511
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Interactions between plant-derived antioxidants and cyclodextrins and their application for improving separation, detection, and food quality issues

, , , , , ORCID Icon, ORCID Icon, , , & ORCID Icon show all

References

  • Abeyrathne, E., K. Nam, X. Huang, and D. U. Ahn. 2022. Plant- and animal-based antioxidants’ structure, efficacy, mechanisms, and applications: A review. Antioxidants (Basel) 11 (5):1025. doi: 10.3390/antiox11051025.
  • Abril-Sanchez, C., A. Matencio, S. Navarro-Orcajada, F. Garcia-Carmona, and J. M. Lopez-Nicolas. 2019. Evaluation of the properties of the essential oil citronellal nanoencapsulated by cyclodextrins. Chemistry and Physics of Lipids 219:72–8. doi: 10.1016/j.chemphyslip.2019.02.001.
  • Allahyari, S., F. Zahednezhad, M. Khatami, N. Hashemzadeh, P. Zakeri-Milani, and F. Trotta. 2022. Cyclodextrin nanosponges as potential anticancer drug delivery systems to be introduced into the market, compared with liposomes. Journal of Drug Delivery Science and Technology 67:102931. doi: 10.1016/j.jddst.2021.102931.
  • Amani, F., A. Rezaei, M. S. Kharazmi, and S. M. Jafari. 2022. Loading ferulic acid into β-cyclodextrin nanosponges; antibacterial activity, controlled release and application in pomegranate juice as a copigment agent. Colloids and Surfaces A: Physicochemical and Engineering Aspects 649:129454. doi: 10.1016/j.colsurfa.2022.129454.
  • Aree, T. 2019. Understanding structures and thermodynamics of beta-cyclodextrin encapsulation of chlorogenic, caffeic and quinic acids: Implications for enriching antioxidant capacity and masking bitterness in coffee. Food Chemistry 293:550–60. doi: 10.1016/j.foodchem.2019.04.084.
  • Aree, T., and S. Jongrungruangchok. 2016. Crystallographic evidence for beta-cyclodextrin inclusion complexation facilitating the improvement of antioxidant activity of tea (+)-catechin and (-)-epicatechin. Carbohydrate Polymers 140:362–73. doi: 10.1016/j.carbpol.2015.12.066.
  • Aree, T., and S. Jongrungruangchok. 2018a. beta-Cyclodextrin encapsulation elevates antioxidant capacity of tea: A closing chapter on non-epicatechins, atomistic insights from X-ray analysis, DFT calculation and DPPH assay. Carbohydrate Polymers 194:24–33. doi: 10.1016/j.carbpol.2018.04.016.
  • Aree, T., and S. Jongrungruangchok. 2018b. Structure-antioxidant activity relationship of beta-cyclodextrin inclusion complexes with olive tyrosol, hydroxytyrosol and oleuropein: Deep insights from X-ray analysis, DFT calculation and DPPH assay. Carbohydrate Polymers 199:661–9. doi: 10.1016/j.carbpol.2018.07.019.
  • Burkeev, M., S. Fazylov, R. Bakirova, A. Iskineyeva, A. Sarsenbekova, E. Tazhbaev, and S. Davrenbekov. 2021. Thermal decomposition of β-cyclodextrin and its inclusion complex with vitamin E. Mendeleev Communications 31 (1):76–8. doi: 10.1016/j.mencom.2021.01.023.
  • Cai, R., Y. Yuan, L. Cui, Z. Wang, and T. Yue. 2018. Cyclodextrin-assisted extraction of phenolic compounds: Current research and future prospects. Trends in Food Science & Technology 79:19–27. doi: 10.1016/j.tifs.2018.06.015.
  • Celebioglu, A., and T. Uyar. 2020. Fast-dissolving antioxidant curcumin/cyclodextrin inclusion complex electrospun nanofibrous webs. Food Chemistry 317:126397. doi: 10.1016/j.foodchem.2020.126397.
  • Chen, L., W. Yang, C. Gao, X. Liao, J. Yang, and B. Yang. 2022. The complexes of cannabidiol mediated by bridged cyclodextrins dimers with high solubilization, in vitro antioxidant activity and cytotoxicity. Journal of Molecular Liquids 345:117017. doi: 10.1016/j.molliq.2021.117017.
  • Chen, X., J. Li, J. Li, L. Zhang, P. Zhao, C. Wang, J. J. Fei, and Y. Xie. 2022. Determination of luteolin in Chrysanthemum tea with a ultra-sensitive electrochemical sensor based on MoO3/poly(3,4-ethylene dioxythiophene)/gama-cyclodextrin metal-organic framework composites. Food Chemistry 397:133723. doi: 10.1016/j.foodchem.2022.133723.
  • Chen, Y., J. Su, W. Dong, D. Xu, L. Cheng, L. Mao, Y. X. Gao, and F. Yuan. 2022. Cyclodextrin-based metal-organic framework nanoparticles as superior carriers for curcumin: Study of encapsulation mechanism, solubility, release kinetics, and antioxidative stability. Food Chemistry 383:132605. doi: 10.1016/j.foodchem.2022.132605.
  • Chen, Y., K. Tai, P. Ma, J. Su, W. Dong, Y. X. Gao, L. Mao, J. F. Liu, and F. Yuan. 2021. Novel gamma-cyclodextrin-metal-organic frameworks for encapsulation of curcumin with improved loading capacity, physicochemical stability and controlled release properties. Food Chemistry 347:128978. doi: 10.1016/j.foodchem.2020.128978.
  • Cheng, H., L. Chen, D. J. McClements, H. Xu, J. Long, J. Zhao, Z. L. Xu, M. Meng, and Z. Jin. 2022. Recent advances in the application of nanotechnology to create antioxidant active food packaging materials. Critical Reviews in Food Science and Nutrition 2022:1–16. doi: 10.1080/10408398.2022.2128035.
  • Cheng, X. C., X. R. Guo, Z. Qin, H. M. Liu, J. R. He, and X. D. Wang. 2022. Sequential aqueous acetone fractionation and characterization of Brauns native lignin separated from Chinese quince fruit. International Journal of Biological Macromolecules 201:67–74. doi: 10.1016/j.ijbiomac.2021.12.114.
  • Cid-Samamed, A., J. Rakmai, J. C. Mejuto, J. Simal-Gandara, and G. Astray. 2022. Cyclodextrins inclusion complex: Preparation methods, analytical techniques and food industry applications. Food Chemistry 384:132467. doi: 10.1016/j.foodchem.2022.132467.
  • Das, S., Z. Gazdag, L. Szente, M. Meggyes, G. Horvath, B. Lemli, S. Kunsagi-Mate, M. Kuzma, and T. Koszegi. 2019. Antioxidant and antimicrobial properties of randomly methylated beta cyclodextrin-captured essential oils. Food Chemistry 278:305–13. doi: 10.1016/j.foodchem.2018.11.047.
  • de Souza, R. C., O. Valarini Júnior, K. H. Pinheiro, S. J. Klososki, T. C. Pimentel, L. Cardozo Filho, and C. E. Barão. 2017. Prebiotic green tea beverage added inclusion complexes of catechin and β-cyclodextrin: Physicochemical characteristics during storage. LWT - Food Science and Technology 85:212–7. doi: 10.1016/j.lwt.2017.07.022.
  • Debnath, S., N. Ballav, A. Maity, and K. Pillay. 2017. Competitive adsorption of ternary dye mixture using pine cone powder modified with β-cyclodextrin. Journal of Molecular Liquids 225:679–88. doi: 10.1016/j.molliq.2016.10.109.
  • Diamanti, A. C., P. E. Igoumenidis, I. Mourtzinos, K. Yannakopoulou, and V. T. Karathanos. 2017. Green extraction of polyphenols from whole pomegranate fruit using cyclodextrins. Food Chemistry 214:61–6. doi: 10.1016/j.foodchem.2016.07.072.
  • Durante, M., M. S. Lenucci, L. Gazza, F. Taddei, F. Nocente, G. E. De Benedetto, M. D. Caroli, G. Piro, and G. Mita. 2019. Bioactive composition and sensory evaluation of innovative spaghetti supplemented with free or alpha-cyclodextrin chlatrated pumpkin oil extracted by supercritical CO2. Food Chemistry 294:112–22. doi: 10.1016/j.foodchem.2019.05.032.
  • Elmore, J. S., A. Briddon, A. T. Dodson, N. Muttucumaru, N. G. Halford, and D. S. Mottram. 2015. Acrylamide in potato crisps prepared from 20 UK-grown varieties: Effects of variety and tuber storage time. Food Chemistry 182:1–8. doi: 10.1016/j.foodchem.2015.02.103.
  • Fanzone, M., S. Gonzalez-Manzano, J. Perez-Alonso, M. T. Escribano-Bailon, V. Jofre, M. Assof, and C. Santos-Buelga. 2015. Evaluation of dihydroquercetin-3-O-glucoside from Malbec grapes as copigment of malvidin-3-O-glucoside. Food Chemistry 175:166–73. doi: 10.1016/j.foodchem.2014.11.123.
  • Fateminasab, F., A. K. Bordbar, B. Asadi, S. Shityakov, A. Zare Karizak, I. Mohammadpoor-Baltork, and A. A. Saboury. 2022. Modified β-cyclodextrins: Rosmarinic acid inclusion complexes as functional food ingredients show improved operations (solubility, stability and antioxidant activity). Food Hydrocolloids 131:107731. doi: 10.1016/j.foodhyd.2022.107731.
  • Favre, L. C., G. Rolandelli, N. Mshicileli, L. N. Vhangani, C. Dos Santos Ferreira, J. van Wyk, and M. D. P. Buera. 2020. Antioxidant and anti-glycation potential of green pepper (Piper nigrum): Optimization of beta-cyclodextrin-based extraction by response surface methodology. Food Chemistry 316:126280. doi: 10.1016/j.foodchem.2020.126280.
  • Guo, Q., L. Jin, Z. A. Li, G. W. Huang, H. M. Liu, Z. Qin, X. D. Wang, and Y. X. Ma. 2022. Sequential extraction, preliminary characterization and functional properties of sesame (Sesamum indicum L.) hull polysaccharides. LWT – Food Science and Technology 164:113661. doi: 10.1016/j.lwt.2022.113661.
  • Gupta, B., P. Dalal, and R. Rao. 2021. Cyclodextrin decorated nanosponges of sesamol: Antioxidant, anti-tyrosinase and photostability assessment. Food Bioscience 42:101098. doi: 10.1016/j.fbio.2021.101098.
  • Halahlah, A., E. Kavetsou, I. Pitterou, S. Grigorakis, S. Loupassaki, L. A. Tziveleka, S. Kikionis, E. Ioannou, and A. Detsi. 2021. Synthesis and characterization of inclusion complexes of rosemary essential oil with various β-cyclodextrins and evaluation of their antibacterial activity against Staphylococcus aureus. Journal of Drug Delivery Science and Technology 65:102660. doi: 10.1016/j.jddst.2021.102660.
  • He, Y., X. Hou, J. Guo, Z. He, T. Guo, Y. Liu, Y. Zhang, J. Zhang, and N. Feng. 2020. Activation of a gamma-cyclodextrin-based metal-organic framework using supercritical carbon dioxide for high-efficient delivery of honokiol. Carbohydrate Polymers 235:115935. doi: 10.1016/j.carbpol.2020.115935.
  • Hu, Y., C. Qiu, Y. Qin, X. Xu, L. Fan, J. Wang, and Z. Jin. 2021. Cyclodextrin–phytochemical inclusion complexes: Promising food materials with targeted nutrition and functionality. Trends in Food Science & Technology 109:398–412. doi: 10.1016/j.tifs.2020.12.023.
  • Hu, Y., D. J. McClements, X. Li, L. Chen, J. Long, A. Jiao, F. Xie, J. Wang, Z. Jin, and C. Qiu. 2022. Improved art bioactivity by encapsulation within cyclodextrin carboxylate. Food Chemistry 384:132429. doi: 10.1016/j.foodchem.2022.132429.
  • Hu, Z., S. Li, S. Wang, B. Zhang, and Q. Huang. 2021. Encapsulation of menthol into cyclodextrin metal-organic frameworks: Preparation, structure characterization and evaluation of complexing capacity. Food Chemistry 338:127839. doi: 10.1016/j.foodchem.2020.127839.
  • Jeandet, P., E. Sobarzo-Sanchez, M. S. Uddin, R. Bru, C. Clement, C. Jacquard, S. F. Nabavi, M. Khayatkashani, G. E. Batiha, H. Khan, et al. 2021. Resveratrol and cyclodextrins, an easy alliance: Applications in nanomedicine, green chemistry and biotechnology. Biotechnology Advances 53:107844. doi: 10.1016/j.biotechadv.2021.107844.
  • Jiang, L., F. Liu, F. Wang, H. Zhang, and M. Kang. 2022a. Development and characterization of zein-based active packaging films containing catechin loaded β-cyclodextrin metal-organic frameworks. Food Packaging and Shelf Life 31:100810. doi: 10.1016/j.fpsl.2022.100810.
  • Jiang, L., F. Wang, M. Du, C. Xie, X. Xie, H. Zhang, X. Meng, A. Li, and T. Deng. 2022b. Encapsulation of catechin into nano-cyclodextrin-metal-organic frameworks: Preparation, characterization, and evaluation of storage stability and bioavailability. Food Chemistry 394:133553. doi: 10.1016/j.foodchem.2022.133553.
  • Jiang, S., T. Zhao, Y. Wei, Z. Cao, Y. Xu, J. Wei, F. Xu, H. Wang, and X. Shao. 2021. Preparation and characterization of tea tree oil/hydroxypropyl-β-cyclodextrin inclusion complex and its application to control brown rot in peach fruit. Food Hydrocolloids 121:107037. doi: 10.1016/j.foodhyd.2021.107037.
  • Kalantari, S., L. Roufegarinejad, S. Pirsa, and M. Gharekhani. 2020. Green extraction of bioactive compounds of pomegranate peel using β-Cyclodextrin and ultrasound. Main Group Chemistry 19 (1):61–80. doi: 10.3233/MGC-190821.
  • Kayaci, F., and T. Uyar. 2011. Solid inclusion complexes of vanillin with cyclodextrins: Their formation, characterization, and high-temperature stability. Journal of Agricultural and Food Chemistry 59 (21):11772–8. doi: 10.1021/jf202915c.
  • Kose, M. D., B. N. Tekin, and O. Bayraktar. 2021. Simultaneous isolation and selective encapsulation of volatile compounds from essential oil during electrospraying of beta-Cyclodextrin. Carbohydrate Polymers 258:117673. doi: 10.1016/j.carbpol.2021.117673.
  • Li, H., Q. S. Zhao, L. W. Wang, S. L. Chang, P. D. Wang, and B. Zhao. 2022. Optimization of cyclodextrin-assisted green extraction of cannabidiol from industrial hemp leaves: Release behavior, permeability, bioactivity, and stability. Industrial Crops and Products 188:115709. doi: 10.1016/j.indcrop.2022.115709.
  • Li, H., S. L. Chang, T. R. Chang, Y. You, X. D. Wang, L. W. Wang, and B. Zhao. 2021. Inclusion complexes of cannabidiol with β-cyclodextrin and its derivative: Physicochemical properties, water solubility, and antioxidant activity. Journal of Molecular Liquids 334:116070. doi: 10.1016/j.molliq.2021.116070.
  • Li, S., Y. Jiang, M. Wang, R. Li, J. Dai, J. Yan, W. Qin, and Y. Liu. 2022. 3D printing of essential oil/beta-cyclodextrin/popping candy modified atmosphere packaging for strawberry preservation. Carbohydrate Polymers 297:120037. doi: 10.1016/j.carbpol.2022.120037.
  • Liao, R., D. Jiang, Y. Liu, and P. Lv. 2022. Preparation of poly(ε-lysine)-cyclodextrin coated Fe3O4 nanoparticles for selective separation of natural medicine: Scutellarin. Advanced Powder Technology 33 (3):103473. doi: 10.1016/j.apt.2022.103473.
  • Lin, Y., R. Huang, X. Sun, X. Yu, Y. Xiao, L. Wang, W. Hu, and T. Zhong. 2022. The p-Anisaldehyde/β-cyclodextrin inclusion complexes as a sustained release agent: Characterization, storage stability, antibacterial and antioxidant activity. Food Control 132:108561. doi: 10.1016/j.foodcont.2021.108561.
  • Lu, L., G. Zheng, M. Wang, D. Wang, and Z. Xia. 2021. Microwave-prepared mesoporous graphene as adsorbent and matrix of surface-assisted laser desorption/ionization mass spectrometry for the enrichment and rapid detection of polyphenols in biological samples. Talanta 222:121365. doi: 10.1016/j.talanta.2020.121365.
  • Lucas Tenório, C. J., M. R. Assunção Ferreira, and L. A. Lira Soares. 2022. Recent advances on preparative LC approaches for polyphenol separation and purification: Their sources and main activities. Trends in Food Science & Technology 128:129–46. doi: 10.1016/j.tifs.2022.08.004.
  • Luo, J., J. Zhang, J. Lin, J. Wang, and P. Yang. 2014. Enrichment and sensitive detection of polyphenolic compounds via β-cyclodextrin functionalized fluorescent gold nanorods. Microchimica Acta 182 (1-2):201–8. doi: 10.1007/s00604-014-1312-8.
  • Ma, D., G. Hettiarachchi, D. Nguyen, B. Zhang, J. B. Wittenberg, P. Y. Zavalij, V. Briken, and L. Isaacs. 2012. Acyclic cucurbit[n]uril molecular containers enhance the solubility and bioactivity of poorly soluble pharmaceuticals. Nature Chemistry 4 (6):503–10. doi: 10.1038/nchem.1326.
  • Matencio, A., S. Navarro-Orcajada, F. García-Carmona, and J. M. Lopez-Nicolas. 2020. Applications of cyclodextrins in food science. A review. Trends in Food Science & Technology 104:132–43. doi: 10.1016/j.tifs.2020.08.009.
  • Maury, G. L., D. M. Rodriguez, S. Hendrix, J. C. E. Arranz, Y. F. Boix, A. O. Pacheco, J. G. Diaz, H. J. Morris‐Quevedo, A. F. Dubois, E. I. Aleman, et al. 2020. Antioxidants in plants: A valorization potential emphasizing the need for the conservation of plant biodiversity in Cuba. Antioxidants (Basel) 9 (11):1048. doi: 10.3390/antiox9111048.
  • Mishra, Y., H. I. M. Amin, V. Mishra, M. Vyas, P. K. Prabhakar, M. Gupta, M. M. Tambuwala, K. Sudhakar, S. Saini, A. Hromic-Jahjefendic, et al. 2022. Application of nanotechnology to herbal antioxidants as improved phytomedicine: An expanding horizon. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 153:113413. doi: 10.1016/j.biopha.2022.113413.
  • Muñoz-Shugulí, C., C. P. Vidal, P. Cantero-López, and J. Lopez-Polo. 2021. Encapsulation of plant extract compounds using cyclodextrin inclusion complexes, liposomes, electrospinning and their combinations for food purposes. Trends in Food Science & Technology 108:177–86. doi: 10.1016/j.tifs.2020.12.020.
  • Ono, N., F. Hirayama, H. Arima, K. Uekama, and J. H. Rytting. 2002. Model analysis for oral absorption of a drug/cyclodextrin complex involving competitive inclusion complexes. Journal of Inclusion Phenomena and Macrocyclic Chemistry 44 (1-4):93–6. doi: 10.1023/A:1023037016997.
  • Oo, A., K. Kerdpol, P. Mahalapbutr, and T. Rungrotmongkol. 2022a. Molecular encapsulation of emodin with various β-cyclodextrin derivatives: A computational study. Journal of Molecular Liquids 347:118002. doi: 10.1016/j.molliq.2021.118002.
  • Oo, A., P. Mahalapbutr, K. Krusong, P. Liangsakul, S. Thanasansurapong, V. Reutrakul, C. Kuhakarn, P. Maitarad, A. Silsirivanit, P. Wolschann, et al. 2022b. Inclusion complexation of emodin with various β-cyclodextrin derivatives: Preparation, characterization, molecular docking, and anticancer activity. Journal of Molecular Liquids 367:120314. doi: 10.1016/j.molliq.2022.120314.
  • Pérez-López, A. J., L. Noguera-Artiaga, S. López-Miranda González, P. Gómez-San Miguel, B. Ferrández, and A. A. Carbonell-Barrachina. 2021. Acrylamide content in French fries prepared with vegetable oils enriched with β-cyclodextrin or β-cyclodextrin-carvacrol complexes. LWT – Food Science and Technology 148:111765. doi: 10.1016/j.lwt.2021.111765.
  • Popović, B. M., B. Blagojević, D. Latković, D. Četojević-Simin, A. Z. Kucharska, F. Parisi, and G. Lazzara. 2021. A one step enhanced extraction and encapsulation system of cornelian cherry (Cornus mas L.) polyphenols and iridoids with β-cyclodextrin. LWT – Food Science and Technology 141:110884. doi: 10.1016/j.lwt.2021.110884.
  • Pragadheesh, V. S., A. Yadav, and C. S. Chanotiya. 2015. Role of substituents in cyclodextrin derivatives for enantioselective gas chromatographic separation of chiral terpenoids in the essential oils of Mentha spicata. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1002:30–41. doi: 10.1016/j.jchromb.2015.07.034.
  • Prasad Aryal, K., and H. Kyung Jeong. 2020. Electrochemical detection of ascorbic acid with chemically functionalized carbon nanofiber/β-cyclodextrin composite. Chemical Physics Letters 757:137881. doi: 10.1016/j.cplett.2020.137881.
  • Praveena, A., S. Prabu, F. Madi, and R. Rajamohan. 2021. Theoretical Investigation of Inclusion Complexes of 3-Hydroxyflavone and Quercetin as Guests with Native and Modified β-Cyclodextrins as Hosts. Polycyclic Aromatic Compounds 2021:1–13. doi: 10.1080/10406638.2021.2009526.
  • Qiu, C., D. J. McClements, Z. Jin, C. Wang, Y. Qin, X. Xu, and J. Wang. 2019. Development of nanoscale bioactive delivery systems using sonication: Glycyrrhizic acid-loaded cyclodextrin metal-organic frameworks. Journal of Colloid and Interface Science 553:549–56. doi: 10.1016/j.jcis.2019.06.064.
  • Reddy, C. K., E. S. Jung, S. Y. Son, and C. H. Lee. 2020. Inclusion complexation of catechins-rich green tea extract by β-cyclodextrin: Preparation, physicochemical, thermal, and antioxidant properties. LWT - Food Science and Technology 131:109723. doi: 10.1016/j.lwt.2020.109723.
  • Rezaei, A., S. Khavari, and M. Sami. 2021. Incorporation of thyme essential oil into the β-cyclodextrin nanosponges: Preparation, characterization and antibacterial activity. Journal of Molecular Structure 1241:130610. doi: 10.1016/j.molstruc.2021.130610.
  • Saha, S., A. Roy, K. Roy, and M. N. Roy. 2016. Study to explore the mechanism to form inclusion complexes of beta-cyclodextrin with vitamin molecules. Scientific Reports 6:35764. doi: 10.1038/srep35764.
  • Salehi, O., M. Sami, and A. Rezaei. 2021. Limonene loaded cyclodextrin nanosponge: Preparation, characterization, antibacterial activity and controlled release. Food Bioscience 42:101193. doi: 10.1016/j.fbio.2021.101193.
  • Samuelsen, L., R. Holm, and C. Schonbeck. 2020. Certain carboxylic acid buffers can destabilize beta-cyclodextrin complexes by competitive interaction. International Journal of Pharmaceutics 589:119774. doi: 10.1016/j.ijpharm.2020.119774.
  • Santos, E. H., J. A. Kamimura, L. E. Hill, and C. L. Gomes. 2015. Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT - Food Science and Technology 60 (1):583–92. doi: 10.1016/j.lwt.2014.08.046.
  • Shen, M., J. Zhou, M. Elhadidy, Y. Xian, J. Feng, D. Liu, and T. Ding. 2022. Cyclodextrin metal-organic framework by ultrasound-assisted rapid synthesis for caffeic acid loading and antibacterial application. Ultrasonics Sonochemistry 86:106003. doi: 10.1016/j.ultsonch.2022.106003.
  • Silva, F., F. Caldera, F. Trotta, C. Nerín, and F. C. Domingues. 2019. Encapsulation of coriander essential oil in cyclodextrin nanosponges: A new strategy to promote its use in controlled-release active packaging. Innovative Food Science & Emerging Technologies 56:102177. doi: 10.1016/j.ifset.2019.102177.
  • Simionato, I., F. C. Domingue, C. Nerin, and F. Silva. 2019. Encapsulation of cinnamon oil in cyclodextrin nanosponges and their potential use for antimicrobial food packaging. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 132:110647. doi: 10.1016/j.fct.2019.110647.
  • Singh, P., L. Wu, X. Ren, W. Zhang, Y. Tang, Y. Chen, A. Carrier, X. Zhang, and J. Zhang. 2020. Hyaluronic-acid-based beta-cyclodextrin grafted copolymers as biocompatible supramolecular hosts to enhance the water solubility of tocopherol. International Journal of Pharmaceutics 586:119542. doi: 10.1016/j.ijpharm.2020.119542.
  • Song, S., K. Gao, R. Niu, J. Wang, J. Zhang, C. Gao, B. Yang, and X. Liao. 2020. Inclusion complexes between chrysin and amino-appended beta-cyclodextrins (ACDs): Binding behavior, water solubility, in vitro antioxidant activity and cytotoxicity. Materials Science & Engineering C, Materials for Biological Applications 106:110161. doi: 10.1016/j.msec.2019.110161.
  • Su, Z., Y. Qin, K. Zhang, Y. Bi, and F. Kong. 2019. Inclusion complex of Exocarpium citri grandis essential oil with beta-cyclodextrin: Characterization, stability, and antioxidant activity. Journal of Food Science 84 (6):1592–9. doi: 10.1111/1750-3841.14623.
  • Tao, F., L. E. Hill, Y. Peng, and C. L. Gomes. 2014. Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications. LWT – Food Science and Technology 59 (1):247–55. doi: 10.1016/j.lwt.2014.05.037.
  • Terashima, H., M. Seki, S. Watanabe, A. Yamamoto, S. I. Aizawa, A. Taga, I. Mikami, and S. Kodama. 2022. Chiral separation of catechin and epicatechin by reversed phase high-performance liquid chromatography with beta-cyclodextrin stepwise and linear gradient elution modes. Journal of Chromatography. A 1673:463029. doi: 10.1016/j.chroma.2022.463029.
  • Tian, B., J. Liu, Y. Liu, and J. B. Wan. 2022. Integrating diverse plant bioactive ingredients with cyclodextrins to fabricate functional films for food application: A critical review. Critical Reviews in Food Science and Nutrition 2022:1–30. doi: 10.1080/10408398.2022.2045560.
  • Tong, S., M. Lu, C. Chu, J. Yan, J. Huang, and Y. Ying. 2016. Selective isolation of components from natural volatile oil by countercurrent chromatography with cyclodextrins as selective reagent. Journal of Chromatography. A 1444:99–105. doi: 10.1016/j.chroma.2016.03.071.
  • Wu, Y., Y. Xiao, Y. Yue, K. Zhong, Y. Zhao, and H. Gao. 2020. A deep insight into mechanism for inclusion of 2R,3R-dihydromyricetin with cyclodextrins and the effect of complexation on antioxidant and lipid-lowering activities. Food Hydrocolloids 103:105718. doi: 10.1016/j.foodhyd.2020.105718.
  • Xie, W., Y. Yu, M. Hou, Y. Zhang, H. Yu, H. Zhang, G. Zhang, H. Jing, and A. Chen. 2022. Simultaneous separation and determination of five chlorogenic acid isomers in Honeysuckle by capillary electrophoresis using self-synthesized ionic liquid [N-methylimidazole-beta-cyclodextrin] [bromide] as separation selector. Journal of Separation Science 45 (16):3197–207. doi: 10.1002/jssc.202200352.
  • Xu, P. W., X. F. Yuan, H. Li, Y. Zhu, and B. Zhao. 2023. Preparation, characterization, and physicochemical property of the inclusion complexes of Cannabisin A with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. Journal of Molecular Structure 1272:134168. doi: 10.1016/j.molstruc.2022.134168.
  • Yuan, L., S. Li, W. Zhou, Y. Chen, B. Zhang, and Y. Guo. 2019. Effect of morin-HP-β-CD inclusion complex on anti-ultraviolet and antioxidant properties of gelatin film. Reactive and Functional Polymers 137:140–6. doi: 10.1016/j.reactfunctpolym.2019.02.004.
  • Zhang, T., W. Huang, T. Jia, Y. Liu, and S. Yao. 2020. Ionic liquid@beta-cyclodextrin-gelatin composite membrane for effective separation of tea polyphenols from green tea. Food Chemistry 333:127534. doi: 10.1016/j.foodchem.2020.127534.
  • Zhang, Y., Y. Cao, X. Meng, P. Prawang, and H. Wang. 2021. Extraction of artemisinin with hydroxypropyl-β-cyclodextrin aqueous solution for fabrication of drinkable extract. Green Chemical Engineering 2 (2):197–206. doi: 10.1016/j.gce.2020.09.007.
  • Zhang, Z. H., C. Qiu, X. J. Li, D. J. McClements, A. Q. Jiao, J. P. Wang, and Z. Y. Jin. 2021. Advances in research on interactions between polyphenols and biology-based nano-delivery systems and their applications in improving the bioavailability of polyphenols. Trends in Food Science & Technology 116:492–500. doi: 10.1016/j.tifs.2021.08.009.
  • Zhao, J., G. Zhao, and Y. Liu. 2019. Antibacterial activity of a hexahydro‐β‐acids/methyl‐β‐cyclodextrin inclusion complex against bacteria related to foodborne illness. Journal of Food Safety 39 (5):12678. doi: 10.1111/jfs.12678.
  • Zhao, P., M. Ni, Y. Xu, C. Wang, C. Chen, X. Zhang, C. Li, Y. Xie, and J. Fei. 2019. A novel ultrasensitive electrochemical quercetin sensor based on MoS2–carbon nanotube @ graphene oxide nanoribbons/HS-cyclodextrin/graphene quantum dots composite film. Sensors and Actuators B: Chemical 299:126997. doi: 10.1016/j.snb.2019.126997.
  • Zhong, Y., P. Han, S. Sun, N. An, X. Ren, S. Lu, Q. Wang, and J. Dong. 2022. Effects of apple polyphenols and hydroxypropyl-beta-cyclodextrin inclusion complexes on the oxidation of myofibrillar proteins and microstructures in lamb during frozen storage. Food Chemistry 375:131874. doi: 10.1016/j.foodchem.2021.131874.
  • Zhu, S., X. Lin, Q. Wang, Q. Xia, P. Ran, and Y. Fu. 2017. A Novel Solid-state Electrochemiluminescent Enantioselective Sensor for Ascorbic Acid and Isoascorbic Acid. Electroanalysis 29 (2):466–71. doi: 10.1002/elan.201600329.
  • Zhu, W., Y. Lv, Q. Yang, Y. Zu, and X. Zhao. 2022. Artemisinin hydroxypropyl-beta-cyclodextrin inclusion complex loaded with porous starch for enhanced bioavailability. International Journal of Biological Macromolecules 211:207–17. doi: 10.1016/j.ijbiomac.2022.04.170.
  • Zhu, Y. Y., H. J. Chen, L. Y. Lou, Y. X. Chen, X. Q. Ye, and J. C. Chen. 2020. Copigmentation effect of three phenolic acids on color and thermal stability of Chinese bayberry anthocyanins. Food Science & Nutrition 8 (7):3234–42. doi: 10.1002/fsn3.1583.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.