1,132
Views
11
CrossRef citations to date
0
Altmetric
Review Articles

Green and sustainable extraction of lignin by deep eutectic solvent, its antioxidant activity, and applications in the food industry

, , , , & ORCID Icon

References

  • Abbott, A. P., D. Boothby, G. Capper, D. L. Davies, and R. K. Rasheed. 2004. Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. Journal of the American Chemical Society 126 (29):9142–7. doi: 10.1021/ja048266j.
  • Antunes, F., I. F. Mota, J. da Silva Burgal, M. Pintado, and P. S. Costa. 2022. A review on the valorization of lignin from sugarcane by-products: From extraction to application. Biomass and Bioenergy 166:106603. doi: 10.1016/j.biombioe.2022.106603.
  • Argenziano, R., F. Moccia, R. Esposito, G. D’Errico, L. Panzella, and A. Napolitano. 2022. Recovery of lignins with potent antioxidant properties from shells of edible nuts by a green ball milling/deep eutectic solvent (DES)-based protocol. Antioxidants (Basel) 11 (10):1860. doi: 10.3390/antiox11101860.
  • Aura, A. M., P. Niemi, I. Mattila, K. Niemela, A. Smeds, T. Tamminen, C. Faulds, J. Buchert, and K. Poutanen. 2013. Release of small phenolic compounds from brewer’s spent grain and its lignin fractions by human intestinal microbiota in vitro. Journal of Agricultural and Food Chemistry 61 (40):9744–53. doi: 10.1021/jf4024195.
  • Aura, A. M. 2016. Wood components to boost the quality of food products. IPW Internationale Papierwirtschaft 6/7:27.
  • Barapatre, A., K. R. Aadil, B. N. Tiwary, and H. Jha. 2015. In vitro antioxidant and antidiabetic activities of biomodified lignin from Acacia nilotica wood. International Journal of Biological Macromolecules 75:81–9. doi: 10.1016/j.ijbiomac.2015.01.012.
  • Barapatre, A., A. S. Meena, S. Mekala, A. Das, and H. Jha. 2016. In vitro evaluation of antioxidant and cytotoxic activities of lignin fractions extracted from Acacia nilotica. International Journal of Biological Macromolecules 86:443–53. doi: 10.1016/j.ijbiomac.2016.01.109.
  • Benvenutti, L., A. A. F. Zielinski, and S. R. S. Ferreira. 2019. Which is the best food emerging solvent: IL, DES or NADES? Trends in Food Science & Technology 90:133–46. doi: 10.1016/j.tifs.2019.06.003.
  • Bertolo, M. R. V., L. B. Brenelli de Paiva, V. M. Nascimento, C. A. Gandin, M. O. Neto, C. E. Driemeier, and S. C. Rabelo. 2019. Lignins from sugarcane bagasse: Renewable source of nanoparticles as Pickering emulsions stabilizers for bioactive compounds encapsulation. Industrial Crops and Products 140:111591. doi: 10.1016/j.indcrop.2019.111591.
  • Brenelli, L. B., L. R. B. Mariutti, R. Villares Portugal, M. A. de Farias, N. Bragagnolo, A. Z. Mercadante, T. T. Franco, S. C. Rabelo, and F. M. Squina. 2021. Modified lignin from sugarcane bagasse as an emulsifier in oil-in-water nanoemulsions. Industrial Crops and Products 167:113532. doi: 10.1016/j.indcrop.2021.113532.
  • Cassoni, A. C., P. Costa, M. W. Vasconcelos, and M. Pintado. 2022a. Systematic review on lignin valorization in the agro-food system: From sources to applications. Journal of Environmental Management 317:115258. doi: 10.1016/j.jenvman.2022.115258.
  • Cassoni, A. C., I. Mota, P. Costa, M. W. Vasconcelos, and M. Pintado. 2022b. Effect of alkaline and deep eutectic solvents pretreatments on the recovery of lignin with antioxidant activity from grape stalks. International Journal of Biological Macromolecules 220:406–14. doi: 10.1016/j.ijbiomac.2022.07.233.
  • Chen, Y., Y. Liu, X. Li, J. Zhang, and G. Li. 2015. Lignin interacting with α-glucosidase and its inhibitory effect on the enzymatic activity. Food Biophysics 10 (3):264–272. doi: 10.1007/s11483-014-9383-y.
  • Ciolacu, D., A. M. Oprea, N. Anghel, G. Cazacu, and M. Cazacu. 2012. New cellulose–lignin hydrogels and their application in controlled release of polyphenols. Materials Science and Engineering: C 32 (3):452–63. doi: 10.1016/j.msec.2011.11.018.
  • Czaikoski, A., A. Gomes, K. C. Kaufmann, R. B. Liszbinski, M. B. de Jesus, and R. Cunha. 2020. Lignin derivatives stabilizing oil-in-water emulsions: Technological aspects, interfacial rheology and cytotoxicity. Industrial Crops and Products 154:112762. doi: 10.1016/j.indcrop.2020.112762.
  • da Silva, D. T., R. F. Rodrigues, N. M. Machado, L. H. Maurer, L. F. Ferreira, S. Somacal, M. L. da Veiga, M. Rocha, M. Vizzotto, E. Rodrigues, et al. 2020. Natural deep eutectic solvent (NADES)-based blueberry extracts protect against ethanol-induced gastric ulcer in rats. Food Research International 138 (Pt A):109718. doi: 10.1016/j.foodres.2020.109718.
  • da Silva, D. T., F. A. Smaniotto, I. F. Costa, J. Baranzelli, A. Muller, S. Somacal, C. S. Monteiro, M. Vizzotto, E. Rodrigues, M. T. Barcia, et al. 2021. Natural deep eutectic solvent (NADES): A strategy to improve the bioavailability of blueberry phenolic compounds in a ready-to-use extract. Food Chemistry 364:130370. doi: 10.1016/j.foodchem.2021.130370.
  • Dai, L., Y. Li, F. Kong, K. Liu, C. Si, and Y. Ni. 2019. Lignin-based nanoparticles stabilized pickering emulsion for stability improvement and thermal-controlled release of trans-resveratrol. ACS Sustainable Chemistry & Engineering 7 (15):13497–504. doi: 10.1021/acssuschemeng.9b02966.
  • de Melo, C. M. L., I. J. da Cruz Filho, G. F. de Sousa, G. A. de Souza Silva, D. K. D. do Nascimento Santos, R. S. da Silva, B. R. de Sousa, R. G. de Lima Neto, M. do Carmo Alves de Lima, and G. J. de Moraes Rocha. 2020. Lignin isolated from Caesalpinia pulcherrima leaves has antioxidant, antifungal and immunostimulatory activities. International Journal of Biological Macromolecules 162:1725–33. doi: 10.1016/j.ijbiomac.2020.08.003.
  • do Nascimento Santos, D. K. D., B. Barros, L. M. S. Aguiar, I. J. da Cruz Filho, V. M. B. de Lorena, C. M. L. de Melo, and T. H. Napoleao. 2020. Immunostimulatory and antioxidant activities of a lignin isolated from Conocarpus erectus leaves. International Journal of Biological Macromolecules 150:169–77. doi: 10.1016/j.ijbiomac.2020.02.052.
  • Esmaeili, M., I. Anugwom, M. Manttari, and M. Kallioinen. 2018. Utilization of DES-lignin as a bio-based hydrophilicity promoter in the fabrication of antioxidant polyethersulfone membranes. Membranes (Basel) 8 (3):80. doi: 10.3390/membranes8030080.
  • Faggian, M., S. Sut, B. Perissutti, V. Baldan, I. Grabnar, and S. Dall’Acqua. 2016. Natural deep eutectic solvents (NADES) as a tool for bioavailability improvement: Pharmacokinetics of rutin dissolved in proline/glycine after oral administration in rats: Possible application in nutraceuticals. Molecules 21 (11):1531. doi: 10.3390/molecules21111531.
  • Freitas, F. M. C., M. A. Cerqueira, C. Goncalves, S. Azinheiro, A. Garrido-Maestu, A. A. Vicente, L. M. Pastrana, J. A. Teixeira, and M. Michelin. 2020. Green synthesis of lignin nano- and micro-particles: Physicochemical characterization, bioactive properties and cytotoxicity assessment. International Journal of Biological Macromolecules 163:1798–809. doi: 10.1016/j.ijbiomac.2020.09.110.
  • Fu, X., H. Ji, X. Liu, and W. Zhu. 2021. Lignin-containing fibers extraction and hydrogel preparation for fiber-optic relative humidity sensor fabrication. Industrial Crops and Products 173:114112. doi: 10.1016/j.indcrop.2021.114112.
  • Gil-Chávez, G. J., S. S. P. Padhi, C. V. Pereira, J. N. Guerreiro, A. A. Matias, and I. Smirnova. 2019. Cytotoxicity and biological capacity of sulfur-free lignins obtained in novel biorefining process. International Journal of Biological Macromolecules 136:697–703. doi: 10.1016/j.ijbiomac.2019.06.021.
  • Gil-Chávez, J., P. Gurikov, X. Hu, R. Meyer, W. Reynolds, and I. Smirnova. 2021. Application of novel and technical lignins in food and pharmaceutical industries: Structure-function relationship and current challenges. Biomass Conversion and Biorefinery 11 (6):2387–403. doi: 10.1007/s13399-019-00458-6.
  • Guo, K. N., C. Zhang, L. H. Xu, S. C. Sun, J. L. Wen, and T. Q. Yuan. 2022. Efficient fractionation of bamboo residue by autohydrolysis and deep eutectic solvents pretreatment. Bioresource Technology 354:127225.
  • Guo, Z., D. Li, T. You, X. Zhang, F. Xu, X. Zhang, and Y. Yang. 2020. New lignin streams derived from heteropoly acids enhanced neutral deep eutectic solvent fractionation: Toward structural elucidation and antioxidant performance. ACS Sustainable Chemistry & Engineering 8 (32):12110–9. doi: 10.1021/acssuschemeng.0c03491.
  • Halloub, A., M. Raji, H. Essabir, H. Chakchak, R. Boussen, M. O. Bensalah, R. Bouhfid, and A. E. K. Qaiss. 2022. Intelligent food packaging film containing lignin and cellulose nanocrystals for shelf life extension of food. Carbohydrate Polymers 296:119972. doi: 10.1016/j.carbpol.2022.119972.
  • Hamauzu, Y., and Y. Mizuno. 2011. Non-extractable procyanidins and lignin are important factors in the bile acid binding and radical scavenging properties of cell wall material in some fruits. Plant Foods for Human Nutrition 66 (1):70–7. doi: 10.1007/s11130-010-0207-z.
  • Han, X., Y. Zhang, F. Ran, C. Li, L. Dai, H. Li, F. Yu, C. Zheng, and C. Si. 2022. Lignin nanoparticles for hydrogel-based pressure sensor. Industrial Crops and Products 176:114366. doi: 10.1016/j.indcrop.2021.114366.
  • Ji, M., J. Li, F. Li, X. Wang, J. Man, J. Li, C. Zhang, and S. Peng. 2022. A biodegradable chitosan-based composite film reinforced by ramie fibre and lignin for food packaging. Carbohydrate Polymers 281:119078. doi: 10.1016/j.carbpol.2021.119078.
  • Kasimir, M., M. Behrens, and H. U. Humpf. 2022. Release of small phenolic metabolites from isotopically labeled (13)C lignin in the pig cecum model. Journal of Agricultural and Food Chemistry 70 (27):8317–25. doi: 10.1021/acs.jafc.2c02836.
  • Lauberte, L., G. Fabre, J. Ponomarenko, T. Dizhbite, D. V. Evtuguin, G. Telysheva, and P. Trouillas. 2019. Lignin modification supported by DFT-based theoretical study as a way to produce competitive natural antioxidants. Molecules 24 (9):1794. doi: 10.3390/molecules24091794.
  • Li, H., J. Liang, L. Chen, M. Ren, and C. Zhou. 2023. Utilization of walnut shell by deep eutectic solvents: Enzymatic digestion of cellulose and preparation of lignin nanoparticles. Industrial Crops and Products 192:116034. doi: 10.1016/j.indcrop.2022.116034.
  • Li, W.-X., W.-Z. Xiao, Y.-Q. Yang, Q. Wang, X. Chen, L.-P. Xiao, and R.-C. Sun. 2021. Insights into bamboo delignification with acidic deep eutectic solvents pretreatment for enhanced lignin fractionation and valorization. Industrial Crops and Products 170:113692. doi: 10.1016/j.indcrop.2021.113692.
  • Li, Y., S. Zhao, Y. Li, A. J. Ragauskas, X. Song, and K. Li. 2022. Revealing the relationship between molecular weight of lignin and its color, UV-protecting property. International Journal of Biological Macromolecules 223:1287–96. doi: 10.1016/j.ijbiomac.2022.11.067.
  • Lourencon, T. V., G. G. de Lima, C. S. P. Ribeiro, F. A. Hansel, G. M. Maciel, K. da Silva, S. M. B. Winnischofer, G. I. B. de Muniz, and W. L. E. Magalhaes. 2021. Antioxidant, antibacterial and antitumoural activities of kraft lignin from hardwood fractionated by acid precipitation. International Journal of Biological Macromolecules 166:1535–42. doi: 10.1016/j.ijbiomac.2020.11.033.
  • Lu, X., X. Gu, and Y. Shi. 2022. A review on lignin antioxidants: Their sources, isolations, antioxidant activities and various applications. International Journal of Biological Macromolecules 210:716–41. doi: 10.1016/j.ijbiomac.2022.04.228.
  • Ma, C.-Y., X. Gao, X.-P. Peng, Y.-F. Gao, J. Liu, J.-L. Wen, and T.-Q. Yuan. 2021a. Microwave-assisted deep eutectic solvents (DES) pretreatment of control and transgenic poplars for boosting the lignin valorization and cellulose bioconversion. Industrial Crops and Products 164:113415. doi: 10.1016/j.indcrop.2021.113415.
  • Ma, C. Y., X. P. Peng, S. Sun, J. L. Wen, and T. Q. Yuan. 2021b. Short-time deep eutectic solvents pretreatment enhanced production of fermentable sugars and tailored lignin nanoparticles from abaca. International Journal of Biological Macromolecules 192:417–25. doi: 10.1016/j.ijbiomac.2021.09.140.
  • Ma, C.-Y., L.-H. Xu, Q. Sun, X.-J. Shen, J.-L. Wen, and T.-Q. Yuan. 2022a. Tailored one-pot lignocellulose fractionation to maximize biorefinery toward controllable producing lignin nanoparticles and facilitating enzymatic hydrolysis. Chemical Engineering Journal 450:138315. doi: 10.1016/j.cej.2022.138315.
  • Ma, C. Y., L. H. Xu, Q. Sun, S. N. Sun, X. F. Cao, J. L. Wen, and T. Q. Yuan. 2022b. Ultrafast alkaline deep eutectic solvent pretreatment for enhancing enzymatic saccharification and lignin fractionation from industrial xylose residue. Bioresource Technology 352:127065. doi: 10.1016/j.biortech.2022.127065.
  • Mišan, A., J. Nađpal, A. Stupar, M. Pojić, A. Mandić, R. Verpoorte, and Y. H. Choi. 2020. The perspectives of natural deep eutectic solvents in agri-food sector. Critical Reviews in Food Science and Nutrition 60 (15):2564–92. doi: 10.1080/10408398.2019.1650717.
  • Moccia, F., N. Gallucci, S. Giovando, A. Zuorro, R. Lavecchia, G. D’Errico, L. Panzella, and A. Napolitano. 2022. A tunable deep eutectic solvent-based processing for valorization of chestnut wood fiber as a source of ellagic acid and lignin. Journal of Environmental Chemical Engineering 10 (3):107773. doi: 10.1016/j.jece.2022.107773.
  • Mohammad Zadeh, E., S. F. O’Keefe, and Y. T. Kim. 2019. Lignin-based biopolymeric active packaging system for oil products. Journal of Food Science 84 (6):1420–6. doi: 10.1111/1750-3841.14632.
  • Morena, A. G., and T. Tzanov. 2022. Antibacterial lignin-based nanoparticles and their use in composite materials. Nanoscale Advances 4 (21):4447–69. doi: 10.1039/D2NA00423B.
  • Niemi, P., A. M. Aura, J. Maukonen, A. I. Smeds, I. Mattila, K. Niemela, T. Tamminen, C. B. Faulds, J. Buchert, and K. Poutanen. 2013. Interactions of a lignin-rich fraction from brewer’s spent grain with gut microbiota in vitro. Journal of Agricultural and Food Chemistry 61 (27):6754–62. doi: 10.1021/jf401738x.
  • Ohra-Aho, T., P. Niemi, A. M. Aura, M. Orlandi, K. Poutanen, J. Buchert, and T. Tamminen. 2016. Structure of brewer’s spent grain lignin and its interactions with gut microbiota in vitro. Journal of Agricultural and Food Chemistry 64 (4):812–20. doi: 10.1021/acs.jafc.5b05535.
  • Pang, Y., X. Li, S. Wang, X. Qiu, D. Yang, and H. Lou. 2018. Lignin-polyurea microcapsules with anti-photolysis and sustained-release performances synthesized via pickering emulsion template. Reactive and Functional Polymers 123:115–21. doi: 10.1016/j.reactfunctpolym.2017.12.018.
  • Panic, M., M. Radic Stojkovic, K. Kraljic, D. Skevin, I. Radojcic Redovnikovic, V. Gaurina Srcek, and K. Radosevic. 2019. Ready-to-use green polyphenolic extracts from food by-products. Food Chemistry 283:628–36. doi: 10.1016/j.foodchem.2019.01.061.
  • Park, S., S. H. Kim, J. H. Kim, H. Yu, H. J. Kim, Y.-H. Yang, H. Kim, Y. H. Kim, S. H. Ha, and S. H. Lee. 2015. Application of cellulose/lignin hydrogel beads as novel supports for immobilizing lipase. Journal of Molecular Catalysis B: Enzymatic 119:33–9. doi: 10.1016/j.molcatb.2015.05.014.
  • Prior, R. L., X. L. Wu, and K. Schaich. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry 53 (10):4290–302. doi: 10.1021/jf0502698.
  • Qiao, Q., J. Shi, and Q. Shao. 2021. The multiscale solvation effect on the reactivity of beta-O-4 of lignin dimers in deep eutectic solvents. Physical Chemistry Chemical Physics 23 (45):25699–705. doi: 10.1039/D1CP04342K.
  • Raschip, I. E., E. G. Hitruc, A. M. Oprea, M.-C. Popescu, and C. Vasile. 2011. In vitro evaluation of the mixed xanthan/lignin hydrogels as vanillin carriers. Journal of Molecular Structure 1003 (1-3):67–74. doi: 10.1016/j.molstruc.2011.07.023.
  • Raza, G. S., J. Maukonen, M. Makinen, P. Niemi, L. Niiranen, A. A. Hibberd, K. Poutanen, J. Buchert, and K. H. Herzig. 2019. Hypocholesterolemic effect of the lignin-rich insoluble residue of brewer’s spent grain in mice fed a high-fat diet. Journal of Agricultural and Food Chemistry 67 (4):1104–14. doi: 10.1021/acs.jafc.8b05770.
  • Rodriguez-Gutierrez, G., F. Rubio-Senent, A. Lama-Munoz, A. Garcia, and J. Fernandez-Bolanos. 2014. Properties of lignin, cellulose, and hemicelluloses isolated from olive cake and olive stones: Binding of water, oil, bile acids, and glucose. Journal of Agricultural and Food Chemistry 62 (36):8973–81. doi: 10.1021/jf502062b.
  • Shu, F., B. Jiang, Y. Yuan, M. Li, W. Wu, Y. Jin, and H. Xiao. 2021. Biological activities and emerging roles of lignin and lignin-based products horizontal line – A review. Biomacromolecules 22 (12):4905–18. doi: 10.1021/acs.biomac.1c00805.
  • Stanisz, M., K. Bachosz, K. Siwińska-Ciesielczyk, Ł. Klapiszewski, J. Zdarta, and T. Jesionowski. 2022. Tailoring lignin-based spherical particles as a support for lipase immobilization. Catalysts 12 (9):1031. doi: 10.3390/catal12091031.
  • Su, Y., C. Huang, C. Lai, and Q. Yong. 2021. Green solvent pretreatment for enhanced production of sugars and antioxidative lignin from poplar. Bioresource Technology 321:124471. doi: 10.1016/j.biortech.2020.124471.
  • Tao, J., S. Li, F. Ye, Y. Zhou, L. Lei, and G. Zhao. 2020. Lignin – An underutilized, renewable and valuable material for food industry. Critical Reviews in Food Science and Nutrition 60 (12):2011–33. doi: 10.1080/10408398.2019.1625025.
  • Ullah, I., Z. Chen, Y. Xie, S. S. Khan, S. Singh, C. Yu, and G. Cheng. 2022. Recent advances in biological activities of lignin and emerging biomedical applications: A short review. International Journal of Biological Macromolecules 208:819–32. doi: 10.1016/j.ijbiomac.2022.03.182.
  • Verdini, F., E. C. Gaudino, E. Canova, S. Tabasso, P. J. Behbahani, and G. Cravotto. 2022. Lignin as a natural carrier for the efficient delivery of bioactive compounds: From waste to health. Molecules 27 (11):3598. doi: 10.3390/molecules27113598.
  • Vinardell, M. P., and M. Mitjans. 2017. Lignins and their derivatives with beneficial effects on human health. International Journal of Molecular Sciences 18 (6):1219. doi: 10.3390/ijms18061219.
  • Wang, H.-M., T.-Q. Yuan, G.-Y. Song, and R.-C. Sun. 2021. Advanced and versatile lignin-derived biodegradable composite film materials toward a sustainable world. Green Chemistry 23 (11):3790–817. doi: 10.1039/D1GC00790D.
  • Wang, L., X. Li, J. Jiang, Y. Zhang, S. Bi, and H.-M. Wang. 2022. Revealing structural and functional specificity of lignin from tobacco stalk during deep eutectic solvents deconstruction aiming to targeted valorization. Industrial Crops and Products 180:114696. doi: 10.1016/j.indcrop.2022.114696.
  • Wang, Z.-K., S. Hong, J-l Wen, C.-Y. Ma, L. Tang, H. Jiang, J.-J. Chen, S. Li, X.-J. Shen, and T.-Q. Yuan. 2020. Lewis acid-facilitated deep eutectic solvent (DES) pretreatment for producing high-purity and antioxidative lignin. ACS Sustainable Chemistry & Engineering 8 (2):1050–7. doi: 10.1021/acssuschemeng.9b05846.
  • Wu, Y., J. Cheng, Q. Yang, J. Hu, Q. Zhou, L. Wang, Z. Liu, and L. Hui. 2021a. Solid acid facilitated deep eutectic solvents extraction of high-purity and antioxidative lignin production from poplar wood. International Journal of Biological Macromolecules 193 (Pt A):64–70. doi: 10.1016/j.ijbiomac.2021.10.120.
  • Wu, Y., Z. Liu, L. Ma, Z. Guo, Q. Yang, X. Wang, and L. Hui. 2021b. Structural characterization and evaluation of the antioxidant activity of DES-lignin isolated from Cunninghamia lanceolata. Wood Science and Technology 55 (4):1041–55. doi: 10.1007/s00226-021-01300-x.
  • Xie, F., S. X. Gong, W. Zhang, J. H. Wu, and Z. W. Wang. 2017. Potential of lignin from Canna edulis ker residue in the inhibition of alpha-D-glucosidase: Kinetics and interaction mechanism merging with docking simulation. International Journal of Biological Macromolecules 95:592–602.
  • Yan, Y., L. Zhang, X. Zhao, S. Zhai, Q. Wang, C. Li, and X. Zhang. 2022. Utilization of lignin upon successive fractionation and esterification in polylactic acid (PLA)/lignin biocomposite. International Journal of Biological Macromolecules 203:49–57. doi: 10.1016/j.ijbiomac.2022.01.041.
  • Yang, J., X. An, L. Liu, S. Tang, H. Cao, Q. Xu, and H. Liu. 2020. Cellulose, hemicellulose, lignin, and their derivatives as multi-components of bio-based feedstocks for 3D printing. Carbohydrate Polymers 250:116881. doi: 10.1016/j.carbpol.2020.116881.
  • Yang, W., E. Fortunati, F. Bertoglio, J. S. Owczarek, G. Bruni, M. Kozanecki, J. M. Kenny, L. Torre, L. Visai, and D. Puglia. 2018. Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles. Carbohydrate Polymers 181:275–84. doi: 10.1016/j.carbpol.2017.10.084.
  • Yang, Y. T., M. K. Qin, Q. Sun, Y. F. Gao, C. Y. Ma, and J. L. Wen. 2022. Structural elucidation and targeted valorization of poplar lignin from the synergistic hydrothermal-deep eutectic solvent pretreatment. International Journal of Biological Macromolecules 209 (Pt B):1882–92. doi: 10.1016/j.ijbiomac.2022.04.162.
  • Zhang, W., J. Shen, P. Gao, Q. Jiang, and W. Xia. 2022a. An eco-friendly strategy for preparing lignin nanoparticles by self-assembly: Characterization, stability, bioactivity, and Pickering emulsion. Industrial Crops and Products 188:115651. doi: 10.1016/j.indcrop.2022.115651.
  • Zhang, W., J. Shen, P. Gao, Q. Jiang, and W. Xia. 2022b. Sustainable chitosan films containing a betaine-based deep eutectic solvent and lignin: Physicochemical, antioxidant, and antimicrobial properties. Food Hydrocolloids 129:107656. doi: 10.1016/j.foodhyd.2022.107656.
  • Zhang, X., M. Morits, C. Jonkergouw, A. Ora, J. J. Valle-Delgado, M. Farooq, R. Ajdary, S. Huan, M. Linder, O. Rojas, et al. 2020. Three-dimensional printed cell culture model based on spherical colloidal lignin particles and cellulose nanofibril-alginate hydrogel. Biomacromolecules 21 (5):1875–85. doi: 10.1021/acs.biomac.9b01745.
  • Zhang, Y., and M. Naebe. 2021. Lignin: A review on structure, properties, and applications as a light-colored UV absorber. ACS Sustainable Chemistry & Engineering 9 (4):1427–42. doi: 10.1021/acssuschemeng.0c06998.
  • Zhou, M., O. A. Fakayode, A. E. Ahmed Yagoub, Q. Ji, and C. Zhou. 2022. Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization. Renewable and Sustainable Energy Reviews 156:111986. doi: 10.1016/j.rser.2021.111986.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.