620
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Improving the biological activities of astaxanthin using targeted delivery systems

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ajeeshkumar, K. K., P. A. Aneesh, N. Raju, M. Suseela, C. N. Ravishankar, and S. Benjakul. 2021. Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: A review. Comprehensive Reviews in Food Science and Food Safety 20 (2):1280–306. doi: 10.1111/1541-4337.12725.
  • Ambati, R. R., S. M. Phang, S. Ravi, and R. G. Aswathanarayana. 2014. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications — A review. Marine Drugs 12 (1):128–52. doi: 10.3390/md12010128.
  • Amenta, V., K. Aschberger, M. Arena, H. Bouwmeester, F. Botelho Moniz, P. Brandhoff, S. Gottardo, H. J. P. Marvin, A. Mech, L. Quiros Pesudo, et al. 2015. Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regulatory Toxicology and Pharmacology: RTP 73 (1):463–76. doi: 10.1016/j.yrtph.2015.06.016.
  • Anarjan, N., and C. P. Tan. 2013. Physico-chemical stability of astaxanthin nanodispersions prepared with polysaccharides as stabilizing agents. International Journal of Food Sciences and Nutrition 64 (6):744–8. doi: 10.3109/09637486.2013.783001.
  • Armenta, R. E., and I. Guerrero-Legarreta. 2009. Stability studies on astaxanthin extracted from fermented shrimp byproducts. Journal of Agricultural and Food Chemistry 57 (14):6095–100. doi: 10.1021/jf901083d.
  • Arora, D., S. Bhatt, M. Kumar, H. D. C. Vattikonda, Y. Taneja, V. Jain, V. Joshi, and C. C. Gali. 2020. Intranasal lipid particulate drug delivery systems: An update on clinical challenges and biodistribution studies of cerebroactive drugs in Alzheimer’s disease. Current Pharmaceutical Design 26 (27):3281–99. doi: 10.2174/1381612826666200331085854.
  • Bardania, H., S. Tarvirdipour, and F. Dorkoosh. 2017. Liposome-targeted delivery for highly potent drugs. Artificial Cells, Nanomedicine, and Biotechnology 45 (8):1478–89. doi: 10.1080/21691401.2017.1290647.
  • Bharathiraja, S., P. Manivasagan, Y. O. Oh, M. S. Moorthy, H. Seo, N. Q. Bui, and J. Oh. 2017. Astaxanthin conjugated polypyrrole nanoparticles as a multimodal agent for photo-based therapy and imaging. International Journal of Pharmaceutics 517 (1–2):216–25. doi: 10.1016/j.ijpharm.2016.12.020.
  • Bhatt, P. C., P. Srivastava, P. Pandey, W. Khan, and B. P. Panda. 2016. Nose to brain delivery of astaxanthin-loaded solid lipid nanoparticles: Fabrication, radio labeling, optimization and biological studies. RSC Advances 6 (12):10001–10. doi: 10.1039/C5RA19113K.
  • Bhuvaneswari, S., B. Yogalakshmi, S. Sreeja, and C. V. Anuradha. 2014. Astaxanthin reduces hepatic endoplasmic reticulum stress and nuclear factor-κB-mediated inflammation in high fructose and high fat diet-fed mice. Cell Stress & Chaperones 19 (2):183–91. doi: 10.1007/s12192-013-0443-x.
  • Boonlao, N., U. R. Ruktanonchai, and A. K. Anal. 2022. Enhancing bioaccessibility and bioavailability of carotenoids using emulsion-based delivery systems. Colloids and Surfaces. B, Biointerfaces 209 (Pt 2):112211. doi: 10.1016/j.colsurfb.2021.112211.
  • Burgos-Diaz, C., M. Opazo-Navarrete, M. Soto-Anual, F. Leal-Calderon, and M. Bustamante. 2020. Food-grade Pickering emulsion as a novel astaxanthin encapsulation system for making powder-based products: Evaluation of astaxanthin stability during processing, storage, and its bioaccessibility. Food Research International (Ottawa, ON) 134:109244. doi: 10.1016/j.foodres.2020.109244.
  • Cai, W., Q. Wu, Z. Z. Yan, W. Z. He, X. M. Zhou, L. J. Zhou, J. Y. Zhang, and X. Zhang. 2021. Neuroprotective effect of ultrasound triggered astaxanthin release nanoparticles on early brain injury after subarachnoid hemorrhage. Frontiers in Chemistry 9:775274. doi: 10.3389/fchem.2021.775274.
  • Chang, X., L. Xing, Y. Wang, C. X. Yang, Y. J. He, T. J. Zhou, X. D. Gao, L. Li, H. P. Hao, and H. L. Jiang. 2020. Monocyte-derived multipotent cell delivered programmed therapeutics to reverse idiopathic pulmonary fibrosis. Science Advances 6 (22):eaba3167. doi: 10.1126/sciadv.aba3167.
  • Chen, X., R. Chen, Z. Guo, C. Li, and P. Li. 2007. The preparation and stability of the inclusion complex of astaxanthin with β-cyclodextrin. Food Chemistry 101 (4):1580–4. doi: 10.1016/j.foodchem.2006.04.020.
  • Chen, Y., S. Tie, X. Zhang, L. Zhang, and M. Tan. 2021. Preparation and characterization of glycosylated protein nanoparticles for astaxanthin mitochondria targeting delivery. Food & Function 12 (17):7718–27. doi: 10.1039/d1fo01751a.
  • Chen, Z., W. Li, L. Shi, L. Jiang, M. Li, C. Zhang, and H. Peng. 2020. Kidney-targeted astaxanthin natural antioxidant nanosystem for diabetic nephropathy therapy. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 156:143–54. doi: 10.1016/j.ejpb.2020.09.005.
  • Chevalier, Y., and M. A. Bolzinger. 2013. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 439:23–34. doi: 10.1016/j.colsurfa.2013.02.054.
  • Chew, B. P., J. S. Park, M. W. Wong, and T. S. Wong. 1999. A comparison of the anticancer activities of dietary beta-carotene, canthaxanthin and astaxanthin in mice in vivo. Anticancer Research 19 (3A):1849–53. https://pubmed.ncbi.nlm.nih.gov/10470126/.
  • Chiu, C. H., C. C. Chang, S. T. Lin, C. C. Chyau, and R. Y. Peng. 2016. Improved hepatoprotective effect of liposome-encapsulated astaxanthin in lipopolysaccharide-induced acute hepatotoxicity. International Journal of Molecular Sciences 17 (7):1128. doi: 10.3390/ijms17071128.
  • Choi, B. Y., E. P. Chalisserry, M. H. Kim, H. W. Kang, I. W. Choi, and S. Y. Nam. 2019. The influence of astaxanthin on the proliferation of adipose-derived mesenchymal stem cells in gelatin-methacryloyl (GelMA) hydrogels. Materials 12 (15):2416. doi: 10.3390/ma12152416.
  • Choi, S. K., Y. S. Park, D. K. Choi, and H. I. Chang. 2008. Effects of astaxanthin on the production of NO and the expression of COX-2 and iNOS in LPS-stimulated BV2 microglial cells. Journal of Microbiology and Biotechnology 18 (12):1990–6. doi: 10.4014/jmb.0800.489.
  • Chu, B. S., S. Ichikawa, S. Kanafusa, and M. Nakajima. 2007. Preparation and characterization of beta-carotene nanodispersions prepared by solvent displacement technique. Journal of Agricultural and Food Chemistry 55 (16):6754–60. doi: 10.1021/jf063609d.
  • Cone, R. A. 2009. Barrier properties of mucus. Advanced Drug Delivery Reviews 61 (2):75–85. doi: 10.1016/j.addr.2008.09.008.
  • Cong, X. Y., J. K. Miao, H. Z. Zhang, W. H. Sun, L. H. Xing, L. R. Sun, L. Zu, Y. Gao, and K. L. Leng. 2019. Effects of drying methods on the content, structural isomers, and composition of astaxanthin in Antarctic krill. ACS Omega 4 (19):17972–80. doi: 10.1021/acsomega.9b01294.
  • Cote, B., D. Rao, and A. W. G. Alani. 2022. Nanomedicine for drug delivery throughout the alimentary canal. Molecular Pharmaceutics 19 (8):2690–711. doi: 10.1021/acs.molpharmaceut.0c00694.
  • Couvreur, P., G. Barratt, E. Fattal, P. Legrand, and C. Vauthier. 2002. Nanocapsule technology: A review. Critical Reviews in Therapeutic Drug Carrier Systems 19 (2):99–134. doi: 10.1615/CritRevTherDrugCarrierSyst.v19.i2.10.
  • Dai, M., C. Li, Z. Yang, Z. Sui, J. Li, P. Dong, and X. Liang. 2020. The astaxanthin aggregation pattern greatly influences its antioxidant activity: A comparative study in Caco-2 cells. Antioxidants 9 (2):126. doi: 10.3390/antiox9020126.
  • Das, S., and A. Chaudhury. 2011. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 12 (1):62–76. doi: 10.1208/s12249-010-9563-0.
  • Davinelli, S., M. E. Nielsen, and G. Scapagnini. 2018. Astaxanthin in skin health, repair, and disease: A comprehensive review. Nutrients 10 (4):522. doi: 10.3390/nu10040522.
  • de Bruijn, W. J., Y. Weesepoel, J. P. Vincken, and H. Gruppen. 2016. Fatty acids attached to all-trans-astaxanthin alter its cis-trans equilibrium, and consequently its stability, upon light-accelerated autoxidation. Food Chemistry 194:1108–15. doi: 10.1016/j.foodchem.2015.08.077.
  • Del Valle, E. M. M. 2004. Cyclodextrins and their uses: A review. Process Biochemistry 39 (9):1033–46. doi: 10.1016/S0032-9592(03)00258-9.
  • Dickinson, E. 2017. Biopolymer-based particles as stabilizing agents for emulsions and foams. Food Hydrocolloids 68:219–31. doi: 10.1016/j.foodhyd.2016.06.024.
  • Ding, L., J. Yang, K. Yin, H. Cheng, J. Li, and C. Xue. 2022. The spatial arrangement of astaxanthin in bilayers greatly influenced the structural stability of DPPC liposomes. Colloids and Surfaces. B, Biointerfaces 212:112383. doi: 10.1016/j.colsurfb.2022.112383.
  • Dong, S., Y. Huang, R. Zhang, Z. Lian, S. Wang, and Y. Liu. 2014. Inclusion complexes of astaxanthin with hydroxypropyl-beta-cyclodextrin: Parameters optimization, spectroscopic profiles, and properties. European Journal of Lipid Science and Technology 116 (8):978–86. doi: 10.1002/ejlt.201300261.
  • Donoso, A., J. González-Durán, A. A. Muñoz, P. A. González, and C. Agurto-Muñoz. 2021. Therapeutic uses of natural astaxanthin: An evidence-based review focused on human clinical trials. Pharmacological Research 166:105479. doi: 10.1016/j.phrs.2021.105479.
  • Đorđević, V., B. Balanč, A. Belščak-Cvitanović, S. Lević, K. Trifković, A. Kalušević, I. Kostić, D. Komes, B. Bugarski, and V. Nedović. 2015. Trends in encapsulation technologies for delivery of food bioactive compounds. Food Engineering Reviews 7 (4):452–90. doi: 10.1007/s12393-014-9106-7.
  • Dos Santos, P. P., L. A. Andrade, S. H. Flores, and A. O. Rios. 2018. Nanoencapsulation of carotenoids: A focus on different delivery systems and evaluation parameters. Journal of Food Science and Technology 55 (10):3851–60. doi: 10.1007/s13197-018-3316-6.
  • Du, X., X. Wang, X. Yan, Y. Yang, Z. Li, Z. Jiang, and H. Ni. 2020. Hypoglycaemic effect of all-trans astaxanthin through inhibiting alpha-glucosidase. Journal of Functional Foods 74:104168. doi: 10.1016/j.jff.2020.104168.
  • Esfanjani, A. F., E. Assadpour, and S. M. Jafari. 2018. Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends in Food Science & Technology 76:56–66. doi: 10.1016/j.tifs.2018.04.002.
  • Fakhri, S., F. Abbaszadeh, L. Dargahi, and M. Jorjani. 2018. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacological Research 136:1–20. doi: 10.1016/j.phrs.2018.08.012.
  • Fakhri, S., I. Y. Aneva, M. H. Farzaei, and E. Sobarzo-Sanchez. 2019. The neuroprotective effects of astaxanthin: Therapeutic targets and clinical perspective. Molecules 24 (14):2640. doi: 10.3390/molecules24142640.
  • Fleming, E., Z. Jia, M. Yang, Q. Hu, J. Xue, B. Zhang, and Y. Luo. 2021. Mucoadhesive biopolymer nanoparticles for encapsulation of lipophilic nutrients with enhanced bioactivity. Food Biophysics 16 (4):520–31. doi: 10.1007/s11483-021-09691-x.
  • Gasa-Falcon, A., I. Odriozola-Serrano, G. Oms-Oliu, and O. Martin-Belloso. 2020. Nanostructured lipid-based delivery systems as a strategy to increase functionality of bioactive compounds. Foods 9 (3):325. doi: 10.3390/foods9030325.
  • Gaspar, R. 2007. Regulatory issues surrounding nanomedicines: Setting the scene for the next generation of nanopharmaceuticals. Nanomedicine (London, England) 2 (2):143–7. doi: 10.2217/17435889.2.2.143.
  • Gautam, D., S. Singh, P. Maurya, M. Singh, S. Kushwaha, and S. A. Saraf. 2021. Appraisal of nano-lipidic astaxanthin cum thermoreversible gel and its efficacy in haloperidol induced Parkinsonism. Current Drug Delivery 18 (10):1550–62. doi: 10.2174/1567201818666210510173524.
  • Ge, S., R. Jia, Q. Li, W. Liu, M. Liu, D. Cai, M. Zheng, H. Liu, and J. Liu. 2022. Pickering emulsion stabilized by zein/Adzuki bean seed coat polyphenol nanoparticles to enhance the stability and bioaccessibility of astaxanthin. Journal of Functional Foods 88:104867. doi: 10.1016/j.jff.2021.104867.
  • Geng, Q., Y. Zhao, L. Wang, L. Xu, X. Chen, and J. Han. 2020. Development and evaluation of astaxanthin as nanostructure lipid carriers in topical delivery. AAPS PharmSciTech 21 (8):318. doi: 10.1208/s12249-020-01822-w.
  • Gleeson, J. P., S. M. Ryan, and D. J. Brayden. 2016. Oral delivery strategies for nutraceuticals: Delivery vehicles and absorption enhancers. Trends in Food Science & Technology 53:90–101. doi: 10.1016/j.tifs.2016.05.007.
  • Gomez-Estaca, J., T. A. Comunian, P. Montero, and C. S. Favaro-Trindade. 2018. Physico-chemical properties, stability, and potential food applications of shrimp lipid extract encapsulated by complex coacervation. Food and Bioprocess Technology 11 (8):1596–604. doi: 10.1007/s11947-018-2116-3.
  • Goncalves, R., F. S. J. T. Martins, C. M. M. Duarte, A. A. Vicente, and A. C. Pinheiro. 2018. Advances in nutraceutical delivery systems: From formulation design for bioavailability enhancement to efficacy and safety evaluation. Trends in Food Science & Technology 78:270–91. doi: 10.1016/j.tifs.2018.06.011.
  • Gregoriadis, G. 1973. Drug entrapment in liposomes. FEBS Letters 36 (3):292–6. doi: 10.1016/0014-5793(73)80394-1.
  • Gu, J., Y. Chen, L. Tong, X. Wang, D. Yu, and H. Wu. 2020. Astaxanthin-loaded polymer-lipid hybrid nanoparticles (ATX-LPN): Assessment of potential otoprotective effects. Journal of Nanobiotechnology 18 (1):53. doi: 10.1186/s12951-020-00600-x.
  • Guan, L., J. Liu, H. Yu, H. Tian, G. Wu, B. Liu, P. Dong, J. Li, and X. Liang. 2019. Water-dispersible astaxanthin-rich nanopowder: Preparation, oral safety and antioxidant activity in vivo. Food & Function 10 (3):1386–97. doi: 10.1039/c8fo01593g.
  • Gulzar, S., and S. Benjakul. 2020. Characteristics and storage stability of nanoliposomes loaded with shrimp oil as affected by ultrasonication and microfluidization. Food Chemistry 310:125916. doi: 10.1016/j.foodchem.2019.125916.
  • Guo, S. X., H. L. Zhou, C. L. Huang, C. G. You, Q. Fang, P. Wu, X. G. Wang, and C. M. Han. 2015. Astaxanthin attenuates early acute kidney injury following severe burns in rats by ameliorating oxidative stress and mitochondrial-related apoptosis. Marine Drugs 13 (4):2105–23. doi: 10.3390/md13042105.
  • Guzey, D., and D. J. McClements. 2006. Formation, stability and properties of multilayer emulsions for application in the food industry. Advances in Colloid and Interface Science 128:227–48. doi: 10.1016/j.cis.2006.11.021.
  • Haung, H. Y., Y. C. Wang, Y. C. Cheng, W. Kang, S. H. Hu, D. Liu, C. Xiao, and H. D. Wang. 2020. A novel oral astaxanthin nanoemulsion from Haematococcus pluvialis Induces apoptosis in lung metastatic melanoma. Oxidative Medicine and Cellular Longevity 2020:2647670. doi: 10.1155/2020/2647670.
  • Hernandez-Marin, E., A. Barbosa, and A. Martinez. 2012. The metal cation chelating capacity of astaxanthin. Does this have any influence on antiradical activity? Molecules 17 (1):1039–54. doi: 10.3390/molecules17011039.
  • Hong, L., C. L. Zhou, F. P. Chen, D. Han, C. Y. Wang, J. X. Li, Z. Chi, and C. G. Liu. 2017. Development of a carboxymethyl chitosan functionalized nanoemulsion formulation for increasing aqueous solubility, stability and skin permeability of astaxanthin using low-energy method. Journal of Microencapsulation 34 (8):707–21. doi: 10.1080/02652048.2017.1373154.
  • Hu, F., W. Liu, L. Yan, F. Kong, and K. Wei. 2019. Optimization and characterization of poly(lactic-co-glycolic acid) nanoparticles loaded with astaxanthin and evaluation of anti-photodamage effect in vitro. Royal Society Open Science 6 (10):191184. doi: 10.1098/rsos.191184.
  • Hu, K., and D. J. McClements. 2014. Fabrication of surfactant-stabilized zein nanoparticles: A pH modulated antisolvent precipitation method. Food Research International (Ottawa, ON) 64:329–35. doi: 10.1016/j.foodres.2014.07.004.
  • Hu, Q., J. Lee, and Y. Luo. 2019. Nanoparticles targeting hepatic stellate cells for the treatment of liver fibrosis. Engineered Science 6:12–21. doi: 10.30919/es8d507.
  • Hu, Q., S. Hu, E. Fleming, J. Y. Lee, and Y. Luo. 2020. Chitosan-caseinate-dextran ternary complex nanoparticles for potential oral delivery of astaxanthin with significantly improved bioactivity. International Journal of Biological Macromolecules 151:747–56. doi: 10.1016/j.ijbiomac.2020.02.170.
  • Hu, Y., C. Bao, D. Li, L. You, Y. Du, B. Liu, X. Li, F. Ren, and Y. Li. 2019. The construction of enzymolyzed alpha-lactalbumin based micellar nanoassemblies for encapsulating various kinds of hydrophobic bioactive compounds. Food & Function 10 (12):8263–72. doi: 10.1039/c9fo02035g.
  • Hua, Z., X. Zhang, X. Zhao, B.-W. Zhu, D. Liu, and M. Tan. 2023. Hepatic-targeted delivery of astaxanthin for enhanced scavenging free radical scavenge and preventing mitochondrial depolarization. Food Chemistry 406:135036. doi: 10.1016/j.foodchem.2022.135036.
  • Hussein, G., U. Sankawa, H. Goto, K. Matsumoto, and H. Watanabe. 2006. Astaxanthin, a carotenoid with potential in human health and nutrition. Journal of Natural Products 69 (3):443–9. doi: 10.1021/np050354+.
  • Jafari, Z., A. Bigham, S. Sadeghi, S. M. Dehdashti, N. Rabiee, A. Abedivash, M. Bagherzadeh, B. Nasseri, H. Karimi-Maleh, E. Sharifi, et al. 2022. Nanotechnology-abetted astaxanthin formulations in multimodel therapeutic and biomedical applications. Journal of Medicinal Chemistry 65 (1):2–36. doi: 10.1021/acs.jmedchem.1c01144.
  • Jain, H., and N. Chella. 2021. Methods to improve the solubility of therapeutical natural products: A review. Environmental Chemistry Letters 19 (1):111–21. doi: 10.1007/s10311-020-01082-x.
  • Joye, I. J., and D. J. McClements. 2013. Production of nanoparticles by anti-solvent precipitation for use in food systems. Trends in Food Science & Technology 34 (2):109–23. doi: 10.1016/j.tifs.2013.10.002.
  • Kang, J. O., S. J. Kim, and H. Kim. 2001. Effect of astaxanthin on the hepatotoxicity, lipid peroxidation and antioxidative enzymes in the liver of CCl4-treated rats. Methods and Findings in Experimental and Clinical Pharmacology 23 (2):79–84. doi: 10.1358/mf.2001.23.2.627931.
  • Kim, S., E. Cho, J. Yoo, E. Cho, S. J. Choi, S. M. Son, J. M. Lee, M.-J. In, D. C. Kim, J.-H. Kim, et al. 2010. β-CD-mediated encapsulation enhanced stability and solubility of astaxanthin. Journal of the Korean Society for Applied Biological Chemistry 53 (5):559–65. doi: 10.3839/jksabc.2010.086.
  • Kowshik, J., R. Nivetha, S. Ranjani, P. Venkatesan, S. Selvamuthukumar, V. Veeravarmal, and S. Nagini. 2019. Astaxanthin inhibits hallmarks of cancer by targeting the PI3K/NF-kappaBeta/STAT3 signalling axis in oral squamous cell carcinoma models. IUBMB Life 71 (10):1595–610. doi: 10.1002/iub.2104.
  • Kraboun, K., P. Phanumong, T. Kongbangkerd, K. Rojsuntornkitti, M. Saimek, and N. Jommark. 2021. Antioxidant properties and encapsulation methods of astaxanthin: A review. Food and Applied Bioscience Journal 9 (2):22–39. https://li01.tci-thaijo.org/index.php/fabjournal/article/view/243185.
  • Kurihara, H., H. Koda, S. Asami, Y. Kiso, and T. Tanaka. 2002. Contribution of the antioxidative property of astaxanthin to its protective effect on the promotion of cancer metastasis in mice treated with restraint stress. Life Sciences 70 (21):2509–20. doi: 10.1016/S0024-3205(02)01522-9.
  • Lai, T. T., C. M. Yang, and C. H. Yang. 2020. Astaxanthin protects retinal photoreceptor cells against high glucose-induced oxidative stress by induction of antioxidant enzymes via the PI3K/Akt/Nrf2 pathway. Antioxidants 9 (8):729. doi: 10.3390/antiox9080729.
  • Larsson, S., M. Jansson, and A. Boholm. 2019. Expert stakeholders’ perception of nanotechnology: Risk, benefit, knowledge, and regulation. Journal of Nanoparticle Research 21 (3):57. doi: 10.1007/s11051-019-4498-1.
  • Lee, Y. S., S. H. Jeon, H. J. Ham, H. P. Lee, M. J. Song, and J. T. Hong. 2020. Improved anti-Inflammatory effects of liposomal ­astaxanthin on a phthalic anhydride-induced atopic dermatitis model. Frontiers in Immunology 11:565285. doi: 10.3389/fimmu.2020.565285.
  • Leite, M. F., A. de Lima, M. M. Massuyama, and R. Otton. 2010. In vivo astaxanthin treatment partially prevents antioxidant alterations in dental pulp from alloxan-induced diabetic rats. International Endodontic Journal 43 (11):959–67. doi: 10.1111/j.1365-2591.2010.01707.x.
  • Li, G., Z. Zhang, H. Liu, and L. Hu. 2021. Nanoemulsion-based delivery approaches for nutraceuticals: Fabrication, application, characterization, biological fate, potential toxicity and future trends. Food & Function 12 (5):1933–53. doi: 10.1039/d0fo02686g.
  • Li, M., M. R. Zahi, Q. Yuan, F. Tian, and H. Liang. 2015. Preparation and stability of astaxanthin solid lipid nanoparticles based on stearic acid. European Journal of Lipid Science and Technology 118 (4):592–602. doi: 10.1002/ejlt.201400650.
  • Li, Y., S. Fei, D. Yu, L. Zhang, J. Li, R. Liu, and M. Tan. 2022. Preparation and evaluation of undaria pinnatifida nanocellulose in fabricating Pickering emulsions for protection of astaxanthin. Foods 11 (6):876. doi: 10.3390/foods11060876.
  • Liu, B., L. Jiao, J. Chai, C. Bao, P. Jiang, and Y. Li. 2021. Encapsulation and targeted release. In Food hydrocolloids, ed. Y. Fang, H. Zhang, and K. Nishinari, 369–407. Singapore: Springer.
  • Liu, C., S. Zhang, D. J. McClements, D. Wang, and Y. Xu. 2019. Design of astaxanthin-loaded core-shell nanoparticles consisting of chitosan oligosaccharides and poly(lactic-co-glycolic acid): Enhancement of water solubility, stability, and bioavailability. Journal of Agricultural and Food Chemistry 67 (18):5113–21. doi: 10.1021/acs.jafc.8b06963.
  • Liu, C., Y. Tan, Y. Xu, D. J. McCleiments, and D. Wang. 2019. Formation, characterization, and application of chitosan/pectin-stabilized multilayer emulsions as astaxanthin delivery systems. International Journal of Biological Macromolecules 140:985–97. doi: 10.1016/j.ijbiomac.2019.08.071.
  • Liu, M., J. Zhang, W. Shan, and Y. Huang. 2015. Developments of mucus penetrating nanoparticles. Asian Journal of Pharmaceutical Sciences 10 (4):275–82. doi: 10.1016/j.ajps.2014.12.007.
  • Liu, X., and T. Osawa. 2007. Cis astaxanthin and especially 9-cis astaxanthin exhibits a higher antioxidant activity in vitro compared to the all-trans isomer. Biochemical and Biophysical Research Communications 357 (1):187–93. doi: 10.1016/j.bbrc.2007.03.120.
  • Liu, X., Q. Luo, K. Rakariyatham, Y. Cao, T. Goulette, X. Liu, and H. Xiao. 2016. Antioxidation and anti-ageing activities of different stereoisomeric astaxanthin in vitro and in vivo. Journal of Functional Foods 25:50–61. doi: 10.1016/j.jff.2016.05.009.
  • Liu, Y., L. Yang, Y. Guo, T. Zhang, X. Qiao, J. Wang, J. Xu, and C. Xue. 2020. Hydrophilic astaxanthin: PEGylated astaxanthin fights diabetes by enhancing the solubility and oral absorbability. Journal of Agricultural and Food Chemistry 68 (11):3649–55. doi: 10.1021/acs.jafc.0c00784.
  • Livney, Y. 2015. Nanostructured delivery systems in food: Latest developments and potential future directions. Current Opinion in Food Science 3:125–35. doi: 10.1016/j.cofs.2015.06.010.
  • Loftsson, T., D. Hreinsdóttir, and M. Másson. 2005. Evaluation of cyclodextrin solubilization of drugs. International Journal of Pharmaceutics 302 (1–2):18–28. doi: 10.1016/j.ijpharm.2005.05.042.
  • Lu, C. C., and G. C. Yen. 2015. Antioxidative and anti-inflammatory activity of functional foods. Current Opinion in Food Science 2:1–8. doi: 10.1016/j.cofs.2014.11.002.
  • Lu, Z., Y. Long, J. Li, J. Li, K. Ren, W. Zhao, X. Wang, C. Xia, Y. Wang, M. Li, et al. 2021. Simultaneous inhibition of breast cancer and its liver and lung metastasis by blocking inflammatory feed-forward loops. Journal of Controlled Release: Official Journal of the Controlled Release Society 338:662–79. doi: 10.1016/j.jconrel.2021.08.047.
  • Luo, Y., Q. Wang, and Y. Zhang. 2020. Biopolymer-based nanotechnology approaches to deliver bioactive compounds for food applications: A perspective on the past, present, and future. Journal of Agricultural and Food Chemistry 68 (46):12993–3000. doi: 10.1021/acs.jafc.0c00277.
  • Maeda, H., H. Nakamura, and J. Fang. 2013. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Advanced Drug Delivery Reviews 65 (1):71–9. doi: 10.1016/j.addr.2012.10.002.
  • Mao, L., D. Wang, F. Liu, and Y. Gao. 2018. Emulsion design for the delivery of beta-carotene in complex food systems. Critical Reviews in Food Science and Nutrition 58 (5):770–84. doi: 10.1080/10408398.2016.1223599.
  • Pan, L., H. Wang, and K. Gu. 2018. Nanoliposomes as vehicles for astaxanthin: Characterization, in vitro release evaluation and structure. Molecules 23 (11):2822. doi: 10.3390/molecules23112822.
  • Martinez-Alvarez, O., M. M. Calvo, and J. Gomez-Estaca. 2020. Recent advances in astaxanthin micro/nanoencapsulation to improve its stability and functionality as a food ingredient. Marine Drugs 18 (8):406. doi: 10.3390/md18080406.
  • Martinez-Delgado, A. A., S. Khandual, and S. J. Villanueva-Rodriguez. 2017. Chemical stability of astaxanthin integrated into a food matrix: Effects of food processing and methods for preservation. Food Chemistry 225:23–30. doi: 10.1016/j.foodchem.2016.11.092.
  • McClements, D. J. 2010. Design of nano-laminated coatings to control bioavailability of lipophilic food components. Journal of Food Science 75 (1):R30–42. doi: 10.1111/j.1750-3841.2009.01452.x.
  • McClements, D. J., E. A. Decker, and Y. Park. 2009. Controlling lipid bioavailability through physicochemical and structural approaches. Critical Reviews in Food Science and Nutrition 49 (1):48–67. doi: 10.1080/10408390701764245.
  • McClements, D. J., E. A. Decker, Y. Park, and J. Weiss. 2009. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Critical Reviews in Food Science and Nutrition 49 (6):577–606. doi: 10.1080/10408390902841529.
  • McNulty, H. P., J. Byun, S. F. Lockwood, R. F. Jacob, and R. P. Mason. 2007. Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis. Biochimica et Biophysica Acta 1768 (1):167–74. doi: 10.1016/j.bbamem.2006.09.010.
  • Medhi, J., and M. C. Kalita. 2021. Astaxanthin: An algae-based natural compound with a potential role in human health-promoting effect: An updated comprehensive review. Journal of Applied Biology & Biotechnology 9 (1):114–23. doi: 10.7324/JABB.2021.9115.
  • Mehnert, W., and K. Maeder. 2012. Solid lipid nanoparticles production, characterization and applications. Advanced Drug Delivery Reviews 64:83–101. doi: 10.1016/j.addr.2012.09.021.
  • Miki, W. 1991. Biological functions and activities of animal carotenoids. Pure and Applied Chemistry 63 (1):141–6. doi: 10.1351/pac199163010141.
  • Monroy-Ruiz, J., M. A. Sevilla, R. Carron, and M. J. Montero. 2011. Astaxanthin-enriched-diet reduces blood pressure and improves cardiovascular parameters in spontaneously hypertensive rats. Pharmacological Research 63 (1):44–50. doi: 10.1016/j.phrs.2010.09.003.
  • Montanari, E., C. Di Meo, T. Coviello, V. Gueguen, G. Pavon-Djavid, and P. Matricardi. 2019. Intracellular delivery of natural antioxidants via hyaluronan nanohydrogels. Pharmaceutics 11 (10):532. doi: 10.3390/pharmaceutics11100532.
  • Mozafari, N., H. Ashrafi, and A. Azadi. 2021. Targeted drug delivery systems to control neuroinflammation in central nervous system disorders. Journal of Drug Delivery Science and Technology 66:102802. doi: 10.1016/j.jddst.2021.102802.
  • Muller, R. H., K. Mader, and S. Gohla. 2000. Solid lipid nanoparticles (SLN) for controlled drug delivery: A review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 50 (1):161–77. doi: 10.1016/s0939-6411(00)00087-4.
  • Naguib, Y. M. A. 2000. Antioxidant activities of astaxanthin and related carotenoids. Journal of Agricultural and Food Chemistry 48 (4):1150–4. doi: 10.1021/jf991106k.
  • Neeraja, R., R. Muhammad, K. Sanghoon, and P. Sungkwon. 2017. Novel technologies to enhance solubility of food-derived bioactive compounds: A review. Journal of Functional Foods 39:63–73. doi: 10.1016/j.jff.2017.10.001.
  • Nishino, H., H. Tokuda, Y. Satomi, M. Masuda, P. Bu, M. Onozuka, S. Yamaguchi, Y. Okuda, J. Takayasu, J. Tsuruta, et al. 1999. Cancer prevention by carotenoids. Pure and Applied Chemistry 71 (12):2273–8. doi: 10.1351/pac199971122273.
  • Tokle, T., Y. Mao, and D. J. McClements. 2013. Potential biological fate of emulsion-based delivery systems: Lipid particles nanolaminated with lactoferrin and beta-lactoglobulin coatings. Pharmaceutical Research 30 (12):3200–13. doi: 10.1007/s11095-013-1003-x.
  • Noble, G. T., J. F. Stefanick, J. D. Ashley, T. Kiziltepe, and B. Bilgicer. 2014. Ligand-targeted liposome design: Challenges and fundamental considerations. Trends in Biotechnology 32 (1):32–45. doi: 10.1016/j.tibtech.2013.09.007.
  • Nowak, E., Y. D. Livney, Z. Niu, and H. Singh. 2019. Delivery of bioactives in food for optimal efficacy: What inspirations and insights can be gained from pharmaceutics? Trends in Food Science & Technology 91:557–73. doi: 10.1016/j.tifs.2019.07.029.
  • Odeberg, J. M., Å. Lignell, A. Pettersson, and P. Höglund. 2003. Oral bioavailability of the antioxidant astaxanthin in humans is enhanced by incorporation of lipid based formulations. European Journal of Pharmaceutical Sciences 19 (4):299–304. doi: 10.1016/S0928-0987(03)00135-0.
  • Oh, H., J. S. Lee, D. Sung, J. M. Lim, and W. I. Choi. 2020. Potential antioxidant and wound healing effect of nano-liposol with high loading amount of astaxanthin. International Journal of Nanomedicine 15:9231–40. doi: 10.2147/IJN.S272650.
  • Okada, Y., M. Ishikura, and T. Maoka. 2009. Bioavailability of astaxanthin in Haematococcus algal extract: The effects of timing of diet and smoking habits. Bioscience, Biotechnology, and Biochemistry 73 (9):1928–32. doi: 10.1271/bbb.90078.
  • Park, J. S., J. H. Chyun, Y. K. Kim, L. L. Line, and B. P. Chew. 2010. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutrition & Metabolism 7:18. doi: 10.1186/1743-7075-7-18.
  • Parker, R. 1996. Absorption, metabolism, and transport of carotenoids. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 10 (5):542–51. doi: 10.1096/fasebj.10.5.8621054.
  • Peng, C. H., C. H. Chang, R. Y. Peng, and C. C. Chyau. 2010. Improved membrane transport of astaxanthine by liposomal encapsulation. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 75 (2):154–61. doi: 10.1016/j.ejpb.2010.03.004.
  • Polyakov, N. E., A. L. Focsan, M. K. Bowman, and L. D. Kispert. 2010. Free radical formation in novel carotenoid metal ion complexes of astaxanthin. The Journal of Physical Chemistry. B 114 (50):16968–77. doi: 10.1021/jp109039v.
  • Polyakov, N. E., A. Magyar, and L. D. Kispert. 2013. Photochemical and optical properties of water-soluble xanthophyll antioxidants: Aggregation vs complexation. The Journal of Physical Chemistry. B 117 (35):10173–82. doi: 10.1021/jp4062708.
  • Ponto, T., G. Latter, G. Luna, V. R. Leite-Silva, A. Wright, and H. A. E. Benson. 2021. Novel self-nano-emulsifying drug delivery systems containing astaxanthin for topical skin delivery. Pharmaceutics 13 (5):649. doi: 10.3390/pharmaceutics13050649.
  • Qiang, M., X. Pang, D. Ma, C. Ma, and F. Liu. 2020. Effect of membrane surface modification using chitosan hydrochloride and lactoferrin on the properties of astaxanthin-loaded liposomes. Molecules 25 (3):610. doi: 10.3390/molecules25030610.
  • Qiao, X., L. Yang, X. Hu, Y. Cao, Z. Li, J. Xu, and C. Xue. 2021. Characterization and evaluation of inclusion complexes between astaxanthin esters with different molecular structures and hydroxypropyl-β-cyclodextrin. Food Hydrocolloids 110:106208. doi: 10.1016/j.foodhyd.2020.106208.
  • Ramos, O. L., R. N. Pereira, A. Martins, R. Rodrigues, C. Fucinos, J. A. Teixeira, L. Pastrana, F. X. Malcata, and A. A. Vicente. 2017. Design of whey protein nanostructures for incorporation and release of nutraceutical compounds in food. Critical Reviews in Food Science and Nutrition 57 (7):1377–93. doi: 10.1080/10408398.2014.993749.
  • Rao, A. R., V. Baskaran, R. Sarada, and G. A. Ravishankar. 2013. In vivo bioavailability and antioxidant activity of carotenoids from microalgal biomass — A repeated dose study. Food Research International 54 (1):711–7. doi: 10.1016/j.foodres.2013.07.067.
  • Raut, S. Y., A. S. N. Manne, G. Kalthur, S. Jain, and S. Mutalik. 2019. Cyclodextrins as carriers in targeted delivery of therapeutic agents: Focused review on traditional and Inimitable applications. Current Pharmaceutical Design 25 (4):444–54. doi: 10.2174/1381612825666190306163602.
  • Regnier, P., J. Bastias, V. Rodriguez-Ruiz, N. Caballero-Casero, C. Caballo, D. Sicilia, A. Fuentes, M. Maire, M. Crepin, D. Letourneur, et al. 2015. Astaxanthin from Haematococcus pluvialis prevents oxidative stress on human endothelial cells without toxicity. Marine Drugs 13 (5):2857–74. doi: 10.3390/md13052857.
  • Rezaei, A., M. Fathi, and S. M. Jafari. 2019. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids 88:146–62. doi: 10.1016/j.foodhyd.2018.10.003.
  • Ryu, S. K., T. J. King, K. Fujioka, J. Pattison, F. J. Pashkow, and S. Tsimikas. 2012. Effect of an oral astaxanthin prodrug (CDX-085) on lipoprotein levels and progression of atherosclerosis in LDLR-/- and ApoE(-/-) mice. Atherosclerosis 222 (1):99–105. doi: 10.1016/j.atherosclerosis.2012.02.002.
  • Salvia-Trujillo, L., M. Artiga-Artigas, A. Molet-Rodriguez, A. Turmo-Ibarz, and O. Martin-Belloso. 2018. Emulsion-based nanostructures for the delivery of active ingredients in foods. Frontiers in Sustainable Food Systems 2:79. doi: 10.3389/fsufs.2018.00079.
  • Sánchez-Juárez, C., D. Reyes-Duarte, M. Hernández-Guerrero, M. Morales-Ibarría, J. Campos-Terán, and I. J. Arroyo-Maya. 2019. α-Zein nanoparticles as delivery systems for hydrophobic compounds: Effect of assembly parameters. Revista Mexicana de Ingeniería Química 19 (2):803–12. doi: 10.24275/rmiq/Alim859.
  • Santonocito, D., G. Raciti, A. Campisi, G. Sposito, A. Panico, E. A. Siciliano, M. G. Sarpietro, E. Damiani, and C. Puglia. 2021. Astaxanthin-loaded stealth lipid nanoparticles (AST-SSLN) as potential carriers for the treatment of Alzheimer’s disease: Formulation development and optimization. Nanomaterials 11 (2):391. doi: 10.3390/nano11020391.
  • Seifried, H. E., D. E. Anderson, E. I. Fisher, and J. A. Milner. 2007. A review of the interaction among dietary antioxidants and reactive oxygen species. The Journal of Nutritional Biochemistry 18 (9):567–79. doi: 10.1016/j.jnutbio.2006.10.007.
  • Shadab, M., G. Mustafa, S. Baboota, and J. Ali. 2015. Nanoneurotherapeutics approach intended for direct nose to brain delivery. Drug Development and Industrial Pharmacy 41 (12):1922–34. doi: 10.3109/03639045.2015.1052081.
  • Shanmugapriya, K., and H. W. Kang. 2019. Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing: Review. Materials Science & Engineering. C, Materials for Biological Applications 105:110110. doi: 10.1016/j.msec.2019.110110.
  • Shanmugapriya, K., H. Kim, and H. W. Kang. 2019a. In vitro antitumor potential of astaxanthin nanoemulsion against cancer cells via mitochondrial mediated apoptosis. International Journal of Pharmaceutics 560:334–46. doi: 10.1016/j.ijpharm.2019.02.015.
  • Shanmugapriya, K., H. Kim, and H. W. Kang. 2019b. A new alternative insight of nanoemulsion conjugated with kappa-carrageenan for wound healing study in diabetic mice: In vitro and in vivo evaluation. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 133:236–50. doi: 10.1016/j.ejps.2019.04.006.
  • Shanmugapriya, K., H. Kim, P. S. Saravana, B. S. Chun, and H. W. Kang. 2018. Astaxanthin-alpha tocopherol nanoemulsion formulation by emulsification methods: Investigation on anticancer, wound healing, and antibacterial effects. Colloids and Surfaces. B, Biointerfaces 172:170–9. doi: 10.1016/j.colsurfb.2018.08.042.
  • Shanmugapriya, K., H. Kim, Y. W. Lee, and H. W. Kang. 2020. Cellulose nanocrystals/nanofibrils loaded astaxanthin nanoemulsion for the induction of apoptosis via ROS-dependent mitochondrial dysfunction in cancer cells under photobiomodulation. International Journal of Biological Macromolecules 149:165–77. doi: 10.1016/j.ijbiomac.2020.01.243.
  • Shen, M., K. Chen, J. Lu, P. Cheng, L. Xu, W. Dai, F. Wang, L. He, Y. Zhang, C. Wang, et al. 2014. Protective effect of astaxanthin on liver fibrosis through modulation of TGF-β1 Expression and Autophagy. Mediators of Inflammation 2014:954502. doi: 10.1155/2014/954502.
  • Shen, X., C. Zhao, J. Lu, and M. Guo. 2018. Physicochemical properties of whey-protein-stabilized astaxanthin nanodispersion and its transport via a Caco-2 monolayer. Journal of Agricultural and Food Chemistry 66 (6):1472–8. doi: 10.1021/acs.jafc.7b05284.
  • Simões, L., d. S. D. A. Madalena, A. C. Pinheiro, J. A. Teixeira, A. A. Vicente, and Ó. L. Ramos. 2017. Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Advances in Colloid and Interface Science 243:23–45. doi: 10.1016/j.cis.2017.02.010.
  • Singh, K. N., S. Patil, and H. Barkate. 2020. Protective effects of astaxanthin on skin: Recent scientific evidence, possible mechanisms, and potential indications. Journal of Cosmetic Dermatology 19 (1):22–7. doi: 10.1111/jocd.13019.
  • Small, D. M., S. A. Penkett, and D. Chapman. 1969. Studies on simple and mixed bile salt micelles by nuclear magnetic resonance spectroscopy. Biochimica et Biophysica Acta 176 (1):178–89. doi: 10.1016/0005-2760(69)90086-1.
  • Solans, C., P. Izquierdo, J. Nolla, N. Azemar, and M. J. Garcia-Celma. 2005. Nano-emulsions. Current Opinion in Colloid & Interface Science 10 (3–4):102–10. doi: 10.1016/j.cocis.2005.06.004.
  • Soukoulis, C., and T. Bohn. 2018. A comprehensive overview on the micro- and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids. Critical Reviews in Food Science and Nutrition 58 (1):1–36. doi: 10.1080/10408398.2014.971353.
  • Stachowiak, B., and P. Szulc. 2021. Astaxanthin for the food industry. Molecules 26 (9):2666. doi: 10.3390/molecules26092666.
  • Su, W., N. E. Polyakov, W. Xu, and W. Su. 2021. Preparation of astaxanthin micelles self-assembled by a mechanochemical method from hydroxypropyl β-cyclodextrin and glyceryl monostearate with enhanced antioxidant activity. International Journal of Pharmaceutics 605:120799. doi: 10.1016/j.ijpharm.2021.120799.
  • Sun, J., J. Yan, H. Dong, K. Gao, K. Yu, C. He, and X. Mao. 2022. Astaxanthin with different configurations: Sources, activity, post-modification and application in foods. Current Opinion in Food Science 49: 100955. doi: 10.1016/j.cofs.2022.100955.
  • Sun, J., Z. Wei, and C. Xue. 2021. Recent research advances in astaxanthin delivery systems: Fabrication technologies, comparisons and applications. Critical Reviews in Food Science and Nutrition. doi: 10.1080/10408398.2021.1989661.
  • Sun, R., N. Xia, and Q. Xia. 2019. Non-aqueous nanoemulsions as a new strategy for topical application of astaxanthin. Journal of Dispersion Science and Technology 41 (12):1777–88. doi: 10.1080/01932691.2019.1635027.
  • Suzuki, Y., K. Ohgami, K. Shiratori, X. H. Jin, I. Ilieva, Y. Koyama, K. Yazawa, K. Yoshida, S. Kase, and S. Ohno. 2006. Suppressive effects of astaxanthin against rat endotoxin-induced uveitis by inhibiting the NF-κB signaling pathway. Experimental Eye Research 82 (2):275–81. doi: 10.1016/j.exer.2005.06.023.
  • Sy, C., B. Gleize, O. Dangles, J. F. Landrier, C. C. Veyrat, and P. Borel. 2012. Effects of physicochemical properties of carotenoids on their bioaccessibility, intestinal cell uptake, and blood and tissue concentrations. Molecular Nutrition & Food Research 56 (9):1385–97. doi: 10.1002/mnfr.201200041.
  • Szente, L., and J. Szejtli. 2004. Cyclodextrins as food ingredients. Trends in Food Science & Technology 15 (3–4):137–42. doi: 10.1016/j.tifs.2003.09.019.
  • Takaki, A., D. Kawai, and K. Yamamoto. 2013. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH). International Journal of Molecular Sciences 14 (10):20704–28. doi: 10.3390/ijms141020704.
  • Tantisripreecha, C., M. Jaturanpinyo, B. Panyarachun, and N. Sarisuta. 2012. Development of delayed-release proliposomes tablets for oral protein drug delivery. Drug Development and Industrial Pharmacy 38 (6):718–27. doi: 10.3109/03639045.2011.623168.
  • Tenchov, R., R. Bird, A. E. Curtze, and Q. Zhou. 2021. Lipid nanoparticles-from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 15 (11):16982–7015. doi: 10.1021/acsnano.1c04996.
  • Thipparaboina, R., R. B. Chavan, D. Kumar, S. Modugula, and N. R. Shastri. 2015. Micellar carriers for the delivery of multiple therapeutic agents. Colloids and Surfaces. B, Biointerfaces 135:291–308. doi: 10.1016/j.colsurfb.2015.07.046.
  • Tingting, N., X. Rongrong, J. Ligang, W. Wei, Z. Zhanghe, S. Yuling, H. Lili, Z. Kaiqin, Z. Jiaxing, X. Qingshan, et al. 2018. Astaxanthin induces the Nrf2/HO-1 antioxidant pathway in human umbilical vein endothelial cells by generating trace amounts of ROS. Journal of Agricultural and Food Chemistry 66 (6):1551–9. doi: 10.1021/acs.jafc.7b05493.
  • Torchilin, V. P. 2012. Multifunctional nanocarriers. Advanced Drug Delivery Reviews 64:302–15. doi: 10.1016/j.addr.2012.09.031.
  • Ubbink, J., and J. Kruger. 2006. Physical approaches for the delivery of active ingredients in foods. Trends in Food Science & Technology 17 (5):244–54. doi: 10.1016/j.tifs.2006.01.007.
  • Uner, M., and G. Yener. 2007. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. International Journal of Nanomedicine 2 (3):289–300. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2676658/.
  • Veeruraj, A., L. Liu, J. Zheng, J. Wu, and M. Arumugam. 2019. Evaluation of astaxanthin incorporated collagen film developed from the outer skin waste of squid Doryteuthis singhalensis for wound healing and tissue regenerative applications. Materials Science & Engineering. C, Materials for Biological Applications 95:29–42. doi: 10.1016/j.msec.2018.10.055.
  • Vemula, V. R., V. Lagishetty, and S. Lingala. 2010. Solubility enhancement techniques. International Journal of Pharmaceutical Sciences Review and Research 5 (1):41–51. https://www.researchgate.net/publication/279591048_Solubility_Enhancement_Techniques.
  • Vieira, M. V., R. B. Derner, and E. Lemos-Senna. 2021. Preparation and characterization of Haematococcus pluvialis carotenoid-loaded PLGA nanocapsules in a gel system with antioxidant properties for topical application. Journal of Drug Delivery Science and Technology 61:102099. doi: 10.1016/j.jddst.2020.102099.
  • Wahab, N., R. A. M. M. R. M. M. Affandi, S. Fakurazi, E. Alias, and H. Hassan. 2022. Nanocarrier system: State-of-the-Art in oral delivery of astaxanthin. Antioxidants 11 (9):1676. doi: 10.3390/antiox11091676.
  • Wang, Q., Y. Zhao, L. Guan, Y. Zhang, Q. Dang, P. Dong, J. Li, and X. Liang. 2017. Preparation of astaxanthin-loaded DNA/chitosan nanoparticles for improved cellular uptake and antioxidation capability. Food Chemistry 227:9–15. doi: 10.1016/j.foodchem.2017.01.081.
  • Wibowo, S., J. Costa, M. C. Baratto, R. Pogni, S. Widyarti, A. Sabarudin, K. Matsuo, and S. B. Sumitro. 2022. Quantification and improvement of the dynamics of human serum albumin and glycated human serum albumin with astaxanthin/astaxanthin-metal ion complexes: Physico-chemical and computational approaches. International Journal of Molecular Sciences 23 (9):4771. doi: 10.3390/ijms23094771.
  • Wibowo, S., S. Widyarti, A. Sabarudin, D. W. Soeatmadji, and S. B. Sumitro. 2021. DFT and molecular dynamics studies of astaxanthin-metal ions (Cu2+ and Zn2+) complex to prevent glycated human serum albumin from possible unfolding. Heliyon 7 (3):e06548. doi: 10.1016/j.heliyon.2021.e06548.
  • Wu, H., H. Niu, A. Shao, C. Wu, B. J. Dixon, J. Zhang, S. Yang, and Y. Wang. 2015. Astaxanthin as a potential neuroprotective agent for neurological diseases. Marine Drugs 13 (9):5750–66. doi: 10.3390/md13095750.
  • Wu, L., W. Mo, J. Feng, J. Li, Q. Yu, S. Li, J. Zhang, K. Chen, J. Ji, W. Dai, et al. 2020. Astaxanthin attenuates hepatic damage and mitochondrial dysfunction in non-alcoholic fatty liver disease by up-regulating the FGF21/PGC-1α pathway. British Journal of Pharmacology 177 (16):3760–77. doi: 10.1111/bph.15099.
  • Wu, Q., X. S. Zhang, H. D. Wang, X. Zhang, Q. Yu, W. Li, M. L. Zhou, and X. L. Wang. 2014. Astaxanthin activates nuclear factor erythroid-related factor 2 and the antioxidant responsive element (Nrf2-ARE) pathway in the brain after subarachnoid hemorrhage in rats and attenuates early brain injury. Marine Drugs 12 (12):6125–41. doi: 10.3390/md12126125.
  • Wu, Y., Y. Wu, I. Chen, Y. Wu, C. Chuang, H. Huang, and S. Kuo. 2018. Reparative effects of astaxanthin-hyaluronan nanoaggregates against retrorsine-CCl4-induced liver fibrosis and necrosis. Molecules 23 (4):726. doi: 10.3390/molecules23040726.
  • Xiong, H., S. Wang, Z. Sun, J. Li, H. Zhang, W. Liu, J. Ruan, S. Chen, C. Gao, and C. Fan. 2022. The ROS‐responsive scavenger with intrinsic antioxidant capability and enhanced immunomodulatory effects for cartilage protection and osteoarthritis remission. Applied Materials Today 26:101366. doi: 10.1016/j.apmt.2022.101366.
  • Xu, L., H. Yu, H. Sun, X. Yu, and Y. Tao. 2019. Optimized nonionic emulsifier for the efficient delivery of astaxanthin nanodispersions to retina: In vivo and ex vivo evaluations. Drug Delivery 26 (1):1222–34. doi: 10.1080/10717544.2019.1682718.
  • Xu, Y., S. Wang, H. Chen, Y. Liu, H. Li, C. He, Z. Li, and M. Chen. 2017. Triphenylphosphonium-modified poly(ethylene glycol)-poly(epsilon-caprolactone) micelles for mitochondria- targeted gambogic acid delivery. International Journal of Pharmaceutics 522 (1–2):21–33. doi: 10.1016/j.ijpharm.2017.01.064.
  • Yang, C., L. F. Zhang, H. Zhang, Q. R. Sun, R. H. Liu, J. Li, L. Y. Wu, and R. Tsao. 2017. Rapid and efficient conversion of all-E-astaxanthin to 9Z- and 13Z-isomers and assessment of their stability and antioxidant activities. Journal of Agricultural and Food Chemistry 65 (4):818–26. doi: 10.1021/acs.jafc.6b04962.
  • Yang, J., Q. Zhou, Z. Huang, Z. Gu, L. Cheng, L. Qiu, and Y. Hong. 2021. Mechanisms of in vitro controlled release of astaxanthin from starch-based double emulsion carriers. Food Hydrocolloids 119:106837. doi: 10.1016/j.foodhyd.2021.106837.
  • Yang, L., X. Qiao, H. Nan, Y. Cao, J. Xu, and C. Xue. 2021. mPEG-carboxymethyl astaxanthin monoester: A novel hydrophilic astaxanthin with increased water solubility and bioavailability. LWT – Food Science and Technology 143:111134. doi: 10.1016/j.lwt.2021.111134.
  • Yin, Y., N. Xu, Y. Shi, B. Zhou, D. Sun, B. Ma, Z. Xu, J. Yang, and C. Li. 2021. Astaxanthin protects dendritic cells from lipopolysaccharide-induced immune dysfunction. Marine Drugs 19 (6):346. doi: 10.3390/md19060346.
  • Ying, C. J., F. Zhang, X. Y. Zhou, X. T. Hu, J. Chen, X. R. Wen, Y. Sun, K. Y. Zheng, R. X. Tang, and Y. J. Song. 2015. Anti-inflammatory effect of astaxanthin on the sickness behavior induced by diabetes mellitus. Cellular and Molecular Neurobiology 35 (7):1027–37. doi: 10.1007/s10571-015-0197-3.
  • You, Z. Q., Q. Wu, X. M. Zhou, X. S. Zhang, B. Yuan, L. L. Wen, W. D. Xu, S. Cui, X. L. Tang, and X. Zhang. 2019. Receptor-mediated delivery of astaxanthin-loaded nanoparticles to neurons: An enhanced potential for subarachnoid hemorrhage treatment. Frontiers in Neuroscience 13:989. doi: 10.3389/fnins.2019.00989.
  • Yu, H., H. Wang, W. Su, Y. Song, A. A. Zaky, A. M. Abd El-Aty, and M. Tan. 2022. Co-delivery of hydrophobic astaxanthin and hydrophilic phycocyanin by a pH-sensitive water-in-oil-in-water double emulsion-filled gellan gum hydrogel. Food Hydrocolloids 131:107810. doi: 10.1016/j.foodhyd.2022.107810.
  • Yuan, C., Z. Jin, and X. Xu. 2012. Inclusion complex of astaxanthin with hydroxypropyl-β-cyclodextrin: UV, FTIR, 1H NMR and molecular modeling studies. Carbohydrate Polymers 89 (2):492–6. doi: 10.1016/j.carbpol.2012.03.033.
  • Yuan, C., Z. Jin, X. Xu, H. Zhuang, and W. Shen. 2008. Preparation and stability of the inclusion complex of astaxanthin with hydroxypropyl-β-cyclodextrin. Food Chemistry 109 (2):264–8. doi: 10.1016/j.foodchem.2007.07.051.
  • Zanoni, F., M. Vakarelova, and G. Zoccatelli. 2019. Development and characterization of astaxanthin-containing whey protein-based nanoparticles. Marine Drugs 17 (11):627. doi: 10.3390/md17110627.
  • Zare, M., Z. Roshan, E. Assadpour, and S. M. Jafari. 2021. Improving the cancer prevention/treatment role of carotenoids through various nano-delivery systems. Critical Reviews in Food Science and Nutrition 61 (3):522–34. doi: 10.1080/10408398.2020.1738999.
  • Zhang, C., X. Tan, C. Lv, J. Zang, and G. Zhao. 2021. Shrimp ferritin greatly improves the physical and chemical stability of astaxanthin. Journal of Food Science 86 (12):5295–306. doi: 10.1111/1750-3841.15945.
  • Zhang, C., Y. Xu, S. Wu, W. Zheng, S. Song, and C. Ai. 2022. Fabrication of astaxanthin-enriched colon-targeted alginate microspheres and its beneficial effect on dextran sulfate sodium-induced ulcerative colitis in mice. International Journal of Biological Macromolecules 205:396–409. doi: 10.1016/j.ijbiomac.2022.02.057.
  • Zhang, J., and C. A. Peng. 2019. Enhanced proliferation and differentiation of mesenchymal stem cells by astaxanthin-encapsulated polymeric micelles. PloS One 14 (5):e0216755. doi: 10.1371/journal.pone.0216755.
  • Zhang, L., and H. Wang. 2015. Multiple mechanisms of anti-cancer effects exerted by astaxanthin. Marine Drugs 13 (7):4310–30. doi: 10.3390/md13074310.
  • Zhang, L., C. Zhou, X. Na, Y. Chen, and M. Tan. 2021. High internal phase Pickering emulsions stabilized by a cod protein-chitosan nanocomplex for astaxanthin delivery. Food & Function 12 (23):11872–82. doi: 10.1039/d1fo02117f.
  • Zhang, X., W. Zhao, L. Hu, L. Zhao, and J. Huang. 2011. Carotenoids inhibit proliferation and regulate expression of peroxisome proliferators-activated receptor gamma (PPAR gamma) in K562 cancer cells. Archives of Biochemistry and Biophysics 512 (1):96–106. doi: 10.1016/j.abb.2011.05.004.
  • Zhang, X., X. Zhao, S. Tie, J. Li, W. Su, and M. Tan. 2022. A smart cauliflower-like carrier for astaxanthin delivery to relieve colon inflammation. Journal of Controlled Release: Official Journal of the Controlled Release Society 342:372–87. doi: 10.1016/j.jconrel.2022.01.014.
  • Zhang, Z., W. Chen, X. Zhou, Q. Deng, X. Dong, C. Yang, and F. Huang. 2021. Astaxanthin-loaded emulsion gels stabilized by Maillard reaction products of whey protein and flaxseed gum: Physicochemical characterization and in vitro digestibility. Food Research International (Ottawa, ON) 144:110321. doi: 10.1016/j.foodres.2021.110321.
  • Zhao, T., D. Ma, A. Mulati, B. Zhao, F. Liu, and X. Liu. 2021. Development of astaxanthin-loaded layer-by-layer emulsions: Physicochemical properties and improvement of LPS-induced ­neuroinflammation in mice. Food & Function 12 (12):5333–50. doi: 10.1039/d0fo03018j.
  • Zhao, T., X. Yan, L. Sun, T. Yang, X. Hu, Z. He, F. Liu, and X. Liu. 2019. Research progress on extraction, biological activities and delivery systems of natural astaxanthin. Trends in Food Science & Technology 91:354–61. doi: 10.1016/j.tifs.2019.07.014.
  • Zhu, Y., Z. Gu, Y. Liao, S. Li, Y. Xue, M. A. Firempong, Y. Xu, J. Yu, H. D. Smyth, and X. Xu. 2022. Improved intestinal absorption and oral bioavailability of astaxanthin using poly (ethylene glycol)-graft-chitosan nanoparticles: Preparation, in vitro evaluation, and pharmacokinetics in rats. Journal of the Science of Food and Agriculture 102 (3):1002–11. doi: 10.1002/jsfa.11435.
  • Zuluaga, M., A. Barzegari, D. Letourneur, V. Gueguen, and G. Pavon-Djavid. 2017. Oxidative stress regulation on endothelial cells by hydrophilic astaxanthin complex: Chemical, biological, and molecular antioxidant activity evaluation. Oxidative Medicine and Cellular Longevity 2017:8073798. doi: 10.1155/2017/8073798.
  • Zuluaga, M., V. Gueguen, D. Letourneur, and G. Pavon-Djavid. 2018. Astaxanthin-antioxidant impact on excessive reactive oxygen species generation induced by ischemia and reperfusion injury. Chemico-Biological Interactions 279:145–58. doi: 10.1016/j.cbi.2017.11.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.