentrations in postmenopausal women. The British Journal of Nutrition 112 (9):1542–50. doi: 10.1017/s0007114514002530.
  • Tanaka, Y., K. Yonekura, M. Fukuchi-Mizutani, Y. Fukui, H. Fujiwara, T. Ashikari, and T. Kusumi. 1996. Molecular and biochemical characterization of three anthocyanin synthetic enzymes from Gentiana triflora. Plant & Cell Physiology 37 (5):711–6. doi: 10.1093/oxfordjournals.pcp.a029004.
  • Tehrani, H. G., M. Allahdadian, F. Zarre, H. Ranjbar, and F. Allahdadian. 2017. Effect of green tea on metabolic and hormonal aspect of polycystic ovarian syndrome in overweight and obese women suffering from polycystic ovarian syndrome: A clinical trial. Journal of Education and Health Promotion 6 (1):36. doi: 10.4103/jehp.jehp_67_15.
  • Teschke, R., and R. Andrade. 2016. Drug, herb, and dietary supplement hepatotoxicity. International Journal of Molecular Sciences 17 (9):1488. doi: 10.3390/ijms17091488‌.
  • Teschke, R., L. Zhang, L. Melzer, J. Schulze, and A. Eickhoff. 2014. Green tea extract and the risk of drug-induced liver injury. Expert Opinion on Drug Metabolism & Toxicology 10 (12):1663–76. doi: 10.1517/17425255.2014.971011.
  • Thomson, M., K. Al-Qattan, M. H. Mansour, and M. Ali. 2012. Green Tea Attenuates oxidative stress and downregulates the expression of angiotensin II AT(1) receptor in renal and hepatic tissues of streptozotocin-induced diabetic rats. Evidence-Based Complementary and Alternative Medicine: eCAM 2012:409047. doi: 10.1155/2012/409047.
  • Toolsee, N. A., O. I. Aruoma, T. K. Gunness, S. Kowlessur, V. Dambala, F. Murad, K. Googoolye, D. Daus, J. Indelicato, P. Rondeau, et al. 2013. Effectiveness of green tea in a randomized human cohort: Relevance to diabetes and its complications. BioMed Research International 2013:412379. doi: 10.1155/2013/412379.
  • Turnbull, D., J. V. Rodricks, G. F. Mariano, and F. Chowdhury. 2017. Caffeine and cardiovascular health. Regulatory Toxicology and Pharmacology: RTP 89(), :165–85. doi: 10.1016/j.yrtph.2017.07.025.
  • Tuso, P. 2014. Prediabetes and lifestyle modification: Time to prevent a preventable disease. The Permanente Journal 18 (3):88–93. doi: 10.7812/TPP/14-002.
  • US Preventive Services Task Force, K. W. Davidson, M. J. Barry, C. M. Mangione, M. Cabana, A. B. Caughey, E. M. Davis, K. E. Donahue, C. A. Doubeni, A. H. Krist, et al. 2021. Screening for prediabetes and type 2 diabetes: US Preventive Services Task Force recommendation statement. JAMA 326 (8):736–43. doi: 10.1001/jama.2021.12531.
  • Uchiyama, Y., T. Suzuki, K. Mochizuki, and T. Goda. 2013. Dietary supplementation with a low dose of (-)-epigallocatechin-3-gallate reduces pro-inflammatory responses in peripheral leukocytes of non-obese type 2 diabetic GK rats. Journal of Nutritional Science and Vitaminology 59 (6):541–7. doi: 10.3177/jnsv.59.541.
  • Ueda-Wakagi, M., H. Nagayasu, Y. Yamashita, and H. Ashida. 2019. Green tea ameliorates hyperglycemia by promoting the translocation of glucose transporter 4 in the skeletal muscle of diabetic rodents. International Journal of Molecular Sciences 20 (10):2436. doi: 10.3390/ijms20102436.
  • UK Prospective Diabetes Study (UKPDS). 1991. VIII. Study design, progress and performance. Diabetologia 34 (12):877–90.
  • Vallianou, N. G., T. Stratigou, and S. Tsagarakis. 2019. Metformin and gut microbiota: Their interactions and their impact on diabetes. Hormones (Athens, Greece) 18 (2):141–4. doi: 10.1007/s42000-019-00093-w.
  • van Ommen, B., S. Wopereis, P. van Empelen, H. M. van Keulen, W. Otten, W. Kasteleyn, J. J. W. Molema, I. M. de Hoogh, N. H. Chavannes, and M. E. Numans, et al. 2018. From diabetes care to diabetes cure - The integration of systems biology, eHealth, and behavioral change. Frontiers in Endocrinology (Lausanne) 8:381. doi: 10.3389/fendo.2017.00381.
  • Vaz, S. R., L. M. N. de Amorim, P. V. F. de Nascimento, V. S. P. Veloso, M. S. Nogueira, I. A. Castro, J. F. Mota, and P. B. Botelho. 2018. Effects of green tea extract on oxidative stress and renal function in diabetic individuals: A randomized, double-blinded, controlled trial. Journal of Functional Foods 46:195–201. doi: 10.1016/j.jff.2018.04.059.
  • Vinson, J. A., and J. Zhang. 2005. Black and green teas equally inhibit diabetic cataracts in a streptozotocin-induced rat model of diabetes. Journal of Agricultural and Food Chemistry 53 (9):3710–3. doi: 10.1021/jf048052l.
  • Vogt, T. 2010. Phenylpropanoid biosynthesis. Molecular Plant 3 (1):2–20. doi: 10.1093/mp/ssp106.
  • Vuong, Q. V., J. B. Golding, C. E. Stathopoulos, M. H. Nguyen, and P. D. Roach. 2011. Optimizing conditions for the extraction of catechins from green tea using hot water. Journal of Separation Science 34 (21):3099–106. doi: 10.1002/jssc.201000863.
  • Wadén, J. M., E. H. Dahlström, N. Elonen, L. M. Thorn, J. Wadén, N. Sandholm, C. Forsblom, and P. H. Groop; FinnDiane Study Group 2019. Soluble receptor for AGE in diabetic nephropathy and its progression in Finnish individuals with type 1 diabetes. Diabetologia 62 (7):1268–74. doi: 10.1007/s00125-019-4883-4.
  • Wan, X., and T. Xia. 2015. Secondary metabolism of tea plant. 1st ed. Beijing: Science Press (in Chinese).
  • Wang, H., and K. Helliwell. 2000. Epimerisation of catechins in green tea infusions. Food Chemistry 70 (3):337–44. doi: 10.1016/S0308-8146(00)00099-6.
  • Wang, L., A. Lui, P. Y. Lam, G. Liu, I. D. Godwin, and C. Lo. 2020. Transgenic expression of flavanone 3-hydroxylase redirects flavonoid biosynthesis and alleviates anthracnose susceptibility in sorghum. Plant Biotechnology Journal 18 (11):2170–2. doi: 10.1111/pbi.13397.
  • Wang, L., R. Xu, B. Hu, W. Li, Y. Sun, Y. Tu, and X. Zeng. 2010. Analysis of free amino acids in Chinese teas and flower of tea plant by high performance liquid chromatography combined with solid-phase extraction. Food Chemistry 123 (4):1259–66. doi: 10.1016/j.foodchem.2010.05.063.
  • Wein, S., B. Beyer, A. Gohlke, R. Blank, C. C. Metges, and S. Wolffram. 2016. Systemic absorption of catechins after intraruminal or intraduodenal application of a green tea extract in cows. PloS One 11 (7):e0159428. doi: 10.1371/journal.pone.0159428.
  • Wein, S., E. Schrader, G. Rimbach, and S. Wolffram. 2013. Oral green tea catechins transiently lower plasma glucose concentrations in female db/db mice. Journal of Medicinal Food 16 (4):312–7. doi: 10.1089/jmf.2012.0205.
  • Wen, C., N. Tsao, S. Wang, and F. Chu. 2021. Color variation in young and senescent leaves of Formosan sweet gum (Liquidambar formosana) by the gene regulation of anthocyanidin biosynthesis. Physiologia Plantarum 172 (3):1750–63. doi: 10.1111/ppl.13385.
  • Wilding, J. P. H. 2014. The importance of weight management in type 2 diabetes mellitus. International Journal of Clinical Practice 68 (6):682–91. doi: 10.1111/ijcp.12384.
  • Wolfram, S., D. Raederstorff, M. Preller, Y. Wang, S. R. Teixeira, C. Riegger, and P. Weber. 2006. Epigallocatechin gallate supplementation alleviates diabetes in rodents. The Journal of Nutrition 136 (10):2512–8. doi: 10.1093/jn/136.10.2512.
  • Wu, W., and M. Huang. 2013. Water soluble components in green teas and their effects on human health. In Green tea: Varieties, Production and Health Benefits, ed. W. Wu, 1–32. New York: Nova Science Publishers.
  • Wu, L.-Y., C.-C. Juan, L. S. Hwang, Y.-P. Hsu, P.-H. Ho, and L.-T. Ho. 2004. Green tea supplementation ameliorates insulin resistance and increases glucose transporter IV content in a fructose-fed rat model. European Journal of Nutrition 43 (2):116–24. doi: 10.1007/s00394-004-0450-x.
  • Wu, G., A. B. Liu, Y. Xu, Y. Wang, L. Zhao, Y. Hara, Y. Y. Lam, and C. S. Yang. 2021. The effects of green tea on diabetes and gut microbiome in db/db mice: Studies with tea extracts vs. tea powder. Nutrients 13 (9):3155. doi: 10.3390/nu13093155.
  • Wu, X., M. Yang, Y. He, F. Wang, Y. Kong, T.-J. Ling, and J. Zhang. 2022. EGCG-derived polymeric oxidation products enhance insulin sensitivity in db/db mice. Redox Biology 51:102259. doi: 10.1016/j.redox.2022.102259.
  • Wu, M.-Y., G.-T. Yiang, T.-T. Lai, and C.-J. Li. 2018. The oxidative stress and mitochondrial dysfunction during the pathogenesis of diabetic retinopathy. Oxidative Medicine and Cellular Longevity 2018:1–12. doi: 10.1155/2018/3420187.
  • Xiang, P., Q. Zhu, M. Tukhvatshin, B. Cheng, M. Tan, J. Liu, X. Wang, J. Huang, S. Gao, D. Lin, et al. 2021. Light control of catechin accumulation is mediated by photosynthetic capacity in tea plant (Camellia sinensis). BMC Plant Biology 21 (1):478. doi: 10.1186/s12870-021-03260-7.
  • Xu, S., L. Chang, Y. Hu, X. Zhao, S. Huang, Z. Chen, X. Ren, and X. Mei. 2021a. Tea polyphenol modified, photothermal responsive and ROS generative black phosphorus quantum dots as nanoplatforms for promoting MRSA infected wounds healing in diabetic rats. Journal of Nanobiotechnology 19 (1):362. doi: 10.21203/rs.3.rs-871716/v1.
  • Xu, Y., S. Liu, L. Zhu, L. Dai, W. Qian, J. Zhang, X. Li, and W. Pan. 2021b. Green tea protects against hippocampal neuronal apoptosis in diabetic encephalopathy by inhibiting JNK/MLCK signaling. Molecular Medicine Reports 24 (2):575. doi: 10.3892/mmr.2021.12214.
  • Yamabe, N., K. S. Kang, J. M. Hur, and T. Yokozawa. 2009. Matcha, a powdered green tea, ameliorates the progression of renal and hepatic damage in type 2 diabetic OLETF rats. Journal of Medicinal Food 12 (4):714–21. doi: 10.1089/jmf.2008.1282.
  • Yamaji, T., T. Mizoue, S. Tabata, S. Ogawa, K. Yamaguchi, E. Shimizu, M. Mineshita, and S. Kono. 2004. Coffee consumption and ­glucosetolerance status in middle-aged Japanese men. Diabetologia 47 (12):2145–51. doi: 10.1007/s00125-004-1590-5.
  • Yan, J., Z. Feng, J. Liu, W. Shen, Y. Wang, K. Wertz, P. Weber, J. Long, and J. Liu. 2012a. Enhanced autophagy plays a cardinal role in mitochondrial dysfunction in type 2 diabetic Goto-Kakizaki (GK) rats: Ameliorating effects of (-)-epigallocatechin-3-gallate. The Journal of Nutritional Biochemistry 23 (7):716–24. doi: 10.1016/j.jnutbio.2011.03.014.
  • Yang, X. H., Y. Pan, X. L. Zhan, B. L. Zhang, L. L. Guo, and H. M. Jin. 2016. Epigallocatechin-3-gallate attenuates renal damage by suppressing oxidative stress in diabetic db/db mice. Oxidative Medicine and Cellular Longevity 2016:2968462. doi: 10.1155/2016/2968462.
  • Yang, X. H., B. L. Zhang, X. M. Zhang, J. D. Tong, Y. H. Gu, L. L. Guo, and H. M. Jin. 2020. EGCG attenuates renal damage via reversing klotho hypermethylation in diabetic db/db mice and HK-2 cells. Oxidative Medicine and Cellular Longevity 2020:6092715. doi: 10.1155/2020/6092715.
  • Yan, J., Y. Zhao, S. Suo, Y. Liu, and B. Zhao. 2012b. Green tea catechins ameliorate adipose insulin resistance by improving oxidative stress. Free Radical Biology & Medicine 52 (9):1648–57. doi: 10.1016/j.freeradbiomed.2012.01.033.
  • Yashin, A. Y., B. V. Nemzer, E. Combet, and Y. I. Yashin. 2015. Determination of the chemical composition of tea by chromatographic methods: A review. Journal of Food Research 4 (3):56. doi: 10.5539/jfr.v4n3p56.
  • Yoon, S. P., Y. H. Maeng, R. Hong, B. R. Lee, C. G. Kim, H. L. Kim, J. H. Chung, and B. C. Shin. 2014. Protective effects of epigallocatechin gallate (EGCG) on streptozotocin-induced diabetic nephropathy in mice. Acta Histochemica 116 (8):1210–5. doi: 10.1016/j.acthis.2014.07.003.
  • Yu, P., A. S.-L. Yeo, M.-Y. Low, and W. Zhou. 2014. Identifying key non-volatile compounds in ready-to-drink green tea and their impact on taste profile. Food Chemistry 155:9–16. doi: 10.1016/j.foodchem.2014.01.046.
  • Yun, S.-Y., S.-P. Kim, and D.-K. Song. 2006. Effects of (-)-epigallocatechin-3-gallate on pancreatic beta-cell damage in streptozotocin-induced diabetic rats. European Journal of Pharmacology 541 (1-2):115–21. doi: 10.1016/j.ejphar.2006.04.040.
  • Zhang, C., X. Li, X. Hu, Q. Xu, Y. Zhang, H. Liu, Y. Diao, X. Zhang, L. Li, J. Yu, et al. 2021. Epigallocatechin-3-gallate prevents inflammation and diabetes -Induced glucose tolerance through inhibition of NLRP3 inflammasome activation. International Immunopharmacology 93:107412. doi: 10.1016/j.intimp.2021.107412.
  • Zhang, H., S. Su, X. Yu, and Y. Li. 2017. Dietary epigallocatechin 3-gallate supplement improves maternal and neonatal treatment outcome of gestational diabetes mellitus: A double-blind randomised controlled trial. Journal of Human Nutrition and Dietetics : The Official Journal of the British Dietetic Association 30 (6):753–8. doi: 10.1111/jhn.12470.
  • Zhang, G., and J. Zhang. 2018. Enhanced oral bioavailability of EGCG using pH-sensitive polymeric nanoparticles: Characterization and in vivo investigation on nephrotic syndrome rats. Drug Design, Development and Therapy 12:2509–18. doi: 10.2147/DDDT.S172919.
  • Zhao, F., H. T. Lin, S. Zhang, Y. F. Lin, J. F. Yang, and N. X. Ye. 2014. Simultaneous determination of caffeine and some selected polyphenols in Wuyi Rock tea by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry 62 (13):2772–81. doi: 10.1021/jf4056314.
  • Zhao, J., P. Li, T. Xia, and X. Wan. 2020b. Exploring plant metabolic genomics: Chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model. Critical Reviews in Biotechnology 40 (5):667–88. doi: 10.1080/07388551.2020.1752617.
  • Zhao, C.-N., G.-Y. Tang, S.-Y. Cao, X.-Y. Xu, R.-Y. Gan, Q. Liu, Q.-Q. Mao, A. Shang, and H.-B. Li. 2019. Phenolic profiles and antioxidant activities of 30 tea infusions from green, black, oolong, white, yellow and dark teas. Antioxidants 8 (7):215. doi: 10.3390/antiox8070215.
  • Zhao, G., X. Wu, W. Wang, C. S. Yang, and J. Zhang. 2020a. Tea drinking alleviates diabetic symptoms via upregulating renal water reabsorption proteins and downregulating renal gluconeogenic enzymes in db/db mice. Molecular Nutrition & Food Research 64 (24):e2000505. doi: 10.1002/mnfr.202000505.
  • Zheng, X. X., Y. L. Xu, S. H. Li, R. Hui, Y. J. Wu, and X. H. Huang. 2013. Effects of green tea catechins with or without caffeine on glycemic control in adults: A meta-analysis of randomized controlled trials. The American Journal of Clinical Nutrition 97 (4):750–62. doi: 10.3945/ajcn.111.032573.
  • Zhong, J., C. Xu, E. A. Reece, and P. Yang. 2016. The green tea polyphenol EGCG alleviates maternal diabetes-induced neural tube defects by inhibiting DNA hypermethylation. American Journal of Obstetrics and Gynecology 215 (3):368.e1–368.e10. doi: 10.1016/j.ajog.2016.03.009.
  • Zhuang, J., X. Dai, M. Zhu, S. Zhang, Q. Dai, X. Jiang, Y. Liu, L. Gao, and T. Xia. 2020. Evaluation of astringent taste of green tea through mass spectrometry-based targeted metabolic profiling of polyphenols. Food Chemistry 305 (125507):125507. doi: 10.1016/j.foodchem.2019.125507.
  • Zhu, L., Z. Chen, K. Han, Y. Zhao, Y. Li, D. Li, X. Wang, X. Li, S. Sun, F. Lin, et al. 2020a. Correlation between mitochondrial dysfunction, cardiovascular diseases, and traditional Chinese medicine. Evidence-Based Complementary and Alternative Medicine: eCAM 2020:2902136. doi: 10.1155/2020/2902136.
  • Zhunina, O. A., N. G. Yabbarov, A. V. Grechko, A. V. Starodubova, E. Ivanova, N. G. Nikiforov, and A. N. Orekhov. 2021. The role of mitochondrial dysfunction in vascular disease, tumorigenesis, and diabetes. Frontiers in Molecular Biosciences 8:671908. doi: 10.3389/fmolb.2021.671908.
  • Zhu, Q.-Q., X.-Y. Yang, X.-J. Zhang, C.-J. Yu, Q.-Q. Pang, Y.-W. Huang, X.-J. Wang, and J. Sheng. 2020b. EGCG targeting Notch to attenuate renal fibrosis via inhibition of TGFβ/Smad3 signaling pathway activation in streptozotocin-induced diabetic mice. Food & Function 11 (11):9686–95. doi: 10.1039/d0fo01542c.
  • Zuo, X., C. Tian, N. Zhao, W. Ren, Y. Meng, X. Jin, Y. Zhang, S. Ding, C. Ying, and X. Ye. 2014. Tea polyphenols alleviate high fat and high glucose-induced endothelial hyperpermeability by attenuating ROS production via NADPH oxidase pathway. BMC Research Notes 7:120. doi: 10.1186/1756-0500-7-120.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.