717
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Impact of processing on the oxidative stability of oil bodies

ORCID Icon & ORCID Icon

References

  • Abdullah, J., H. Weiss, and H. Zhang. 2020. Recent advances in the composition, extraction and food applications of plant-derived oleosomes. Trends in Food Science & Technology 106:322–32. doi: 10.1016/j.tifs.2020.10.029.
  • Adams, G. G., S. Imran, S. Wang, A. Mohammad, M. S. Kok, D. A. Gray, G. A. Channell, and S. E. Harding. 2012. Extraction, isolation and characterisation of oil bodies from pumpkin seeds for therapeutic use. Food Chemistry 134 (4):1919–25. doi: 10.1016/j.foodchem.2012.03.114.
  • Alamprese, C., S. Ratti, and M. Rossi. 2009. Effects of roasting conditions on hazelnut characteristics in a two-step process. Journal of Food Engineering 95 (2):272–9. doi: 10.1016/j.jfoodeng.2009.05.001.
  • Alexander, L. G., R. B. Sessions, A. R. Clarke, A. S. Tatham, P. R. Shewry, and J. A. Napier. 2002. Characterization and modelling of the hydrophobic domain of a sunflower oleosin. Planta 214 (4):546–51. doi: 10.1007/s004250100655.
  • Altan, A., K. L. McCarthy, R. Tikekar, M. J. McCarthy, and N. Nitin. 2011. Image analysis of microstructural changes in almond cotyledon as a result of processing. Journal of Food Science 76 (2):E212–E221. doi: 10.1111/j.1750-3841.2010.01994.x.
  • Barden, L., and E. A. Decker. 2016. Lipid oxidation in low-moisture food: A review. Critical Reviews in Food Science and Nutrition 56 (15):2467–82. doi: 10.1080/10408398.2013.848833.
  • Beisson, F., N. Ferté, S. Bruley, R. Voultoury, R. Verger, and V. Arondel. 2001. Oil-bodies as substrates for lipolytic enzymes. Biochimica Et Biophysica Acta 1531 (1–2):47–58. doi: 10.1016/S1388-1981(01)00086-5.
  • Berton, C., M.-H. Ropers, D. Guibert, V. Solé, and C. Genot. 2012. Modifications of interfacial proteins in oil-in-water emulsions prior to and during lipid oxidation. Journal of Agricultural and Food Chemistry 60 (35):8659–71. doi: 10.1021/jf300490w.
  • Berton-Carabin, C. C., M.-H. Ropers, and C. Genot. 2014. Lipid oxidation in oil-in-water emulsions: Involvement of the interfacial layer. Comprehensive Reviews in Food Science and Food Safety 13 (5):945–77. doi: 10.1111/1541-4337.12097.
  • Brannan, G. L., P. E. Koehle, and G. O. Ware. 1999. Physico-chemical and sensory characteristics of defatted roasted peanuts during storage. Peanut Science 26 (1):44–53. doi: 10.3146/i0095-3679-26-1-10.
  • Brar, A., M. Kumar, T. Soni, V. Vivekanand, and N. Pareek. 2021. Insights into the genetic and metabolic engineering approaches to enhance the competence of microalgae as biofuel resource: A review. Bioresource Technology 339:125597. doi: 10.1016/j.biortech.2021.125597.
  • Cao, Y., L. Zhao, Y. Ying, X. Kong, Y. Hua, and Y. Chen. 2015. The characterization of soybean oil body integral oleosin isoforms and the effects of alkaline pH on them. Food Chemistry 177:288–94. doi: 10.1016/j.foodchem.2015.01.052.
  • Capuano, F., F. Beaudoin, J. A. Napier, and P. R. Shewry. 2007. Properties and exploitation of oleosins. Biotechnology Advances 25 (2):203–6. doi: 10.1016/j.biotechadv.2006.11.006.
  • Chen, B., D. J. McClements, D. A. Gray, and E. A. Decker. 2012. Physical and oxidative stability of pre-emulsified oil bodies extracted from soybeans. Food Chemistry 132 (3):1514–20. doi: 10.1016/j.foodchem.2011.11.144.
  • Chen, M., C. M. C. L. Chyan, T. T. T. Lee, S. H. Huang, and J. T. C. Tzen. 2004. Constitution of stable artificial oil bodies with triacylglycerol, phospholipid, and caleosin. Journal of Agricultural and Food Chemistry 52 (12):3982–7. doi: 10.1021/jf035533g.
  • Chen, Y., Y. Cao, L. Zhao, X. Kong, and Y. Hua. 2014a. Macronutrients and micronutrients of soybean oil bodies extracted at different pH. Journal of Food Science 79 (7):C1285–91. doi: 10.1111/1750-3841.12516.
  • Chen, Y., L. Zhao, Y. Cao, X. Kong, and Y. Hua. 2014b. Oleosins (24 and 18 kDa) are hydrolyzed not only in extracted soybean oil bodies but also in soybean germination. Journal of Agricultural and Food Chemistry 62 (4):956–65. doi: 10.1021/jf405382w.
  • Chen, Y., L. Zhao, X. Kong, C. Zhang, and Y. Hua. 2014c. The properties and the related protein behaviors of oil bodies in soymilk preparation. European Food Research and Technology 239 (3):463–71. doi: 10.1007/s00217-014-2239-3.
  • Choi, Y. J., K. Zaikova, S. J. Yeom, Y. S. Kim, and D. W. Lee. 2022. Biogenesis and lipase-mediated mobilization of lipid droplets in plants. Plants 11 (9):1243. doi: 10.3390/plants11091243.
  • Dahlqvist, A., U. Stahl, M. Lenman, A. Banas, M. Lee, L. Sandager, H. Ronne, and S. Stymne. 2000. Phospholipid: Diacylglycerol acyltransferase: An enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proceedings of the National Academy of Sciences of the United States of America 97 (12):6487–92. doi: 10.1073/pnas.12006729.
  • De Chirico, S., V. Di Bari, M. J. Romero Guzmán, C. V. Nikiforidis, T. Foster, and D. Gray. 2020. Assessment of rapeseed oil body (oleosome) lipolytic activity as an effective predictor of emulsion purity and stability. Food Chemistry 316:126355. doi: 10.1016/j.foodchem.2020.126355.
  • Decker, E. A., D. J. McClements, C. Bourlieu-Lacanal, E. Durand, M. C. Figueroa-Espinoza, J. Lecomte, and P. Villeneuve. 2017. Hurdles in predicting antioxidant efficacy in oil-in-water emulsions. Trends in Food Science & Technology 67:183–94. doi: 10.1016/j.tifs.2017.07.001.
  • Deleu, M., G. Vaca-Medina, J. F. Fabre, J. Roïz, R. Valentin, and Z. Mouloungui. 2010. Interfacial properties of oleosins and phospholipids from rapeseed for the stability of oil bodies in aqueous medium. Colloids and Surfaces B, Biointerfaces 80 (2):125–32. doi: 10.1016/j.colsurfb.2010.05.036.
  • Elias, R. J., S. S. Kellerby, and E. A. Decker. 2008. Antioxidant activity of proteins and peptides in foods. Critical Reviews in Food Science and Nutrition 48 (5):430–41. doi: 10.1080/10408390701425615.
  • Fisk, I. D., and D. A. Gray. 2011. Soybean (Glycine max) oil bodies and their associated phytochemicals. Journal of Food Science 76 (9):C1349–54. doi: 10.1111/j.1750-3841.2011.02428.x.
  • Fisk, I. D., R. Linforth, G. Trophardy, and D. Gray. 2013. Entrapment of a volatile lipophilic aroma compound (D-limonene) in spray dried water-washed oil bodies naturally derived from sunflower seeds (Helianthus annus). Food Research International (Ottawa, ON) 54 (1):861–6. doi: 10.1016/j.foodres.2013.08.024.
  • Fisk, I. D., D. A. White, A. Carvalho, and D. A. Gray. 2006. Tocopherol—An intrinsic component of sunflower seed oil bodies. Journal of the American Oil Chemists’ Society 83 (4):341–4. doi:10.1007/s11746-006-1210-2.
  • Fisk, I. D., D. A. White, M. Lad, and D. A. Gray. 2008. Oxidative stability of sunflower oil bodies. European Journal of Lipid Science and Technology 110 (10):962–8. doi: 10.1002/ejlt.200800051.
  • Frandsen, G. I., J. Mundy, and J. T. C. Tzen. 2001. Oil bodies and their associated proteins, oleosin and caleosin. Physiologia Plantarum 112 (3):301–7. doi:101034/j.1399-3054.2001.1120301.x.
  • Gallier, S., D. Acton, M. Garg, and H. Singh. 2017. Natural and processed milk and oil body emulsions: Bioavailability, bioaccessibility and functionality. Food Structure 13:13–23. doi: 10.1016/j.foostr.2016.07.005.
  • Gama, T., H. M. Wallace, S. J. Trueman, and S. Hosseini-Bai. 2018. Quality and shelf life of tree nuts: A review. Scientia Horticulturae 242:116–26. doi: 10.1016/j.scienta.2018.07.036.
  • Gebreselassie, E., and H. Clifford. 2016. Oxidative stabibility and shelf life of crackers, cookies and Biscuits. In Oxidative stability and shelf life of foods containing oils and fats, ed. M. Hu and C. Jacobsen. Peoria, IL: AOCS Press.
  • Genot, C., C. Berton, and M. H. Ropers. 2013. The role of the interfacial layer and emulsifying proteins in the oxidation in oil-in-water emulsions. In Lipid oxidation: Challenges in food systems, ed. Amy Logan, Uwe Nienaber, and Xiangqing Pan, 177–210. Champaign, IL: AOCS Press.
  • Goold, H., F. Beisson, G. Peltier, and Y. Li-Beisson. 2015. Microalgal lipid droplets: Composition, diversity, biogenesis and functions. Plant Cell Reports 34 (4):545–55. doi: 10.1007/s00299-014-1711-7.
  • Gray, D. A., G. Payne, D. J. McClements, E. A. Decker, M, and Lad, M. 2010. Oxidative stability of Echium plantagineum seed oil bodies. European Journal of Lipid Science and Technology 112 (7):741–9. doi: 10.1002/ejlt.200900280.
  • Hao, J., X. Li, Q. Wang, W. Lv, W. Zhang, and D. Xu. 2022. Recent developments and prospects in the extraction, composition, stability, food applications, and in vitro digestion of plant oil bodies. Journal of the American Oil Chemists’ Society 99 (8):635–53. doi: 10.1002/aocs.12618.
  • Horn, P. J., C. N. James, S. K. Gidda, A. Kilaru, J. M. Dyer, R. T. Mullen, J. B. Ohlrogge, and K. D. Chapman. 2013. Identification of a new class of lipid droplet-associated proteins in plants. Plant Physiology 162 (4):1926–36. doi: 10.1104/pp.113.222455.
  • Hou, J., X. Feng, M. Jiang, Q. Wang, C. Cui, C. Sun, M. Altaf Hussain, L. Jiang, Z. Jiang, and A. Li. 2019. Effect of NaCl on oxidative stability and protein properties of oil bodies from different oil crops. LWT 113:108263. doi: 10.1016/j.lwt.2019.108263.
  • Hu, M. 2016. Oxidative stability and shelf life of low-moisture foods. In Oxidative stability and shelf life of foods containing oils and fats, ed. M. Hu and C. Jacobsen. Peoria, IL: AOCS Press.
  • Hu, M., X. Du, G. Liu, Z. Tan, S. Zhang, B. Qi, and Y. Li. 2022. Investigation of structure–stability correlations of reconstructed oil bodies. LWT 165:113740. doi: 10.1016/j.lwt.2022.113740.
  • Huang, A. H. C. 1992. Oil bodies and oleosins in seeds. Annual Review of Plant Physiology and Plant Molecular Biology 43 (1):177–200. doi: 10.1146/annurev.pp.43.060192.001141.
  • Huang, A. H. C. 2018. Plant lipid droplets and their associated proteins: Potential for rapid advances. Plant Physiology 176 (3):1894–918. doi: 10.1104/pp.17.01677.
  • Ischebeck, T., H. E. Krawczyk, R. T. Mullen, J. M. Dyer, and K. D. Chapman. 2020. Lipid droplets in plants and algae: Distribution, formation, turnover and function. Seminars in Cell & Developmental Biology 108:82–93. doi: 10.1016/j.semcdb.2020.02.014.
  • Ishii, T., K. Matsumiya, Y. Nambu, M. Samoto, M. Yanagisawa, and Y. Matsumura. 2017. Interfacial and emulsifying properties of crude and purified soybean oil bodies. Food Structure 12:64–72. doi: 10.1016/j.foostr.2016.12.005.
  • Jiang, P., and J. T. C. Tzen. 2010. Caleosin serves as the major structural protein as efficient as oleosin on the surface of seed oil bodies. Plant Signaling & Behavior 5 (4):447–9. doi: 10.4161/psb.5.4.10874.
  • Jolivet, P., C. Boulard, A. Bellamy, C. Larre, M. Barre, H. Rogniaux, S. D’Andréa, T. Chardot, and N. Nesi. 2009. Protein composition of oil bodies from mature Brassica napus seeds. Proteomics 9 (12):3268–84. doi: 10.1002/pmic.200800449.
  • Jolivet, P., L. Aymé, A. Giuliani, F. Wien, T. Chardot, and Y. Gohon. 2017. Structural proteomics: Ttopology and relative accessibility of plant lipid droplet associated proteins. Journal of Proteomics 169:87–98. doi: 10.1016/j.jprot.2017.09.005.
  • Kapchie, V. N., L. Yao, C. C. Hauck, T. Wang, and P. A. Murphy. 2013. Oxidative stability of soybean oil in oleosomes as affected by pH and iron. Food Chemistry 141 (3):2286–93. doi: 10.1016/j.foodchem.2013.05.018.
  • Karefyllakis, D., H. Octaviana, A. J. van der Goot, and C. V. Nikiforidis. 2019. The emulsifying performance of mildly derived mixtures from sunflower seeds. Food Hydrocolloids. 88:75–85. doi: 10.1016/j.foodhyd.2018.09.037.
  • Karkani, O. A., N. Nenadis, C. V. Nikiforidis, and V. Kiosseoglou. 2013. Effect of recovery methods on the oxidative and physical stability of oil body emulsions. Food Chemistry 139 (1–4):640–8. doi: 10.1016/j.foodchem.2012.12.055.
  • Kergomard, J., G. Paboeuf, N. Barouh, P. Villeneuve, O. Schafer, T. J. Wooster, C. Bourlieu, and V. Vié. 2021. Stability to oxidation and interfacial behavior at the air/water interface of minimally-processed versus processed walnut oil-bodies. Food Chemistry 360:129880. doi: 10.1016/j.foodchem.2021.129880.
  • Lacey, D. J., N. Wellner, F. Beaudoin, J. A. Napier, and P. R. Shewry. 1998. Secondary structure of oleosins in oil bodies isolated from seeds of safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.). Biochemical Journal 334 (2):469–77. doi: 10.1042/bj3340469.
  • Laguerre, M., A. Bily, M. Roller, and S. Birtic. 2017. Mass transport phenomena in lipid oxidation and antioxidation. Annual Review of Food Science and Technology 8 (1):391–411. doi: 10.1146/annurev-food-030216-025812.
  • Lamberti, C., S. Nebbia, S. Antoniazzi, S. Cirrincione, E. Marengo, M. Manfredi, D. Smorgon, G. Monti, A. Faccio, M. G. Giuffrida, et al. 2021. Effect of hot air and infrared roasting on hazelnut allergenicity. Food Chemistry 342:128174. doi: 10.1016/j.foodchem.2020.128174.
  • Lin, L. J., and J. T. C. Tzen. 2004. Two distinct steroleosins are present in seed oil bodies. Plant Physiology and Biochemistry: PPB 42 (7–8):601–8. doi: 10.1016/j.plaphy.2004.06.006.
  • Lin, L.-J., P.-C. Liao, H.-H. Yang, and J. T. C. Tzen. 2005. Determination and analyses of the N-termini of oil-body proteins, steroleosin, caleosin and oleosin. Plant Physiology and Biochemistry: PPB 43 (8):770–6. doi: 10.1016/j.plaphy.2005.07.008.
  • Liu, C., F. S. Chen, and Y. M. Xia. 2022. Composition and structural characterization of peanut crude oil bodies extracted by aqueous enzymatic method. Journal of Food Composition and Analysis 105:104238. doi: 10.1016/j.jfca.2021.104238.
  • Loman, A. A., N. V. Callow, S. M. Islam, and L. K. Ju. 2018. Single-step enzyme processing of soybeans into intact oil bodies, protein bodies and hydrolyzed carbohydrates. Process Biochemistry 68:153–64. doi: 10.1016/j.procbio.2018.02.015.
  • McClements, D. J., and E. A. Decker. 2018. Interfacial antioxidants: A review of natural and synthetic emulsifiers and coemulsifiers that can inhibit lipid oxidation. Journal of Agricultural and Food Chemistry 66 (1):20–35. doi: 10.1021/acs.jafc.7b05066.
  • Mizutani, Y., M. Shibata, S. Yamada, Y. Nambu, M. Hirotsuka, and Y. Matsumura. 2019. Effects of heat treatment under low moisture conditions on the protein and oil in soybean seeds. Food Chemistry 275:577–84. doi: 10.1016/j.foodchem.2018.09.139.
  • Murphy, D. J. 2001. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Progress in Lipid Research 40 (5):325–438. doi: 10.1016/s0163-7827(01)00013-3.
  • Murphy, D. J., and I. Cummins. 1989. Seed oil-bodies: Isolation, composition and role of oil-body apolipoproteins. Phytochemistry 28 (8):2063–9. doi: 10.1016/S0031-9422(00)97921-4.
  • Nader, J., C. Afif, and N. Louka. 2021. Impact of a novel partial defatting technology on oxidative stability and sensory properties of peanut kernels. Food Chemistry 334:127581. doi: 10.1016/j.foodchem.2020.127581.
  • Naested, H., G. I. Frandsen, G. Y. Jauh, I. Hernandez-Pinzon, H. B. Nielsen, D. J. Murphy, J. C. Rogers, and J. Mundy. 2000. Caleosins: Ca2+-binding proteins associated with lipid bodies. Plant Molecular Biology 44 (4):463–76. doi: 10.1023/A:1026564411918.
  • Nguyen, H. M., M. Baudet, S. Cuiné, J. M. Adriano, D. Barthe, E. Billon, C. Bruley, F. Beisson, G. Peltier, M. Ferro, et al. 2011. Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: With focus on proteins involved in lipid metabolism. Proteomics 11 (21):4266–73. doi: 10.1002/pmic.201100114.
  • Nikoforidis, C. V. 2019. Structure and functions of oleosomes (oil bodies). Advances in Colloid and Interface Science 274:102039. doi: 10.1016/j.cis.2019.102039.
  • Nikiforidis, C. V., C. G. Biliaderis, and V. Kiosseoglou. 2012. Rheological characteristics and physicochemical stability of dressing-type emulsions made of oil bodies–egg yolk blends. Food Chemistry 134 (1):64–73. doi: 10.1016/j.foodchem.2012.02.058.
  • Nikiforidis, C. V., O. A. Karkani, and V. Kiosseoglou. 2011. Exploitation of maize germ for the preparation of a stable oil-body nanoemulsion using a combined aqueous extraction ultrafiltration method. Food Hydrocolloids. 25 (5):1122–7. doi: 10.1016/j.foodhyd.2010.10.009.
  • Nikiforidis, C. V., A. Matsakidou, and V. Kiosseoglou. 2014. Composition, properties and potential food applications of natural emulsions and cream materials based on oil bodies. RSC Advances 4 (48):25067–78. doi: 10.1039/C4RA00903G.
  • Nikiforidis, C. V., and E. Scholten. 2015. High internal phase emulsion gels (HIPE-gels) created through assembly of natural oil bodies. Food Hydrocolloids 43:283–9. doi: 10.1016/j.foodhyd.2014.05.030.
  • Niu, Y., A. Rogiewicz, C. Wan, M. Guo, F. Huang, and B. A. Slominski. 2015. Effect of microwave treatment on the efficacy of expeller pressing of Brassica napus rapeseed and Brassica juncea mustard seeds. Journal of Agricultural and Food Chemistry 63 (12):3078–84. doi: 10.1021/jf504872x.
  • Östbring, K., K. Nilsson, C. Ahlström, A. Fridolfsson, and M. Rayner. 2020. Emulsifying and anti-oxidative properties of proteins extracted from industrially cold-pressed rapeseed press-cake. Foods 9 (5):678. doi: 10.3390/foods9050678.
  • Pasaribu, B., T. Y. Chung, C. S. Chen, P. L. Jiang, and J. T. C. Tzen. 2016. Identification of steroleosin in oil bodies of pine megagametophytes. Plant Physiology and Biochemistry: PPB 101:173–81. doi: 10.1016/j.plaphy.2016.02.008.
  • Payne, G., M. Lad, T. Foster, A. Khosla, and D. Gray. 2014. Composition and properties of the surface of oil bodies recovered from Echium plantagineum. Colloids and Surfaces B, Biointerfaces 116:88–92. doi: 10.1016/j.colsurfb.2013.11.043.
  • Peng, C. C., I. P. Lin, C. K. Lin, and J. T. C. Tzen. 2003. Size and stability of reconstituted sesame oil bodies. Biotechnology Progress 19 (5):1623–6. doi: 10.1021/bp034129z.
  • Purkrtová, Z., T. Chardot, and M. Froissard. 2015. N-terminus of seed caleosins is essential for lipid droplet sorting but not for lipid accumulation. Archives of Biochemistry and Biophysics 579:47–54. doi: 10.1016/j.abb.2015.05.008.
  • Purkrtová, Z., S. D’Andrea, P. Jolivet, P. Lipovova, B. Kralova, M. Kodicek, and T. Chardot. 2007. Structural properties of caleosin: AMS and CD study. Archives of Biochemistry and Biophysics 464 (2):335–43. doi: 10.1016/j.abb.2007.04.041.
  • Purkrtová, Z., P. Jolivet, M. Miquel, and T. Chardot. 2008a. Structure and function of seed lipid body-associated proteins. Comptes Rendus Biologies 331 (10):746–54. doi: 10.1016/j.crvi.2008.07.016.
  • Purkrtová, Z., C. L. Bon, B. Kralova, M. H. Ropers, M. Anton, and T. Chardot. 2008b. Caleosin of Arabidopsis thaliana: Effect of calcium on functional and structural properties. Journal of Agricultural and Food Chemistry 56 (23):11217–24. doi: 10.1021/jf802305b.
  • Romero-Guzmán, M. J., L. Jung, K. Kyriakopoulou, R. M. Boom, and C. V. Nikiforidis. 2020. Efficient single-step rapeseed oleosome extraction using twin-screw press. Journal of Food Engineering 276:109890. doi: 10.1016/j.jfoodeng.2019.109890.
  • Sagalowicz, L., M. Michel, I. Blank, O. Schafer, and M. E. Leser. 2017. Self-assembly in food—A concept for structure formation inspired by Nature. Current Opinion in Colloid & Interface Science 28:87–95. doi: 10.1016/j.cocis.2017.03.003.
  • Samdani, G. K., D. J. McClements, D. J., and E. A. Decker. 2018. Impact of phospholipids and tocopherols on the oxidative stability of soybean oil-in-water emulsions. Journal of Agricultural and Food Chemistry 66 (15):3939–48. doi: 10.1021/acs.jafc.8b00677.
  • Şen, A., A. Acevedo-Fani, A. Dave, A. Ye, J. Husny, and H. Singh. 2022. Plant oil bodies and their membrane components: New natural materials for food applications. Critical Reviews in Food Science and Nutrition: 1–24. doi: 10.1080/10408398.2022.2105808.
  • Shimada, T. L., and I. Hara-Nishimura. 2010. Oil-body-membrane proteins and their physiological functions in plants. Biological & Pharmaceutical Bulletin 33 (3):360–3. doi: 10.1248/bpb.33.360.
  • Shimada, T. L., and I. Hara-Nishimura. 2015. Leaf oil bodies are subcellular factories producing antifungal oxylipins. Current Opinion in Plant Biology 25:145–50. doi: 10.1016/j.pbi.2015.05.019.
  • Shimada, T. L., M. Hayashi, I, and Hara-Nishimura, I. 2018. Membrane dynamics and multiple functions of oil bodies in seeds and leaves. Plant Physiology 176 (1):199–207. doi: 10.1104/pp.17.01522.
  • Shun-Tang, G., T. Ono, T, and M. Mikami. 1997. Interaction between protein and lipid in soybean milk at elevated temperature. Journal of Agricultural and Food Chemistry 45 (12):4601–5. doi: 10.1021/jf970417x.
  • Sun, Y., M. Zhong, L. Wu, Q. Wang, Y. Li, and B. Qi. 2022. Loading natural emulsions with nutraceuticals by ultrasonication: Formation and digestion properties of curcumin-loaded soybean oil bodies. Food Hydrocolloids. 124 (A):107292. doi: 10.1016/j.foodhyd.2021.107292.
  • Tzen, J. T. C., Y. Cao, P. Laurent, C. Ratnayake, and A. H. C. Huang. 1993. Lipids, proteins, and structure of seed oil bodies from diverse species. Plant Physiology 101 (1):267–76. doi: 10.1104/pp.101.1.267.
  • Uitterhaegen, E., and P. Evon. 2017. Twin-screw extrusion technology for vegetable oil extraction: A review. Journal of Food Engineering 212:190–200. doi: 10.1016/j.jfoodeng.2017.06.006.
  • Villeneuve, P., C. Bourlieu-Lacanal, E. Durand, J. Lecomte, D. J. McClements, and E. A. Decker. 2021. Lipid oxidation in emulsions and bulk oils: A review of the importance of micelles. Critical Reviews in Food Science and Nutrition: 1–41. doi: 10.1080/10408398.2021.2006138.
  • Wang, Q. L., C. Li Cui, L. Z. Jiang, Y. Liu, X. T. Liang, and J. C. Hou. 2017. Oil bodies extracted from high-fat and low-fat soybeans: Stability and composition during storage. Journal of Food Science 82 (6):1319–25. doi: 10.1111/1750-3841.13715.
  • Waschatko, G., B. Schiedt, T. A. Vilgis, and A. Junghans. 2012. Soybean oleosomes behavior at the air–water interface. The Journal of Physical Chemistry B 116 (35):10832–41. doi: 10.1021/jp211871v.
  • Wijesundera, C., T. Boiteau, X. Xu, Z. Shen, P. Watkins, and A. Logan. 2013. Stabilization of fish oil-in-water emulsions with oleosin extracted from canola meal. Journal of Food Science 78 (9):C1340–47. doi: 10.1111/1750-3841.12177.
  • Wu, L., Y. Sun, M. Kang, M. Zhong, B. Qi, and Y. Li. 2022. Effect of pasteurization on membrane proteins and oxidative stability of oil bodies in various crops. International Journal of Food Science & Technology 57 (7):3944–54. doi: 10.1111/ijfs.15562.
  • Yan, Z., L. Zhao, X. Kong, Y. Hua, and Y. Chen. 2016. Behaviors of particle size and bound proteins of oil bodies in soymilk processing. Food Chemistry 194:881–90. doi: 10.1016/j.foodchem.2015.08.100.
  • Yu, Y., C. Nie, P. Zhao, H. Zhang, X. Qin, Q. Deng, F. Huang, Y. Zhu, and F. Geng. 2022. Influences of microwave exposure to flaxseed on the physicochemical stability of oil bodies: Implication of interface remodeling. Food Chemistry 368:130802. doi: 10.1016/j.foodchem.2021.130802.
  • Zaaboul, F., E. Matabaro, H. Raza, B. D. Xin, E. Duhoranimana, C. Cao, and Y. Liu. 2018. Validation of a simple extraction method for oil bodies isolated from peanuts. European Journal of Lipid Science and Technology 120 (2):1700363. doi: 10.1002/ejlt.201700363.
  • Zaaboul, F., H. Raza, C. Cao, L, and Yuanfa, L. 2019. The impact of roasting, high pressure homogenization and sterilization on peanut milk and its oil bodies. Food Chemistry 280:270–7. doi: 10.1016/j.foodchem.2018.12.047.
  • Zaaboul, F., Q. Zhao, Y. Xu, and Y. Liu. 2022. Soybean oil bodies: A review on composition, properties, food applications, and future research aspects. Food Hydrocolloids. 124 (A):107296. doi: 10.1016/j.foodhyd.2021.107296.
  • Zhang, S., H. Chen, F. Geng, D. Peng, B. Xie, Z. Sun, Y. Chen, and Q. Deng. 2022. Natural oil bodies from typical oilseeds: Structural characterization and their potentials as natural delivery system for curcumin. Food Hydrocolloids. 128:107521. doi: 10.1016/j.foodhyd.2022.107521.
  • Zhang, Y., S. Guo, Z. Liu, and S. K. C. Chang. 2012. Off-flavor related volatiles in soymilk as affected by soybean variety, grinding, and heat-processing methods. Journal of Agricultural and Food Chemistry 60 (30):7457–62. doi: 10.1021/jf3016199.
  • Zhao, L., Y. Chen, Z. Yan, X. Kong, and Z. Hua. 2016. Physicochemical and rheological properties and oxidative stability of oil bodies recovered from soybean aqueous extract at different pHs. Food Hydrocolloids. 61:685–94. doi: 10.1016/j.foodhyd.2016.06.032.
  • Zheng, B., H. Zhou, and D. J. McClements. 2021. Nutraceutical-fortified plant-based milk analogs: Bioaccessibility of curcumin-loaded almond, cashew, coconut, and oat milks. LWT 147:111517. doi: 10.1016/j.lwt.2021.111517.
  • Zhou, L. Z., F. S. Chen, L. H. Hao, Y. Du, and C. Liu. 2019. Peanut oil body composition and stability. Journal of Food Science 84 (10):2812–9. doi: 10.1111/1750-3841.14801.
  • Zhou, X., Z. Liu, W. Wang, Y. Miao, L. Gu, Y. Li, X. Liu, L. Jiang, J. Hou, and Z. Jiang. 2022. NaCl induces flocculation and lipid oxidation of soybean oil body emulsions recovered by neutral aqueous extraction. Journal of the Science of Food and Agriculture 102 (9):3752–61. doi: 10.1002/jsfa.11723.
  • Zhou, X., R. Sun, J. Zhao, Z. Liu, M. Wang, K. Wang, L. Jiang, J. Hou, and Z. Jiang. 2022. Enzymatic activity and stability of soybean oil body emulsions recovered under neutral and alkaline conditions: Impacts of thermal treatments. LWT 153:112545. doi: 10.1016/j.lwt.2021.112545.
  • Zielbauer, B. I., A. J. Jackson, S. Maurer, G. Waschatko, M. Ghebremedhin, S. E. Rogers, R. K. Heenan, L. Porcar, and T. A. Vilgis. 2018. Soybean oleosomes studied by small angle neutron scattering (SANS). Journal of Colloid and Interface Science 529:197–204. doi: 10.1016/j.jcis.2018.05.080.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.