860
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Microalgae protein digestibility: How to crack open the black box?

, , , , &

References

  • Abiusi, F., G. Sampietro, G. Marturano, N. Biondi, L. Rodolfi, M. D’Ottavio, and M. R. Tredici. 2014. Growth, photosynthetic efficiency, and biochemical composition of Tetraselmis suecica F&M-M33 grown with LEDs of different colors. Biotechnology and Bioengineering 111 (5):956–64. doi: 10.1002/bit.25014.
  • Agboola, J. O., E. Teuling, P. A. Wierenga, H. Gruppen, and J. W. Schrama. 2019. Cell wall disruption: An effective strategy to improve the nutritive quality of microalgae in African catfish (Clarias gariepinus). Aquaculture Nutrition 25:783–97. doi: 10.1111/anu.12896.
  • Agengo, F. B., A. N. Onyango, C. A. Serrem, and J. Okoth. 2020. Efficacy of compositing with snail meat powder on protein nutritional quality of sorghum-wheat buns using a rat bioassay. Journal of the Science of Food and Agriculture 100 (7):2963–70. doi: 10.1002/jsfa.10324.
  • Alhattab, M., A. Kermanshahi-Pour, and M. S. L. Brooks. 2019. Microalgae disruption techniques for product recovery: Influence of cell wall composition. Journal of Applied Phycology 31:61–88. doi: 10.1007/s10811-018-1560-9.
  • Allied Market Research. 2022. https://www.alliedmarketresearch.com/microalgae-market-A13419. Accessed January 30, 2022.
  • Altmann, B. A., C. Neumann, S. Velten, F. Liebert, and D. Mörlein. 2018. Meat quality derived from high inclusion of a micro-alga or insect meal as an alternative protein source in poultry diets: A pilot study. Foods 7:34.
  • AOAC. 2000. Official methods of analysis of the Association of Official Analytical Chemists International. 17th Edition. Section 45.3.06 (AOAC Official Method 991.29, True Protein Digestibility of Foods and Food Ingredients, Rat Bioassay); Journal of AOAC International: Gaithersburg, MD, USA.
  • AOAC. 2005. Pepsin digestibility of animal protein feeds. In Official methods of analysis of AOAC International, 18th ed., 39–40. Gaithersburg, MD: AOAC International.
  • Araújo, R., F. Vázquez Calderón, J. Sánchez López, I. C. Azevedo, A. Bruhn, S. Fluch, M. Garcia Tasende, F. Ghaderiardakani, T. Ilmjärv, and M. Laurans. 2021. Current status of the algae production industry in Europe: An emerging sector of the blue bioeconomy. Frontiers in Marine Science 7:1247. doi: 10.3389/fmars.2020.626389.
  • Araya, M., S. García, J. Rengel, S. Pizarro, and G. Álvarez. 2021. Determination of free and protein amino acid content in microalgae by HPLC-DAD with pre-column derivatization and pressure hydrolysis. Marine Chemistry 234:103999. doi: 10.1016/j.marchem.2021.103999.
  • Barbé, F., O. Ménard, Y. L. Gouar, C. Buffière, M.-H. Famelart, B. Laroche, S. L. Feunteun, D. Rémond, and D. Dupont. 2014. Acid and rennet gels exhibit strong differences in the kinetics of milk protein digestion and amino acid bioavailability. Food Chemistry 143:1–8. doi: 10.1016/j.foodchem.2013.07.100.
  • Batista, A. P., A. Niccolai, I. Bursic, I. Sousa, A. Raymundo, L. Rodolfi, N. Biondi, and M. R. Tredici. 2019. Microalgae as functional ingredients in savory food products: Application to wheat crackers. Foods 8:611. doi: 10.3390/foods8120611.
  • Batista, A. P., A. Niccolai, P. Fradinho, S. Fragoso, I. Bursic, L. Rodolfi, N. Biondi, M. R. Tredici, I. Sousa, and A. Raymundo. 2017. Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Research 26:161–71. doi: 10.1016/j.algal.2017.07.017.
  • Batista, A. P., L. Ambrosano, S. Graça, C. Sousa, P. Marques, B. Ribeiro, E. P. Botrel, P. Castro Neto, and L. Gouveia. 2015. Combining urban wastewater treatment with biohydrogen production - An integrated microalgae-based approach. Bioresource Technology 184:230–5. doi: 10.1016/j.biortech.2014.10.064.
  • Batista, S., M. Pintado, A. Marques, H. Abreu, J. L. Silva, F. Jessen, F. Tulli, and L. M. P. Valente. 2020. Use of technological processing of seaweed and microalgae as strategy to improve their apparent digestibility coefficients in European seabass (Dicentrarchus labrax) juveniles. Journal of Applied Phycology 32:3429–46. doi: 10.1007/s10811-020-02185-2.
  • Baune, M. C., A. L. Jeske, A. Profeta, S. Smetana, K. Broucke, G. Van Royen, M. Gibis, J. Weiss, and N. Terjung. 2021. Effect of plant protein extrudates on hybrid meatballs – Changes in nutritional composition and sustainability. Future Foods 4:100081.
  • Becker, E. W. 2007. Micro-algae as a source of protein. Biotechnology Advances 25 (2):207–10. doi: 10.1016/j.biotechadv.2006.11.002.
  • Bernaerts, T. M. M., L. Gheysen, I. Foubert, M. E. Hendrickx, and A. M. Van Loey. 2019. Evaluating microalgal cell disruption upon ultra high pressure homogenization. Algal Research 42:101616.
  • Bernaerts, T. M. M., H. Verstreken, C. Dejonghe, L. Gheysen, I. Foubert, T. Grauwet, and A. M. Van Loey. 2020. Cell disruption of Nannochloropsis sp. improves in vitro bioaccessibility of carotenoids and ω3-LC-PUFA. Journal of Functional Foods 65:103770.
  • Bohn, T., F. Carriere, L. Day, A. Deglaire, L. Egger, D. Freitas, M. Golding, S. Le Feunteun, A. Macierzanka, O. Menard, et al. 2018. Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Critical Reviews in Food Science and Nutrition 58:2239–61.
  • Boisen, S., and J. A. Fernández. 1997. Prediction of the total tract digestibility of energy in feedstuffs and pig diets by in vitro analyses. Animal Feed Science and Technology 68:277–86.
  • Booth, M. A., and I. Pirozzi. 2021. The digestibility of raw materials by barramundi Lates calcarifer: Emphasis on the effect of inclusion rate on the digestibility of soybean meal and soy protein concentrate. Animal Feed Science and Technology 273:114800.
  • Boukid, F., and M. Castellari. 2021. Food and beverages containing algae and derived ingredients launched in the market from 2015 to 2019: A front-of-pack labeling perspective with a special focus on Spain. Foods 10:173.
  • Boukid, F., and M. Gagaoua. 2022. Vegan egg: A future-proof food ingredient? Foods 11:161.
  • Boukid, F., C. M. Rosell, S. Rosene, S. Bover-Cid, and M. Castellari. 2021. Non-animal proteins as cutting-edge ingredients to reformulate animal-free foodstuffs: Present status and future perspectives. Critical Reviews in Food Science and Nutrition 137:1–31.
  • Brodkorb, A., L. Egger, M. Alminger, P. Alvito, R. Assunção, S. Ballance, T. Bohn, C. Bourlieu-Lacanal, R. Boutrou, F. Carrière, et al. 2019. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols 14:991–1014.
  • Burks, A. W., L. W. Williams, W. Thresher, C. Connaughton, G. Cockrell, and R. M. Helm. 1992. Allergenicity of peanut and soybean extracts altered by chemical or thermal denaturation in patients with atopic dermatitis and positive food challenges. The Journal of Allergy and Clinical Immunology 90 (6 Pt 1):889–97. doi: 10.1016/0091-6749(92)90461-a.
  • Butts, C. A., J. A. Monro, and P. J. Moughan. 2012. In vitro determination of dietary protein and amino acid digestibility for humans. British Journal of Nutrition 108:282–86.
  • Callejo-López, J. A., M. Ramírez, D. Cantero, and J. Bolívar. 2020. Versatile method to obtain protein- and/or amino acid-enriched extracts from fresh biomass of recalcitrant microalgae without mechanical pretreatment. Algal Research 50:102010.
  • Caporgno, M. P., and A. Mathys. 2018. Trends in microalgae incorporation into innovative food products with potential health benefits. Frontiers in Nutrition 5:85.
  • Cavonius, L. R., E. Albers, and I. Undeland. 2015. pH-shift processing of Nannochloropsis oculata microalgal biomass to obtain a protein-enriched food or feed ingredient. Algal Research 11:95–102.
  • Cavonius, L. R., E. Albers, and I. Undeland. 2016. In vitro bioaccessibility of proteins and lipids of pH-shift processed Nannochloropsis oculata microalga. Food & Function 7 (4):2016–24. doi: 10.1039/c5fo01144b.
  • Cerri, R., A. Niccolai, G. Cardinaletti, F. Tulli, F. Mina, E. Daniso, T. Bongiorno, G. Chini Zittelli, N. Biondi, M. R. Tredici, et al. 2021. Chemical composition and apparent digestibility of a panel of dried microalgae and cyanobacteria biomasses in rainbow trout (Oncorhynchus mykiss). Aquaculture 544:737075.
  • Changi, S. M., J. L. Faeth, N. Mo, and P. E. Savage. 2015. Hydrothermal reactions of biomolecules relevant for microalgae liquefaction. Industrial and Engineering Chemistry Research 54:11733–58.
  • Choi, Y. K., H. J. Kim, R. S. Kumaran, H. J. Song, K. G. Song, K. J. Kim, S. H. Lee, Y. H. Yang, and H. J. Kim. 2017. Enhanced growth and total fatty acid production of microalgae under various lighting conditions induced by flashing light. Engineering in Life Sciences 17:976.
  • Chronakis, I. S., and M. Madsen. 2011. Algal proteins. In Handbook of food proteins, eds. G. O. Phillips and P. A. Williams, 353–394. Sawston, UK: Woodhead Publishing Series in Food Sciences, Technology and Nutrition.
  • Coelho, D., P. A. Lopes, V. Cardoso, P. Ponte, J. Brás, M. S. Madeira, C. M. Alfaia, N. M. Bandarra, C. M. G. A. Fontes, and J. A. M. Prates. 2020. A two‐enzyme constituted mixture to improve the degradation of Arthrospira platensis microalga cell wall for monogastric diets. Journal of Animal Physiology and Animal Nutrition (Berlin) 104:310.
  • Colla, E., A. L. L. Menegotto, D. L. Kalschne, R. A. da Silva-Buzanello, C. Canan, and D. A. Drunkler. 2020. Microalgae: A new and promising source of food. In Handbook of algal science, technology and medicine, 507–18. London: Academic Press.
  • Conde, T. A., B. F. Neves, D. Couto, T. Melo, B. Neves, M. Costa, J. Silva, P. Domingues, and M. R. Domingues. 2021. Microalgae as sustainable bio-factories of healthy lipids: Evaluating fatty acid content and antioxidant activity. Marine Drugs 19:357.
  • Coronado-Reyes, J. A., J. A. Salazar-Torres, B. Juárez-Campos, and J. C. González-Hernández. 2020. Chlorella vulgaris, a microalgae important to be used in Biotechnology: A review. Food Science and Technology 42:e37320.
  • Cruz, G., M. Oliveira, N. Costa, C. Pires, R. Cruz, and M. Moreira. 2005. Comparação entre a digestibilidade proteina in vitro e in vivo de diferentes cultivares de feijão (Phaseolus vulgaris L.) armazenados por 30 dias. Alimentos e Nutrição Araraquara 16:265–71.
  • D’Hondt, E., J. Martín-Juárez, S. Bolado, J. Kasperoviciene, J. Koreiviene, S. Sulcius, K. Elst, and L. Bastiaens. 2017. Cell disruption technologies. In Microalgae-based biofuels and bioproducts: From feedstock cultivation to end-products, ed. C. Gonzalez-Fernandez and R. Muñoz, 133–54. Sawston, United Kingdom: Woodhead Publishing.
  • Deglaire, A., and P. J. Moughan. 2012. Animal models for determining amino acid digestibility in humans – A review. British Journal of Nutrition 108:S273–S281. doi: 10.1017/S0007114512002346.
  • Deglaire, A., C. Bos, D. Tomé, and P. J. Moughan. 2009. Ileal digestibility of dietary protein in the growing pig and adult human. The British Journal of Nutrition 102 (12):1752–9. doi: 10.1017/S0007114509991267.
  • Devi, M. A., G. Subbulakshmi, K. M. Devi, and L. V. Venkataraman. 1981. Studies on the proteins of mass-cultivated, blue-green alga (Spirulina platensis). Journal of Agricultural and Food Chemistry 29 (3):522–5. doi: 10.1021/jf00105a022.
  • Devi, S., A. Varkey, M. S. Sheshshayee, T. Preston, and A. V. Kurpad. 2018. Measurement of protein digestibility in humans by a dual-tracer method. The American Journal of Clinical Nutrition 107 (6):984–91. doi: 10.1093/ajcn/nqy062.
  • Doucha, J., and K. Lívanský. 2008. Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers. Applied Microbiology and Biotechnology 81 (3):431–40. doi: 10.1007/s00253-008-1660-6.
  • Dufour, C., M. Loonis, M. Delosière, C. Buffière, N. Hafnaoui, V. Santé-Lhoutellier, and D. Rémond. 2018. The matrix of fruit & vegetables modulates the gastrointestinal bioaccessibility of polyphenols and their impact on dietary protein digestibility. Food Chemistry 240:314–22. doi: 10.1016/j.foodchem.2017.07.104.
  • Ellner, C., B. Martínez-Vallespín, E. M. Saliu, J. Zentek, and I. Röhe. 2021. Effects of cereal and protein source on performance, apparent ileal protein digestibility and intestinal characteristics in weaner piglets. Archives of Animal Nutrition 75 (4):263–77. doi: 10.1080/1745039X.2021.1958647.
  • Enzing, C., M. Ploeg, M. Barbosa, and L. Sijtsma. 2014. Microalgae-based products for the food and feed sector: An outlook for Europe. Luxembourg: Publications Office of the European Union.
  • Ermis, H., and M. Altinbas. 2020. Effect of salinity on mixed microalgae grown in anaerobic liquid digestate. Water and Environment Journal 34:820–30. doi: 10.1111/wej.12580.
  • FAO. 2013. Dietary protein quality evaluation in human nutrition Report of an FAO Expert Consultation. Rome: Food and Agriculture Organization of the United Nations.
  • FAO/WHO. 1991. Protein quality evaluation: Report of the joint FAO/WO expert consultation. FAO Food and Nutrition. Paper, 51.
  • FAO/WHO. 2007. Accessed February 9, 2023. https://apps.who.int/iris/handle/10665/43411.
  • Foo, S. C., K. S. Khoo, C. W. Ooi, P. L. Show, N. M. H. Khong, and F. M. Yusoff. 2020. Meeting sustainable development goals: Alternative extraction processes for fucoxanthin in algae. Frontiers in Bioengineering and Biotechnology 8:546067. doi: 10.3389/fbioe.2020.546067.
  • Fradinho, P., A. Niccolai, R. Soares, L. Rodolfi, N. Biondi, M. R. Tredici, I. Sousa, and A. Raymundo. 2020. Effect of Arthrospira platensis (spirulina) incorporation on the rheological and bioactive properties of gluten-free fresh pasta. Algal Research 45:101743.
  • Gan, Q., J. Jiang, X. Han, S. Wang, and Y. Lu. 2018. Engineering the chloroplast genome of oleaginous marine microalga nannochloropsis oceanica. Frontiers in Plant Science 9:439.
  • Gantt, E., and C. A. Lipschultz. 1974. Phycobilisomes of Porphyridium cruentum: Pigment analysis. Biochemistry 13 (14):2960–6. doi: 10.1021/bi00711a027.
  • Gauthier, S. F., C. Vachon, J. D. Jones, and L. Savoie. 1982. Assessment of protein digestibility by in vitro enzymatic hydrolysis with simultaneous dialysis. The Journal of Nutrition 112 (9):1718–25. doi: 10.1093/jn/112.9.1718.
  • Gerde, J. A., T. Wang, L. Yao, S. Jung, L. A. Johnson, and B. Lamsal. 2013. Optimizing protein isolation from defatted and non-defatted Nannochloropsis microalgae biomass. Algal Research 2:145–53.
  • Gerken, H. G., B. Donohoe, and E. P. Knoshaug. 2013. Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta 237 (1):239–53. doi: 10.1007/s00425-012-1765-0.
  • GfE Society of Nutrition Physiology. 2006. Recommendations for the supply of energy and nutrients to pigs energy and nutrients requirements for livestock. Committee for Requirement Standards of the Society of Nutrition Physiology. Frankfurt am Main, Germany: DLG-Verlags GmbH.
  • Glencross, B., D. Blyth, N. Wade, and S. Arnold. 2018. Critical variability exists in the digestible value of raw materials fed to black tiger shrimp, Penaeus monodon: The characterisation and digestibility assessment of a series of research and commercial raw materials. Aquaculture 495:214–21.
  • Gong, Y., H. A. D. S. Guterres, M. Huntley, M. Sørensen, and V. Kiron. 2018. Digestibility of the defatted microalgae Nannochloropsis sp. and Desmodesmus sp. when fed to Atlantic salmon, Salmo salar. Aquaculture Nutrition 24:56–64.
  • Gorissen, S. H. M., J. J. R. Crombag, J. M. G. Senden, W. A. H. Waterval, J. Bierau, L. B. Verdijk, and L. v. Loon. 2018. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acid 50:1685–95.
  • Graziani, G., S. Schiavo, M. A. Nicolai, S. Buono, V. Fogliano, G. Pinto, and A. Pollio. 2013. Microalgae as human food: Chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria. Food & Function 4 (1):144–52. doi: 10.1039/c2fo30198a.
  • Grela, E. R., B. Kiczorowska, W. Samolińska, J. Matras, P. Kiczorowski, W. Rybiński, and E. Hanczakowska. 2017. Chemical composition of leguminous seeds: Part I—content of basic nutrients, amino acids, phytochemical compounds, and antioxidant activity. European Food Research and Technology 243:1385–95.
  • Grossmann, L., S. Ebert, J. Hinrichs, and J. Weiss. 2018. Production of protein-rich extracts from disrupted microalgae cells: Impact of solvent treatment and lyophilization. Algal Research 36:67–76.
  • Guccione, A., N. Biondi, G. Sampietro, L. Rodolfi, N. Bassi, and M. R. Tredici. 2014. Chlorella for protein and biofuels: From strain selection to outdoor cultivation in a Green Wall Panel photobioreactor. Biotechnology for Biofuels 7:84.
  • Guillin, F. M., C. Gaudichon, L. Guérin-Deremaux, C. Lefranc-Millot, G. Airinei, N. Khodorova, R. Benamouzig, P. H. Pomport, J. Martin, and J. Calvez. 2022. Real ileal amino acid digestibility of pea protein compared to casein in healthy humans: A randomized trial. The American Journal of Clinical Nutrition 115 (2):353–63. doi: 10.1093/ajcn/nqab354.
  • Guillin, F. M., C. Gaudichon, L. Guérin-Deremaux, C. Lefranc-Millot, D. Azzout-Marniche, N. Khodorova, and J. Calvez. 2021. Multi-criteria assessment of pea protein quality in rats: A comparison between casein, gluten and pea protein alone or supplemented with methionine. The British Journal of Nutrition 125 (4):389–97. doi: 10.1017/S0007114520002883.
  • Guiry, M. D., and G. M. Guiry. 2022. https://www.algaebase.org.
  • Hedenskog, G. 1978. Properties and composition op single-cell protein, influence op processing. In Biochemical aspects of new protein food, 73–88.
  • Hedenskog, G., L. Enebo, J. Vendlová, and B. Prokeš. 1969. Investigation of some methods for increasing the digestibility in vitro of microalgae. Biotechnology and Bioengineering 11 (1):37–51. doi: 10.1002/bit.260110104.
  • Hendriks, W. H., Van Baal, J., and Bosch, G. 2012. Ileal and faecal protein digestibility measurement in humans and other non-ruminants - A comparative species view. British Journal of Nutrition 108:S247–S257.
  • Hoa, N. T. Q., L. N. Tam, L. V. T. Phu, T. Thai, D. C. Van Nguyen, and D. T. A. Dao. 2019. Manufacturing process, in vivo and in vitro digestibility assessment of an enteral feeding product hydrolyzed from locally available ingredients using commercial enzymes. Process 7:347.
  • Hori, K., T. Ueno-Mohri, T. Okita, and G. Ishibashi. 1990. Chemical composition, in vitro protein digestibility and in vitro available iron of blue green alga, Nostoc commune. Plant Foods for Human Nutrition 40:223–9.
  • Huang, Y., S. Qin, D. Zhang, L. Li, and Y. Mu. 2016. Evaluation of cell disruption of chlorella vulgaris by pressure-assisted ozonation and ultrasonication. Energies 9:173.
  • Hughes, G. J., D. J. Ryan, R. Mukherjea, and C. S. Schasteen. 2011. Protein digestibility-corrected amino acid scores (PDCAAS) for soy protein isolates and concentrate: Criteria for evaluation. Journal of Agricultural and Food Chemistry 59 (23):12707–12. doi: 10.1021/jf203220v.
  • Hw Hsu, D. 1977. A multienzyme technique for estimating protein digestibility. Journal of Food Science 42:1269–73.
  • James, K. A. C., C. A. Butts, J. P. Koolaard, H. E. Donaldson, M. F. Scott, and P. J. Moughan. 2002. The effect of feeding regimen on apparent and true ileal nitrogen digestibility for rats fed diets containing different sources of protein. Journal of the Science of Food and Agriculture 82:1050–60.
  • Janczyk, P., H. Franke, and W. B. Souffrant. 2007. Nutritional value of Chlorella vulgaris: Effects of ultrasonication and electroporation on digestibility in rats. Animal Feed Science and Technology 132:163–9.
  • Jepsen, P. M., C. V. Thoisen, T. Carron-Cabaret, A. Pinyol-Gallemí, S. L. Nielsen, and B. W. Hansen. 2019. Effects of salinity, commercial salts, and water type on cultivation of the cryptophyte microalgae Rhodomonas salina and the Calanoid Copepod Acartia tonsa. Journal of the World Aquaculture Society 50:104–18.
  • Kalia, S., and X. G. Lei. 2022. Dietary microalgae on poultry meat and eggs: Explained versus unexplained effects. Current Opinion in Biotechnology 75:102689. doi: 10.1016/j.copbio.2022.102689.
  • Kannaujiya, V. K., D. Kumar, V. Singh, and R. P. Sinha. 2021. Advances in phycobiliproteins research: Innovations and commercialization. In Natural bioactive compounds, 57–81. London: Academic Press.
  • Ketnawa, S., and Y. Ogawa. 2019. Evaluation of protein digestibility of fermented soybeans and changes in biochemical characteristics of digested fractions. Journal of Functional Foods 52:640–7.
  • Khemiri, S., M. C. Nunes, R. J. B. Bessa, S. P. Alves, I. Smaali, and A. Raymundo. 2021. Technological feasibility of couscous-algae-supplemented formulae: Process description, nutritional properties and in vitro digestibility. Foods 10:3159.
  • Kibria, S., and I. H. Kim. 2019. Impacts of dietary microalgae (Schizochytrium JB5) on growth performance, blood profiles, apparent total tract digestibility, and ileal nutrient digestibility in weaning pigs. Journal of the Science of Food and Agriculture 99 (13):6084–8.
  • Komaki, H., M. Yamashita, Y. Niwa, Y. Tanaka, N. Kamiya, Y. Ando, and M. Furuse. 1998. The effect of processing of Chlorella vulgaris: K-5 on in vitro and in vivo digestibility in rats. Animal Feed Science and Technology 70:363–6.
  • Kong, F., and R. P. Singh. 2010. A human gastric simulator (HGS) to study food digestion in human stomach. Journal of Food Science 75:E627–E635.
  • Kose, A., and S. S. Oncel. 2015. Properties of microalgal enzymatic protein hydrolysates: Biochemical composition, protein distribution and FTIR characteristics. Biotechnology Reports (Amsterdam, Netherlands) 6:137–43. doi: 10.1016/j.btre.2015.02.005.
  • Kose, A., M. O. Ozen, M. Elibol, and S. S. Oncel. 2017. Investigation of in vitro digestibility of dietary microalga Chlorella vulgaris and cyanobacterium Spirulina platensis as a nutritional supplement. 3:170. Biotech 7.
  • Kousoulaki, K., T. Mørkøre, I. Nengas, R. K. Berge, and J. Sweetman. 2016. Microalgae and organic minerals enhance lipid retention efficiency and fillet quality in Atlantic salmon (Salmo salar L.). Aquaculture 451:47–57.
  • Koyande, A. K., K. W. Chew, K. Rambabu, Y. Tao, D. T. Chu, and P. L. Show. 2019. Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness 8:16–24.
  • Kristinsson, H. G., and B. A. Rasco. 2000. Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. Journal of Agricultural and Food Chemistry 48 (3):657–66. doi: 10.1021/jf990447v.
  • Lafarga, T., J. M. Fernández-Sevilla, C. González-López, and F. G. Acién-Fernández. 2020. Spirulina for the food and functional food industries. Food Research International (Ottawa, ON) 137:109356. doi: 10.1016/j.foodres.2020.109356.
  • Lamminen, M., A. Halmemies-Beauchet-Filleau, T. Kokkonen, S. Jaakkola, and A. Vanhatalo. 2019. Different microalgae species as a substitutive protein feed for soya bean meal in grass silage based dairy cow diets. Animal Feed Science and Technology 247:112–26.
  • Lee, J.-Y., S.-B. Cho, Y.-Y. Kim, and S.-J. Ohh. 2011. Effect of gamma irradiation on nutrient digestibility in SPF mini-pig. Radiation Physics and Chemistry 80 (1):123–4. doi: 10.1016/j.radphyschem.2010.08.004.
  • Lin, Y. H., and Y. T. Chen. 2022. Lactobacillus spp. fermented soybean meal partially substitution to fish meal enhances innate immune responses and nutrient digestibility of white shrimp (Litopenaeus vannamei) fed diet with low fish meal. Aquaculture 548:737634.
  • MacColl, R., and D. Guard-Friar. 1987. Phycobiliproteins. Boca Raton, UK: CRC Press.
  • Manus, J., M. Millette, B. R. A. Uscanga, S. Salmieri, B. Maherani, and M. Lacroix. 2021. In vitro protein digestibility and physico-chemical properties of lactic acid bacteria fermented beverages enriched with plant proteins. Journal of Food Science 86 (9):4172–82. doi: 10.1111/1750-3841.15859.
  • Markou, G., D. Arapoglou, C. Eliopoulos, A. Balafoutis, R. Taddeo, A. Panara, and N. Thomaidis. 2019. Cultivation and safety aspects of Arthrospira platensis (Spirulina) grown with struvite recovered from anaerobic digestion plant as phosphorus source. Algal Research 44:101716.
  • Marzo, F., F. I. Milagro, E. Urdaneta, J. Barrenetxe, and F. C. Ibañez. 2011. Extrusion decreases the negative effects of kidney bean on enzyme and transport activities of the rat small intestine. Journal of Animal Physiology and Animal Nutrition 95 (5):591–8. doi: 10.1111/j.1439-0396.2010.01088.x.
  • Massa, M., S. Buono, A. L. Langellotti, A. Martello, G. L. Russo, D. A. Troise, R. Sacchi, P. Vitaglione, and V. Fogliano. 2019. Biochemical composition and in vitro digestibility of Galdieria sulphuraria grown on spent cherry-brine liquid. New Biotechnology 53:9–15. doi: 10.1016/j.nbt.2019.06.003.
  • Mat, D. J. L., S. Le Feunteun, C. Michon, and I. Souchon. 2016. In vitro digestion of foods using pH-stat and the INFOGEST protocol: Impact of matrix structure on digestion kinetics of macronutrients, proteins and lipids. Food Research International 88:226–33.
  • Mata, T. M., M. Cameira, F. Marques, E. Santos, S. Badenes, L. Costa, V. V. Vieira, N. S. Caetano, and A. A. Martins. 2018. Carbon footprint of microalgae production in photobioreactor. Energy Procedia 153:432–7.
  • Matos, J., C. Cardoso, N. M. Bandarra, and C. Afonso. 2017. Microalgae as healthy ingredients for functional food: A review. Food & Function 8 (8):2672–85. doi: 10.1039/c7fo00409e.
  • McInnes, E. F., and Mann, P. 2012. Background Lesions in Laboratory Animals. Saint Louis: Saunders Ltd.
  • Ménard, O., T. Cattenoz, H. Guillemin, I. Souchon, A. Deglaire, D. Dupont, and D. Picque. 2014. Validation of a new in vitro dynamic system to simulate infant digestion. Food Chemistry 145:1039–45. doi: 10.1016/j.foodchem.2013.09.036.
  • Ménard, O., M. H. Famelart, A. Deglaire, Y. Le Gouar, S. Guérin, C. H. Malbert, and D. Dupont. 2018. Gastric emptying and dynamic in vitro digestion of drinkable yogurts: Effect of viscosity and composition. Nutrients 10:1308.
  • Mendes-Pinto, M. M., M. F. J. Raposo, J. Bowen, A. J. Young, and R. Morais. 2001. Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: Effects on astaxanthin recovery and implications for bioavailability. Journal of Applied Phycology 13:19–24.
  • Minekus, M., M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carrière, R. Boutrou, M. Corredig, and D. Dupont. 2014. A standardised static in vitro digestion method suitable for food-an international consensus. Food & Function 5:1113–24.
  • Minekus, M., P. Marteau, R. Havenaar, and J. i. Veld. 1995. A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. Alternatives to Laboratory Animals 23:197–209.
  • Miralles, B., R. d. Barrio, C. Cueva, I. Recio, and L. Amigo. 2018. Dynamic gastric digestion of a commercial whey protein concentrate. Journal of the Science of Food and Agriculture 98:1873–9.
  • Moheimani, N. R., A. Vadiveloo, J. M. Ayre, and J. R. Pluske. 2018. Nutritional profile and in vitro digestibility of microalgae grown in anaerobically digested piggery effluent. Algal Research 35:362–9.
  • Morris, H. J., A. Almarales, O. Carrillo, and R. C. Bermúdez. 2008. Utilisation of Chlorella vulgaris cell biomass for the production of enzymatic protein hydrolysates. Bioresource Technology 99 (16):7723–9. doi: 10.1016/j.biortech.2008.01.080.
  • Muys, M., Y. Sui, B. Schwaiger, C. Lesueur, D. Vandenheuvel, P. Vermeir, and S. E. Vlaeminck. 2019. High variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies. Bioresource Technology 275:247–57. doi: 10.1016/j.biortech.2018.12.059.
  • National Research Council. 2011. Nutrient requirements of fish and shrimp, 376. Washington: National Academy Press.
  • Niccolai, A., G. Chini Zittelli, L. Rodolfi, N. Biondi, and M. R. Tredici. 2019a. Microalgae of interest as food source: Biochemical composition and digestibility. Algal Research 42:101617.
  • Niccolai, A., M. Venturi, V. Galli, N. Pini, L. Rodolfi, N. Biondi, M. D’Ottavio, A. P. Batista, A. Raymundo, L. Granchi, et al. 2019b. Development of new microalgae-based sourdough “crostini”: Functional effects of Arthrospira platensis (spirulina) addition. Scientific Reports 9:19433.
  • Nicolás Carcelén, J., J. M. Marchante-Gayón, P. R. González, L. Valledor, M. J. Cañal, and J. I. G. Alonso. 2017. A cost-effective approach to produce 15N-labelled amino acids employing Chlamydomonas reinhardtii CC503. Microbial Cell Factories 16:1–8.
  • Nosworthy, M. G., and J. D. House. 2017. Factors influencing the quality of dietary proteins: Implications for pulses. Cereal Chemistry 94:49–57.
  • Passos, F., J. Carretero, and I. Ferrer. 2015. Comparing pretreatment methods for improving microalgae anaerobic digestion: Thermal, hydrothermal, microwave and ultrasound. Chemical Engineering Journal and the Biochemical Engineering Journal 279:667–72.
  • Pedersen, B., and B. Eggum. 1983. Prediction of protein digestibility by an in vitro enzymatic pH-stat procedure. Z Tierphysiol Tierernahr Futtermittelkd 49:265–77.
  • Pereira, H., J. Silva, T. Santos, K. N. Gangadhar, A. Raposo, C. Nunes, M. A. Coimbra, L. Gouveia, L. Barreira, and J. Varela. 2019. Nutritional potential and toxicological evaluation of tetraselmis sp. CTP4 microalgal biomass produced in industrial photobioreactors. Molecules 24:3192.
  • Phong, W., P. Show, C. Le, Y. Tao, J. Chang, and T. Ling. 2018. Improving cell disruption efficiency to facilitate protein release from microalgae using chemical and mechanical integrated method. Biochemical Engineering Journal 135:83–90.
  • Postma, P. R., E. Suarez-Garcia, C. Safi, K. Yonathan, G. Olivieri, M. J. Barbosa, R. H. Wijffels, and M. Eppink. 2017. Energy efficient bead milling of microalgae: Effect of bead size on disintegration and release of proteins and carbohydrates. Bioresource Technology 224:670–9. doi: 10.1016/j.biortech.2016.11.071.
  • Prabakaran, P., and A. D. Ravindran. 2011. A comparative study on effective cell disruption methods for lipid extraction from microalgae. Letters in Applied Microbiology 53 (2):150–4. doi: 10.1111/j.1472-765X.2011.03082.x.
  • Prüser, T. F., P. G. Braun, and C. Wiacek. 2021. Microalgae as a novel food. Potential and legal framework. Ernährungs Umschau 68:78–85.
  • Qazi, W. M., S. Ballance, K. Kousoulaki, A. K. Uhlen, D. M. M. Kleinegris, K. Skjånes, and A. Rieder. 2021. Protein enrichment of wheat bread with microalgae: Microchloropsis gaditana, Tetraselmis chui and Chlorella vulgaris. Foods 10:3078.
  • Reeves, P. G., F. H. Nielsen, and G. C. Fahey. 1993. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. Journal of Nutrition 123:1939–51.
  • Ribeiro, M., C. Carvalho, V. Carnide, H. Guedes-Pinto, and G. Igrejas. 2011. Towards allelic diversity in the storage proteins of old and currently growing tetraploid and hexaploid wheats in Portugal. Genetic Resources and Crop Evolution 58:1051–73.
  • Rieder, A., N. K. Afseth, U. Böcker, S. H. Knutsen, B. Kirkhus, H. K. Mæhre, S. Ballance, and S. G. Wubshet. 2021. Improved estimation of in vitro protein digestibility of different foods using size exclusion chromatography. Food Chemistry 358:129830. doi: 10.1016/j.foodchem.2021.129830.
  • Rodolfi, L., N. Biondi, A. Guccione, N. Bassi, M. D’Ottavio, G. Arganaraz, and M. R. Tredici. 2017. Oil and eicosapentaenoic acid production by the diatom Phaeodactylum tricornutum cultivated outdoors in Green Wall Panel (GWP®) reactors. Biotechnology and Bioengineering 114 (10):2204–10. doi: 10.1002/bit.26353.
  • Rodríguez-Miranda, E., J. L. Guzmán, F. G. Acién, M. Berenguel, and A. Visioli. 2021. Indirect regulation of temperature in raceway reactors by optimal management of culture depth. Biotechnology and Bioengineering 118 (3):1186–98. doi: 10.1002/bit.27642.
  • Safi, C., L. Cabas Rodriguez, W. J. Mulder, N. Engelen-Smit, W. Spekking, L. A. M. Broek, G. van den, Olivieri, and L. Sijtsma. 2017. Energy consumption and water-soluble protein release by cell wall disruption of Nannochloropsis gaditana. Bioresource Technology 239:204–10.
  • Safi, C., C. Frances, A. V. Ursu, C. Laroche, C. Pouzet, C. Vaca-Garcia, and P. Y. Pontalier. 2015. Understanding the effect of cell disruption methods on the diffusion of chlorella vulgaris proteins and pigments in the aqueous phase. Algal Research 8:61–8. doi: 10.1016/j.algal.2015.01.002.
  • Safi, C., A. V. Ursu, C. Laroche, B. Zebib, O. Merah, P. Y. Pontalier, and C. Vaca-Garcia. 2014. Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods. Algal Research 3:61–5. doi: 10.1016/j.algal.2013.12.004.
  • Sarker, P. K., M. M. Gamble, S. Kelson, and A. R. Kapuscinski. 2016. Nile tilapia (Oreochromis niloticus) show high digestibility of lipid and fatty acids from marine Schizochytrium sp. and of protein and essential amino acids from freshwater Spirulina sp. feed ingredients. Aquaculture Nutrition 22:109–19. doi: 10.1111/anu.12230.
  • Sarker, P. K., A. R. Kapuscinski, A. Y. Bae, E. Donaldson, A. J. Sitek, D. S. Fitzgerald, and O. F. Edelson. 2018. Towards sustainable aquafeeds: Evaluating substitution of fishmeal with lipid-extracted microalgal co-product (Nannochloropsis oculata) in diets of juvenile Nile tilapia (Oreochromis niloticus). PLoS One 13:e0201315. doi: 10.1371/journal.pone.0201315.
  • Sarker, P. K., A. R. Kapuscinski, B. McKuin, D. S. Fitzgerald, H. M. Nash, and C. Greenwood. 2020. Microalgae-blend tilapia feed eliminates fishmeal and fish oil, improves growth, and is cost viable. Scientific Reports 10:19328. doi: 10.1038/s41598-020-75289-x.
  • Sathasivam, R., R. Radhakrishnan, A. Hashem, and E. F. Abd Allah. 2019. Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences 26 (4):709–22. doi: 10.1016/j.sjbs.2017.11.003.
  • Satterlee, L. D., H. F. Marshall, and J. M. Tennyson. 1979. Measuring protein quality. Journal of the American Oil Chemists’ Society 56 (3):103–9. doi: 10.1007/BF02671431.
  • Schulze, C., M. Wetzel, J. Reinhardt, M. Schmidt, L. Felten, and S. Mundt. 2016. Screening of microalgae for primary metabolites including β-glucans and the influence of nitrate starvation and irradiance on β-glucan production. Journal of Applied Phycology 28:2719–25. doi: 10.1007/s10811-016-0812-9.
  • Schwenzfeier, A., P. A. Wierenga, and H. Gruppen. 2011. Isolation and characterization of soluble protein from the green microalgae Tetraselmis sp. Bioresource Technology 102 (19):9121–7. doi: 10.1016/j.biortech.2011.07.046.
  • Shewry, P. R., and S. J. Hey. 2015. The contribution of wheat to human diet and health. Food and Energy Security 4 (3):178–202. doi: 10.1002/fes3.64.
  • Shewry, P. R., J. A. Napier, and A. S. Tatham. 1995. Seed storage proteins: Structures and biosynthesis. The Plant Cell 7 (7):945–56. doi: 10.1105/tpc.7.7.945.
  • Siccardi, A. 2006. Daily digestible protein and energy requirements for growth and maintenance of sub-adult pacific white shrimp (Litopenaeus vannamei). Dissertation.
  • Skrede, A., L. T. Mydland, O. Ahlstrem, K. I. Reitan, H. R. Gislered, and M. Overland. 2011. Evaluation of microalgae as sources of digestible nutrients for monogastric animals. Journal of Animal and Feed Sciences 20:131–42. doi: 10.22358/jafs/66164/2011.
  • Soares, M., P. C. Rezende, N. M. Corrêa, J. S. Rocha, M. A. Martins, T. C. Andrade, D. M. Fracalossi, and F. d. NascimentoVieira. 2020. Protein hydrolysates from poultry by-product and swine liver as an alternative dietary protein source for the Pacific white shrimp. Aquaculture Reports 17:100344. doi: 10.1016/j.aqrep.2020.100344.
  • Souci, S. W., W. Fachmann, and H. Kraut. 2008. Food composition and nutrition tables. Boca Raton, UK: Tyaler & Francis A CRC Press Book.
  • Sui, Y., and S. E. Vlaeminck. 2019. Effects of salinity, pH and growth phase on the protein productivity by Dunaliella salina. Journal of Chemical Technology and Biotechnology 94:1032–40.
  • Sulaiman, N., D. I. Givens, and S. Anitha. 2021. A narrative review: In-vitro methods for assessing bio-accessibility/bioavailability of iron in plant-based foods. Frontiers in Sustainable Food Systems 5:392.
  • Tavano, O. L. 2013. Protein hydrolysis using proteases: An important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic 90:1–11.
  • Tavano, O. L., V. A. Neves, and S. d. SilvaJr. 2016. In vitro versus in vivo protein digestibility techniques for calculating PDCAAS (protein digestibility-corrected amino acid score) applied to chickpea fractions. Food Research International (Ottawa, ON) 89 (Pt 1):756–63. doi: 10.1016/j.foodres.2016.10.005.
  • Teuling, E., J. W. Schrama, H. Gruppen, and P. A. Wierenga. 2017a. Effect of cell wall characteristics on algae nutrient digestibility in Nile tilapia (Oreochromis niloticus) and African catfish (Clarus gariepinus). Aquaculture 479:490–500.
  • Teuling, E., P. A. Wierenga, J. O. Agboola, H. Gruppen, and J. W. Schrama. 2019. Cell wall disruption increases bioavailability of Nannochloropsis gaditana nutrients for juvenile Nile tilapia (Oreochromis niloticus). Aquaculture 499:269–82.
  • Teuling, E., P. A. Wierenga, J. W. Schrama, and H. Gruppen. 2017b. Comparison of protein extracts from various unicellular green sources. Journal of Agricultural and Food Chemistry 65:7989–8002.
  • Thirumdas, R., M. Brnčić, S. R. Brnčić, F. J. Barba, F. Gálvez, S. Zamuz, R. Lacomba, and J. M. Lorenzo. 2018. Evaluating the impact of vegetal and microalgae protein sources on proximate composition, amino acid profile, and physicochemical properties of fermented Spanish “chorizo” sausages. Journal of Food Processing and Preservation 42:e13817.
  • Tibbetts, S. M., and S. J. J. Patelakis. 2022. Apparent digestibility coefficients (ADCs) of intact-cell marine microalgae meal (Pavlova sp. 459) for juvenile Atlantic salmon (Salmo salar L.). Aquaculture 546:737236.
  • Tibbetts, S. M., C. G. Whitney, M. J. MacPherson, S. Bhatti, A. H. Banskota, R. Stefanova, and P. J. McGinn. 2015. Biochemical characterization of microalgal biomass from freshwater species isolated in Alberta, Canada for animal feed applications. Algal Research 11:435–47.
  • Tibbetts, S. M., F. Yasumaru, and D. Lemos. 2017. In vitro prediction of digestible protein content of marine microalgae (Nannochloropsis granulata) meals for Pacific white shrimp (Litopenaeus vannamei) and rainbow trout (Oncorhynchus mykiss). Algal Research 21:76–80.
  • Tibbetts, S. M., J. E. Milley, and S. P. Lall. 2015. Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. Journal of Applied Phycology 27:1109–19.
  • Tibbetts, S. M., J. Mann, and A. Dumas. 2017. Apparent digestibility of nutrients, energy, essential amino acids and fatty acids of juvenile Atlantic salmon (Salmo salar L.). Diets containing whole-cell or cell-ruptured Chlorella vulgaris meals at five dietary inclusion levels. Aquaculture 481:25–39.
  • Tibbetts, S. M., S. J. J. Patelakis, C. G. Whitney-Lalonde, L. L. Garrison, C. L. Wall, and S. P. MacQuarrie. 2020. Nutrient composition and protein quality of microalgae meals produced from the marine prymnesiophyte Pavlova sp. 459 mass-cultivated in enclosed photobioreactors for potential use in salmonid aquafeeds. Journal of Applied Phycology 32:299–318.
  • Tibbetts, S. M., T. MacPherson, P. J. McGinn, and A. H. Fredeen. 2016. In vitro digestion of microalgal biomass from freshwater species isolated in Alberta, Canada for monogastric and ruminant animal feed applications. Algal Research 19:324–32.
  • United Nations. 2015. Accessed January 27, 2022. https://sdgs.un.org/2030agenda.
  • Ursu, A. V., A. Marcati, T. Sayd, V. Sante-Lhoutellier, G. Djelveh, and P. Michaud. 2014. Extraction, fractionation and functional properties of proteins from the microalgae Chlorella vulgaris. Bioresource Technology 157:134–9. doi: 10.1016/j.biortech.2014.01.071.
  • van Eck, N. J., and L. Waltman. 2010. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84:523–38. doi: 10.1007/s11192-009-0146-3.
  • Venkata Subhash, G., N. Chugh, S. Iyer, A. Waghmare, A. S. Musale, R. Nandru, R. B. Dixit, M. S. Gaikwad, D. Menon, and R. Thorat. 2020. Application of in vitro protein solubility for selection of microalgae biomass as protein ingredient in animal and aquafeed. Journal of Applied Phycology 32:3955–70.
  • Verspreet, J., L. Soetemans, C. Gargan, M. Hayes, and L. Bastiaens. 2021. Nutritional profiling and preliminary bioactivity screening of five micro-algae strains cultivated in Northwest Europe. Foods 10:1516.
  • Vizcaíno, A. J., M. I. Sáez, T. F. Martínez, F. G. Acién, and F. J. Alarcón. 2018. Differential hydrolysis of proteins of four microalgae by the digestive enzymes of gilthead sea bream and Senegalese sole. Algal Research 37:145–53.
  • Waghmare, A. G., M. K. Salve, J. G. LeBlanc, and S. S. Arya. 2016. Concentration and characterization of microalgae proteins from Chlorella pyrenoidosa. Bioresources and Bioprocessing 3:16.
  • Wang, C., H. Wang, Z. Zhao, S. Xiao, Y. Zhao, C. Duan, L. Gao, S. Li, and J. Wang. 2019. Pediococcus acidilactici AS185 attenuates early atherosclerosis development through inhibition of lipid regulation and inflammation in rats. Journal of Functional Foods 60:103424.
  • Wang, S. K., C. Guo, W. Wu, K. Y. Sui, and C. Z. Liu. 2019. Effects of incident light intensity and light path length on cell growth and oil accumulation in Botryococcus braunii (Chlorophyta). Engineering in Life Sciences 19:104–11.
  • Wang, Y., S. M. Tibbetts, F. Berrue, P. J. McGinn, S. P. MacQuarrie, A. Puttaswamy, S. Patelakis, D. Schmidt, R. Melanson, and S. E. MacKenzie. 2020. A rat study to evaluate the protein quality of three green microalgal species and the impact of mechanical cell wall disruption. Foods 9:1531.
  • We Akeson, M. S. 1964. A pepsin-pancreatin digest index of protein quality evaluation. Journal of Nutrition 83:257–61.
  • Weber, S., P. M. Grande, L. M. Blank, and H. Klose. 2022. Insights into cell wall disintegration of Chlorella vulgaris. PLoS One 17:e0262500.
  • Wells, M. L., P. Potin, J. S. Craigie, J. A. Raven, S. S. Merchant, K. E. Helliwell, A. G. Smith, M. E. Camire, and S. H. Brawley. 2017. Algae as nutritional and functional food sources: Revisiting our understanding. Journal of Applied Phycology 29:949–82.
  • Wild, K. J., H. Steingaß, and M. Rodehutscord. 2018. Variability in nutrient composition and in vitro crude protein digestibility of 16 microalgae products. Journal of Animal Physiology and Animal Nutrition 102 (5):1306–19. doi: 10.1111/jpn.12953.
  • Wild, K. J., H. Steingaß, and M. Rodehutscord. 2019. Variability of in vitro ruminal fermentation and nutritional value of cell-disrupted and nondisrupted microalgae for ruminants. GCB Bioenergy 11:345–59.
  • Xing, G., X. Rui, D. Wang, M. Liu, X. Chen, and M. Dong. 2017. Effect of fermentation pH on protein bioaccessibility of soymilk curd with added tea polyphenols as assessed by in vitro gastrointestinal digestion. Journal of Agricultural and Food Chemistry 65:11125–32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.