931
Views
124
CrossRef citations to date
0
Altmetric
Research Article

Streptococcus pneumoniae Protein Vaccine Candidates: Properties, Activities and Animal Studies

Pages 139-153 | Received 13 Mar 2006, Accepted 11 Apr 2006, Published online: 11 Oct 2008

REFERENCES

  • Adamou J. E., Heinrichs J. H., Erwin A. L., Walsh W., Gayle T., Dormitzer M., Dagan R., Brewah Y. A., Barren P., Lathigra R., Langermann S., Koenig S., Johnson S. Identification and characterization of a novel family of pneumococcal proteins that are protective against sepsis. Infect. Immun. 2001; 69: 949–958, [INFOTRIEVE], [CSA]
  • Advisory Committee on Immunization Practices. Preventing pneumococcal disease among infants and young children Morbid. Mortal. Weekly Rep. 2000; 49 No RR09: 1–55, [CSA]
  • Advisory Committee on Immunization Practices. Pneumococcal polysaccharide vaccine. Morbid. Mortal. Weekly Rep. 1989; 38: 64–76, [CSA]
  • Alexander J. E., Lock R. A., Peeters C. A.M., Poolman J. T., Andrew P. W., Mitchell T. J., Hansman D., Paton J. C. Immunization of mice with pneumolysin toxoid confers a significant degree of protection against at least nine serotypes of Streptococcus pneumoniae. Infect. Immun. 1994; 62: 5683–5688, [INFOTRIEVE], [CSA]
  • Arulanandam B. P., Lynch J. M., Briles D. E., Hollingshead S., Metzger D. W. Intranasal vaccination with pneumococcal surface protein A and interleukin-12 augments antibody-mediated opsonization and protective immunity against Streptococcus pneumoniae Infection. Infect. Immun. 2001; 69: 6718–6724, [INFOTRIEVE], [CSA], [CROSSREF]
  • Balachandran P., Brooks-Walter A., Virolainen-Julkunen A., Hollingshead S. K., Briles D. E. Role of pneumococcal surface protein C in naso-pharyngeal carriage and pneumonia and its ability to elicit protection against carriage of Streptococcus pneumoniae. Infect. Immun. 2002; 70: 2526–2534, [INFOTRIEVE], [CSA], [CROSSREF]
  • Balachandran P., Hollingshead S. K., Paton J. C., Briles D. E. The autolytic enzyme LytA of Streptococcus pneumoniae is not responsible for releasing pneumolysin. J. Bacteriol. 2001; 183: 3108–3116, [INFOTRIEVE], [CSA], [CROSSREF]
  • Beall B., Gherardi G., Facklam R. R., Hollingshead S. K. Pneumococcal pspA sequence types of prevalent multiresistant pneumococ-cal strains in the United States and of internationally disseminated clones. J. Clin. Microbiol. 2000; 38: 3663–3669, [INFOTRIEVE], [CSA]
  • Berry A. M., Lock R. A., Hansman D., Paton J. C. Contribution of autolysin to virulence of Streptococcus pneumoniae. Infect. Immun. 1989; 57: 2324–2330, [INFOTRIEVE], [CSA]
  • Berry A. M., Paton J. C. Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins. Infect. Immun. 2000; 68: 133–140, [INFOTRIEVE], [CSA]
  • Berry A. M., Paton J. C. Sequence heterogeneity of PsaA, a 37-kilodalton putative adhesin essential for virulence of Streptococcus pneumoniae. Infect. Immun. 1996; 64: 5255–5262, [INFOTRIEVE], [CSA]
  • Boulnois G. J., Paton J. C., Mitchell T. J., Andrew P. W. Structure and function of pneumolysin, the multifunctional, thiol-activated toxin of Streptococcus pneumoniae. Mol. Microbiol. 1991; 5: 2611–2616, [INFOTRIEVE], [CSA]
  • Brandileone M. C., Andrade A. L., Teles E. M., Zanella R. C., Yara T. I., Di Fabio J. L., Hollingshead S. K. Typing of pneumococcal surface protein A (PspA) in Streptococcus pneumoniae isolated during epidemiological surveillance in Brazil: Towards novel pneumococcal protein vaccines. Vaccine. 2004; 22: 3890–3896, [INFOTRIEVE], [CSA], [CROSSREF]
  • Briles D. E., Ades E., Paton J. C., Sampson J. S., Carlone G. M., Huebner R. C., Virolainen A., Swiatlo E., Hollingshead S. K. Intranasal immunization of mice with a mixture of the pneumococcal proteins PsaA and PspA is highly protective against nasopharyngeal carriage of Streptococcus pneumoniae. Infect. Immun. 2000a; 68: 796–800, [INFOTRIEVE], [CSA], [CROSSREF]
  • Briles D. E., Hollingshead S., Brooks-Walter A., Nabors G. S., Ferguson L., Schilling M., Gravenstein S., Braun P., King J., Swift A. The potential to use PspA and other pneumococcal proteins to elicit protection against pneumococcal infection. Vaccine 2000b; 18: 1707–1711, [INFOTRIEVE], [CSA], [CROSSREF]
  • Briles D. E., Hollingshead S. K., King J., Swift A., Braun P. A., Park M. K., Ferguson L. M., Nahm M. H., Nabors G. S. Immunization of humans with recombinant pneumococcal surface protein A (rPspA) elicits antibodies that passively protect mice from fatal infection with Streptococcus pneumoniae bearing heterologous PspA. J. Infect. Dis. 2000c; 182: 1694–1701, [INFOTRIEVE], [CSA], [CROSSREF]
  • Briles D. E., Hollingshead S. K., Nabors G. S., Paton J. C., Brooks-Walter A. The potential for using protein vaccines to protect against otitis media caused by Streptococcus pneumoniae. Vaccine. 2000d; 19 (Suppl 1): S87–S95, [CSA], [CROSSREF]
  • Briles D. E., Hollingshead S. K., Paton J. C., Ades E. W., Novak L., van Ginkel F. W., Benjamin Jr. W. H. Immunizations with pneumococcal surface protein A and pneumolysin are protective against pneumonia in a murine model of pulmonary infection with Streptococcus pneumoniae. J. Infect. Dis. 2003; 188: 339–348, [INFOTRIEVE], [CSA], [CROSSREF]
  • Briles D. E., King J. D., Gray M. A., McDaniel L. S., Swiatlo E., Benton K. A. PspA, a protection-eliciting pneumonoccal protein: Immunogenicity of isolated native PspA in mice. Vaccine. 1996; 14: 858–867, [INFOTRIEVE], [CSA], [CROSSREF]
  • Briles D. E., Tart R. C., Swiatlo E., Dillard J. P., Smith P., Benton K. A., Ralph B. A., Brooks-Walter A., Crain M. J., Hollingshead S. K., McDaniel L. S. Pneumococcal diversity: Considerations for new vaccine strategies with emphasis on pneumococcal surface protein A (Pspa). Clin. Mircobiol. Rev. 1998; 11: 645–657, [CSA]
  • Brooks-Walter A., Briles D. E., Hollingshead S. K. The pspC gene of Streptococcus pneumoniae encodes a polymorphic protein, PspC, which elicits cross-reactive antibodies to PspA and provides immunity to pneumococcal bacteremia. Infect. Immun. 1999; 67: 6533–6542, [INFOTRIEVE], [CSA]
  • Brown J. S., Gilliand S. M., Holden D. W. A Streptococcus pneumoniae pathogenecity island encoding an ABC transporter involved in iron uptake and virulence. Mol. Microbiol. 2001a; 40: 572–585, [INFOTRIEVE], [CSA], [CROSSREF]
  • Brown J. S., Gilliland S. M., Ruiz-Albert J., Holden D. W. Characterization of pit, a Streptococcus pneumoniae iron uptake ABC transporter. Infect. Immun. 2002; 70: 4389–4398, [INFOTRIEVE], [CSA], [CROSSREF]
  • Brown J. S., Ogunniyi A. D., Woodrow M. C., Holden D. W., Paton J. C. Immunization with components of two iron uptake ABC transporters protects mice against systemic Streptococcus pneumoniae infection. Infect. Immun. 2001b; 69: 6702–6706, [INFOTRIEVE], [CSA], [CROSSREF]
  • Camara M., Boulnois G. J., Andrew P. W., Mitchell T. J. A neuraminidase from Streptococcus pneumoniae has the features of a surface protein. Infect. Immun. 1994; 62: 3688–3695, [INFOTRIEVE], [CSA]
  • Camara M., Mitchell T. J., Andrew P. W., Boulnois G. J. Streptococcus pneumoniae produces at least two distinct enzymes with neuraminidase activity: Cloning and expression of a second neuraminidase gene in Escherichia coli. Infect. Immun. 1991; 59: 2856–2858, [INFOTRIEVE], [CSA]
  • Cheng Q., Finkel D., Hostetter M. K. Novel purification scheme and functions for a C3-binding protein from Streptococcus pneumoniae. Biochemistry 2000; 39: 5450–5457, [INFOTRIEVE], [CSA], [CROSSREF]
  • Cima-Cabal M. D., Vazquez F., de, Jr. T. I., Mendez F. J. Rapid and reliable identification of Streptococcus pneumoniae isolates by pneumolysin-mediated agglutination. J. Clin. Microbiol. 1999; 37: 1964–1966, [INFOTRIEVE], [CSA]
  • Cundell D. R., Weiser J. N., Shen J., Young A., Tuomanen E. I. Relationship between colonial morphology and adherence of Streptococcus pneumoniae. Infect. Immun. 1995; 63: 757–761, [INFOTRIEVE], [CSA]
  • Dagan R., Kayhty H., Wuorimaa T., Yaich M., Bailleux F., Zamir O., Eskola J. Tolerability and immunogenicity of an eleven valent mixed carrier Streptococcus pneumoniae capsular polysaccharide–diphtheria toxoid or tetanus protein conjugate vaccine in Finnish and Israeli infants. Pediatr. Infect. Dis. J. 2004; 23: 91–98, [INFOTRIEVE], [CSA]
  • Dave S., Brooks-Walter A., Pangburn M. K., McDaniel L. S. PspC, a pneumococcal surface protein, binds human factor H. Infect. Immun. 2001; 69: 3435–3437, [INFOTRIEVE], [CSA], [CROSSREF]
  • Dave S., Pangburn M. K., Pruitt C., McDaniel L. S. Interaction of human factor H with PspC of Streptococcus pneumoniae. Indian J. Med. Res. 2004; 119: Suppl: 66–73, [INFOTRIEVE], [CSA]
  • de los Toyos J. R., Memdez F. J., Aparocio J. F., Vazquez F., del Mar Garcia Suarez M., Feleites A., Hardisson C., Morgan P. J., Andrew P. W., Mitchell T. J. Functional analysis of pneumolysin by use of monoclonal antibodies. Infect. Immun. 1996; 64: 480–484, [INFOTRIEVE], [CSA]
  • Dintilhac A., Alloing G., Granadel C., Claverys J. P. Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol. Microbiol. 1997; 25: 727–739, [INFOTRIEVE], [CSA], [CROSSREF]
  • Elm C., Rohde M., Vaerman J. P., Chhatwal G. S., Hammerschmidt S. Characterization of the interaction of the pneumococcal surface protein SpsA with the human polymeric immunoglobulin receptor (hpIgR). Indian J. Med. Res. 2004; 119: Suppl: 61–65, [INFOTRIEVE], [CSA]
  • Feldman C., Munro N. C., Jeffery P. K., Andrew P. W., Boulnois G. J., Guerreiro D., Rhode J. A.L., Todd H. C., Cole P. J., Wilson R. Pneumolysin induces the salient histologic features of pneumococcal infection in the rat lung in vivo. Amer. J. Respir. Cell Mol. Biol. 1991; 5: 416–423, [CSA]
  • Gor D. O., Ding X., Li Q., Schreiber J. R., Dubinsky M., Greenspan N. S. Enhanced immunogenicity of pneumococcal surface adhesin A by genetic fusion to cytokines and evaluation of protective immunity in mice. Infect. Immun. 2002; 70: 5589–5595, [INFOTRIEVE], [CSA], [CROSSREF]
  • Green B. A., Zhang Y., Masi A. W., Barniak V., Wetherell M., Smith R. P., Reddy M. S., Zhu D. PppA, a surface-exposed protein of Streptococcus pneumoniae, elicits cross-reactive antibodies that reduce colonization in a murine intranasal immunization and challenge model. Infect. Immun. 2005; 73: 981–989, [INFOTRIEVE], [CSA], [CROSSREF]
  • Hamel J., Charland N., Pineau I., Ouellet C., Rioux S., Martin D., Brodeur B. R. Prevention of pneumococcal disease in mice immunized with conserved surface-accessible proteins. Infect. Immun. 2004; 72: 2659–2670, [INFOTRIEVE], [CSA], [CROSSREF]
  • Hammerschmidt S., Talay S. R., Brandtzaeg P., Chhatwal G. S. SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol. Microbiol. 1997; 25: 1113–1124, [INFOTRIEVE], [CSA], [CROSSREF]
  • Hammerschmidt S., Tillig M. P., Wolff S., Vaerman J. P., Chhatwal G. S. Species-specific binding of human secretory component to SpsA protein of Streptococcus pneumoniae via a hexapeptide motif. Mol. Microbiol. 2000; 36: 726–736, [INFOTRIEVE], [CSA], [CROSSREF]
  • Iannelli F., Oggioni M. R., Pozzi G. Allelic variation in the highly polymorphic locus pspC of Streptococcus pneumoniae. Gene. 2002; 284: 63–71, [INFOTRIEVE], [CSA], [CROSSREF]
  • Jacobs T., Cima-Cabal M. D., Darji A., Mendez F. J., Vazquez F., Jacobs A. A., Shimada Y., Ohno-Iwashita Y., Weiss S., de I. T., Jr. The conserved undecapeptide shared by thiol-activated cytolysins is involved in membrane binding. FEBS Lett. 1999; 459: 463–466, [INFOTRIEVE], [CSA], [CROSSREF]
  • Janulczyk R., Iannelli F., Sjoholm A. G., Pozzi G., Bjorck L. Hic, a novel surface protein of Streptococcus pneumoniae that interferes with complement function. J. Biol. Chem. 2000; 275: 37257–37263, [INFOTRIEVE], [CSA], [CROSSREF]
  • Jedrzejas M. J. Pneumococcal virulence factors: Structure and function. Microbiol. Mol. Biol Rev. 2001; 65: 187–207, [CSA], [CROSSREF]
  • Johnston J. W., Myers L. E., Ochs M. M., Benjamin Jr. W. H., Briles D. E., Hollingshead S. K. Lipoprotein PsaA in virulence of Streptococcus pneumoniae: Surface accessibility and role in protection from superoxide. Infect. Immun. 2004; 72: 5858–5867, [INFOTRIEVE], [CSA], [CROSSREF]
  • Jomaa M., Yuste J., Paton J. C., Jones C., Dougan G., Brown J. S. Antibodies to the iron uptake ABC transporter lipoproteins PiaA and PiuA promote opsonophagocytosis of Streptococcus pneumoniae. Infect. Immun. 2005; 73: 6852–6859, [INFOTRIEVE], [CSA], [CROSSREF]
  • Kaijalainen T., Rintamaki S., Herva E., Leinonen M. Evaluation of gene–technological and conventional methods in the identification of Streptococcus pneumoniae. J. Microbiol. Methods 2002; 51: 111–118, [INFOTRIEVE], [CSA], [CROSSREF]
  • Kaplan S. L., Mason Jr. E. O., Wald E. R., Schutze G. E., Bradley J. S., Tan T. Q., Hoffman J. A., Givner L. B., Yogev R., Barson W. J. Decrease of invasive pneumococcal infections in children among 8 children's hospitals in the United States after the introduction of the 7-valent pneumococcal conjugate vaccine. Pediatrics. 2004; 113: 443–449, [INFOTRIEVE], [CSA], [CROSSREF]
  • Kim J. O., Weiser J. N. Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae. J. Infect. Dis. 1998; 177: 368–377, [INFOTRIEVE], [CSA]
  • King S. J., Whatmore A. M., Dowson C. G. NanA, a neuraminidase from Streptococcus pneumoniae, shows high levels of sequence diversity, at least in part through recombination with Streptococcus oralis. J. Bacteriol. 2005; 187: 5376–5386, [INFOTRIEVE], [CSA]
  • Kuo J., Douglas M., Ree H. K., Lindberg A. A. Characterization of a recombinant pneumolysin and its use as a protein carrier for pneumococcal type 18C conjugated vaccines. Infect. Immun. 1995; 63: 2706–2713, [INFOTRIEVE], [CSA]
  • Lawrence M. C., Pilling P. A., Epa V. C., Berry A. M., Ogunniyi A. D., Paton J. C. The crystal structure of pneumococcal surface antigen PsaA reveals a metal–binding site and a novel structure for a putative ABC-type binding protein. Structure. 1998; 6: 1553–1561, [INFOTRIEVE], [CSA], [CROSSREF]
  • Lock R. A., Hansman D., Paton J. C. Comparative efficacy of autolysin and pneumolysin as immunogens protecting mice against infection by Streptococcus pneumoniae. Microb. Pathog. 1992; 12: 137–143, [INFOTRIEVE], [CSA], [CROSSREF]
  • Lock R. A., Paton J. C., Hansman D. Comparative efficacy of pneumococcal neuraminidase and pneumolysin as immunogens protective against Streptococcus pneumoniae. Microb. Pathog. 1988; 5: 461–467, [INFOTRIEVE], [CSA], [CROSSREF]
  • Long J. P., Tong H. H., DeMaria T. F. Immunization with native or recombinant Streptococcus pneumoniae neuraminidase affords protection in the chinchilla otitis media model. Infect. Immun. 2004; 72: 4309–4313, [INFOTRIEVE], [CSA], [CROSSREF]
  • Mbelle N., Huebner R. E., Wasas A. D., Kimura A., Chang I., Klugman K. P. Immunogenicity and impact on nasopharyngeal carriage of a nonavalent pneumococcal conjugate vaccine. J. Infect. Dis. 1999; 180: 1171–1176, [INFOTRIEVE], [CSA], [CROSSREF]
  • McDaniel L. S., McDaniel D. O., Hollingshead S. K., Briles D. E. Comparison of the PspA sequence from Streptococcus pneumoniae EF5668 to the previously identifie PspA sequence from strain Rx1 and ability of PspA from EF5668 to elicit protection against pneumococci of different capsular types. Infect. Immun. 1998; 66: 4748–4754, [INFOTRIEVE], [CSA]
  • McDaniel L. S., Ralph B. A., McDaniel D. O., Briles D. E. Localization of protection-eliciting epitopes on PspA of Streptococcus pneumoniae between amino acid residues 192 and 260. Microb. Pathog. 1994; 17: 323–337, [INFOTRIEVE], [CSA], [CROSSREF]
  • McDaniel L. S., Scott G., Kearney J. F., Briles D. E. Monoclonal antibodies against protease-sensitive pneumococcal antigens can protect mice from fatal infection with Streptococcus pneumoniae. J. Exp. Med. 1984; 160: 386–397, [INFOTRIEVE], [CSA], [CROSSREF]
  • McDaniel L. S., Scott G., Widenhofer K., Carroll J. M., Briles D. E. Analysis of a surface protein of Steeptococcus pneumoniae recognised by protective monoclonal antibodies. Microb. Pathog. 1986; 1: 519–531, [INFOTRIEVE], [CSA], [CROSSREF]
  • McDaniel L. S., Sheffield J. S., Delucchi P., Briles D. E. PspA, a surface protein of Streptococcus pneumoniae, is capable of eliciting protection against pneumococci of more than one capsular type. Infect. Immun. 1991; 59: 222–228, [INFOTRIEVE], [CSA]
  • Michon F., Fusco P. C., Minetti C. A., Laude-Sharp M., Uitz C., Huang C. H., D'Ambra A. J., Moore S., Remeta D. P., Heron I., Blake M. S. Multivalent pneumococcal capsular polysaccharide conjugate vaccines employing genetically detoxified pneumolysin as a carrier protein. Vaccine. 1998; 16: 1732–1741, [INFOTRIEVE], [CSA], [CROSSREF]
  • Mitchell T. J., Andrew P. W., Saunders F. K., Smith A. N., Boulnois G. J. Complement activation and antibody binding by pneumolysin via a region of the toxin homologous to a human acute-phase protein. Mol. Microbiol. 1991; 5: 1883–1888, [INFOTRIEVE], [CSA]
  • Mollerach M., Regueira M., Bonofiglio L., Callejo R., Pace J., Di Fabio J. L., Hollingshead S., Briles D. Invasive Streptococcus pneumoniae isolates from Argentinian children: Serotypes, families of pneumococcal surface protein A (PspA) and genetic diversity. Epidemiol. Infect. 2004; 132: 177–184, [INFOTRIEVE], [CSA], [CROSSREF]
  • Navarre W. W., Schneewind O. Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in gram-positive bacteria. Mol. Microbiol. 1994; 14: 115–121, [INFOTRIEVE], [CSA]
  • Navarre W. W., Schneewind O. Surface proteins of gram–positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 1999; 63: 174–229, [CSA]
  • Novak R., Braun J. S., Charpentier E., Tuimanen E. Penicillin tolerance genes of Streptococcus pneumoniae: The ABC-type manganese permease complex PsaA. Mol. Microbiol. 1998; 29: 1285–1296, [INFOTRIEVE], [CSA], [CROSSREF]
  • O'Brien K. L., Santosham M. Potential impact of conjugate pneumococcal vaccines on pediatric pneumococcal diseases. Am. J. Epidemiol. 2004; 159: 634–644, [INFOTRIEVE], [CSA], [CROSSREF]
  • Ogunniyi A. D., Folland R. L., Briles D. E., Hollingshead S. K., Paton J. C. Immunization of mice with combinations of pneumococcal virulence proteins elicits enhanced protection against challenge with Streptococcus pneumoniae. Infect. Immun. 2000; 68: 3028–3033, [INFOTRIEVE], [CSA], [CROSSREF]
  • Ogunniyi A. D., Woodrow M. C., Poolman J. T., Paton J. C. Protection against Streptococcus pneumoniae elicited by immunization with pneumolysin and CbpA. Infect. Immun. 2001; 69: 5997–6003, [INFOTRIEVE], [CSA], [CROSSREF]
  • Orihuela C. J., Gao G., Francis K. P., Yu J., Tuomanen E. I. Tissue-specific contributions of pneumococcal virulence factors to pathogenesis. J. Infect. Dis. 2004; 190: 1661–1669, [INFOTRIEVE], [CSA], [CROSSREF]
  • Paton J. C., Ferrante A. Inhibition of human polymorphonuclear leukocyte respiratory burst, bactericidal activity, and migration by pneumolysin. Infect. Immun. 1983; 41: 1212–1216, [INFOTRIEVE], [CSA]
  • Paton J. C., Lock R. A., Lee C. J., Li J. P., Berry A. M., Mitchell T. J., Andrew P. W., Hansman D., Boulnois G. J. Purification and immunogenicity of genetically obtained pneumolysin toxoids and their conjugation to Streptococcus pneumoniae type 19F polysaccharide. Infect. Immun. 1991; 59: 2297–2304, [INFOTRIEVE], [CSA]
  • Pilling P. A., Lawrence M. C., Berry A. M., Ogunniyi A. D., Lock R. A., Paton J. C. Expression, purification and preliminary X-ray crystallographic analysis of PsaA, a putative metal–transporter protein of Streptococcus pneumoniae. Acta Crystallogr. D. Biol. Crystallogr. 1998; 54: 1464–1466, [INFOTRIEVE], [CSA], [CROSSREF]
  • Rapola S., Kilpi T., Lahdenkari M., Makela P. H., Kayhty H. Antibody response to the pneumococcal proteins pneumococcal surface adhesin A and pneumolysin in children with acute otitis media. Pediatr. Infect. Dis. J. 2001a; 20: 482–487, [CSA]
  • Rapola S., Kilpi T., Lahdenkari M., Takala A. K., Makela P. H., Kayhty H. Do antibodies to pneumococcal surface adhesin A prevent pneumococcal involvement in acute otitis media?. J. Infect. Dis. 2001b; 184: 577–581, [INFOTRIEVE], [CSA], [CROSSREF]
  • Ren B., Szalai A. J., Hollingshead S. K., Briles D. E. Effects of PspA and antibodies to PspA on activation and deposition of complement on the pneumococcal surface. Infect. Immun. 2004; 72: 114–122, [INFOTRIEVE], [CSA], [CROSSREF]
  • Roche H., Hakansson A., Hollingshead S. K., Briles D. E. Regions of PspA/EF3296 best able to elicit protection against Streptococcus pneumoniae in a murine infection model. Infect. Immun. 2003; 71: 1033–1041, [INFOTRIEVE], [CSA], [CROSSREF]
  • Romero-Steiner S., Libutti D., Pais L. B., Dykes J., Anderson P., Whitin J. C., Keyserling H. L., Carlone G. M. Standardization of an opsonophagocytic assay for the measurement of functional antibidy activity against Streptococcus pneumoniae using differentiated HL-60 cells. Clin. Diagn. Lab. Immunol. 1997; 4: 415–422, [INFOTRIEVE], [CSA]
  • Romero-Steiner S., Pilishvili T., Sampson J. S., Johnson S. E., Stinson A., Carlone G. M., Ades E. W. Inhibition of pneumococcal adherence to human nasopharyngeal epithelial cells by anti-PsaA antibodies. Clin. Diagn. Lab Immunol. 2003; 10: 246–251, [INFOTRIEVE], [CSA], [CROSSREF]
  • Rosenow C., Ryan P., Weiser J. N., Johnson S., Fontan P., Ortqvist A., Masure H. R. Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol. Microbiol. 1997; 25: 819–829, [INFOTRIEVE], [CSA], [CROSSREF]
  • Rossjohn J., Gilbert R. J., Crane D., Morgan P. J., Mitchell T. J., Rowe A. J., Andrew P. W., Paton J. C., Tweten R. K., Parker M. W. The molecular mechanism of pneumolysin, a virulence factor from Streptococcus pneumoniae. J. Mol. Biol. 1998; 284: 449–461, [INFOTRIEVE], [CSA], [CROSSREF]
  • Russell H., Tharpe J. A., Wells D. E., White E. H., Johnson J. E. Monoclonal antibody recognizing a species-specific protein from Streptococcus pneumoniae. J. Clin. Microbiol. 1990; 28: 2191–2195, [INFOTRIEVE], [CSA]
  • Sampson J. S., O'Connor S. P., Stinson A. R., Tharpe J. A., Russell H. Cloning and nucleotide sequence analysis of psaA the Streptococcus pneumoniae gene encoding a 37-kilodalton protein homologous to previously reported Streptococcus sp. adhesins. Infect. Immun. 1994; 62: 319–324, [INFOTRIEVE], [CSA]
  • Saukkoriipi A., Palmu A., Kilpi T., Leinonen M. Real-time quantitative PCR for the detection of Streptococcus pneumoniae in the middle ear fluid of children with acute otitis media. Mol. Cell Probes. 2002; 16: 385–390, [INFOTRIEVE], [CSA], [CROSSREF]
  • Saunders F. K., Mitchell T. J., Walker J. A., Andrew P. W., Boulnois G. J. Pneumolysin, the thio–activated toxin of Streptococcus pneumoniae, does not require a thio group for in vitro activity. Infect. Immun. 1989; 57: 2547–2552, [INFOTRIEVE], [CSA]
  • Schneewind O., Mihaylova–Petkov D., Model P. Cell wall sorting signals in surface proteins of gram–positive bacteria. EMBO J. 1993; 12: 4803–4811, [INFOTRIEVE], [CSA]
  • Seo J. Y., Seong S. Y., Ahn B. Y., Kwon I. C., Chung H., Jeong S. Y. Cross-protective immunity of mice induced by oral immunization with pneumococcal surface adhesin A encapsulated in microspheres. Infect. Immun. 2002; 70: 1143–1149, [INFOTRIEVE], [CSA], [CROSSREF]
  • Shaper M., Hollingshead S. K., Benjamin W. H., Jr., Briles D. E. PspA protects Streptococcus pneumoniae from killing by apolactoferrin, and antibody to PspA enhances killing of Pneumococci by apolactoferrin. Infect. Immun. 2004; 72: 5031–5040, [INFOTRIEVE], [CSA], [CROSSREF]
  • Sheppard C. L., Harrison T. G., Morris R., Hogan A., George R. C. Autolysin-targeted LightCycler assay including internal process control for detection of Streptococcus pneumoniae DNA in clinical samples. J. Med. Microbiol. 2004; 53: 189–195, [INFOTRIEVE], [CSA], [CROSSREF]
  • Simell B., Korkeila M., Pursiainen H., Kilpi T. M., Kayhty H. Pneumococcal carriage and otitis media induce salivary antibodies to pneumococcal surface adhesin A, pneumolysin, and pneumococcal surface protein a in children. J. Infect. Dis. 2001; 183: 887–896, [INFOTRIEVE], [CSA], [CROSSREF]
  • Smart L. E., Dougall A. J., Girdward R. W.A. New 23-valent pneumococcal vaccine in relation to pneumococcal serotypes in systemic and systemic disease. J. Infect. 1987; 14: 209–215, [INFOTRIEVE], [CSA], [CROSSREF]
  • Steinfort C., Wilson R., Rutman A., Sykes D., Todd H., Walker J., Mitchell T., Saunders K., Andrew P., Boulnois G., Cole P. Pneumolysin produced by Streptococcus pneumoniae damages human respiratory epithelium in vitro. Chest 1989; 95 Suppl: 221S, [CSA]
  • Tai S. S., Lee C.-J., Winter R. E. Hemin utilization is related to virulence of Streptococcus pneumoniae. Infect. Immun. 1993; 61: 5401–5405, [INFOTRIEVE], [CSA]
  • Tai S. S., Yu C., Lee J. K. A solute binding protein of Streptococcus pneumoniae iron transport. FEMS Microbiol. Lett. 2003; 220: 303–308, [INFOTRIEVE], [CSA], [CROSSREF]
  • Talkington D. F., Brown B. G., Tharpe J. T., Koenig A., Russell H. Protection of mice against fatal pneumococcal challenge by immunization with pneumococcal surface adhesin (PsaA). Microb. Pathog. 1996; 21: 17–22, [INFOTRIEVE], [CSA], [CROSSREF]
  • Talkington D. F., Crimmins D. L., Voellinger D. C., Yother J., Briles D. E. A 43-kilodalton pneumococcal surface protein, PspA: Isolation, protective abilities, and structural analysis of the amino-terminal sequence. Infect. Immun. 1991; 59: 1285–1289, [INFOTRIEVE], [CSA]
  • Tart R. C., McDaniel L. S., Ralph B. A., Briles D. E. Truncated Streptococcus pneumoniae PspA molecules elicit cross–protective immunity against pneumococcal challenge in mice. J. Infect. Dis. 1996; 173: 380–386, [INFOTRIEVE], [CSA]
  • Tong H. H., Blue L. E., James M. A., DeMaria T. F. Evaluation of the virulence of a Streptococcus pneumoniae neuraminidase- deficient mutant in nasopharyngeal colonization and development of otitis media in the chinchilla model. Infect. Immun. 2000; 68: 921–924, [INFOTRIEVE], [CSA], [CROSSREF]
  • Tong H. H., James M., Grants I., Liu X., Shi G., DeMaria T. F. Comparison of structural changes of cell surface carbohydrates in the eustachian tube epithelium of chinchillas infected with a Streptococcus pneumoniae neuraminidase-deficient mutant or its isogenic parent strain. Microb. Pathog. 2001; 31: 309–317, [INFOTRIEVE], [CSA], [CROSSREF]
  • Tong H. H., McIver M. A., Fisher L. M., DeMaria T. F. Effect of lacto-N-neotetraose, asialoganglioside-GM1 and neuraminidase on adherence of otitis media-associated serotypes of Streptococcus pneumoniae to chinchilla tracheal epithelium. Microb. Pathog. 1999; 26: 111–119, [INFOTRIEVE], [CSA]
  • Usobiaga P., Medrano F. J., Gasset M., Garcia J. L., Saiz J. L., Rivas G., Laynez J., Menendez M. Structural organization of the major autolysin from Streptococcus pneumoniae. J. Biol. Chem. 1996; 271: 6832–6838, [INFOTRIEVE], [CSA]
  • Vela Coral M. C., Fonseca N., Castaneda E., Di Fabio J. L., Hollingshead S. K., Briles D. E. Pneumococcal surface protein A of invasive Streptococcus pneumoniae isolates from Colombian children. Emerg. Infect. Dis. 2001; 7: 832–836, [INFOTRIEVE], [CSA]
  • Weiser J. N., Austrian R., Sreenivasan P. K., Masure H. R. Phase variation in pneumococcal opacity: Relationship between colonial morphology and nasopharyngeal colonization. Infect. Immun. 1994; 62: 2582–2589, [INFOTRIEVE], [CSA]
  • Wizemann T. M., Heinrichs J. H., Adamou J. E., Erwin A. L., Kunsch C., Choi G. H., Barash S. C., Rosen C. A., Masure H. R., Toumanen E., Gayle A., Brewah Y. A., Walsh W., Barren P., Lathigra R., Hanson M., Langermann S., Johnson S., Kogoma T. Use of a whole genome approach to identify vaccine molecules affording protection against Streptococcus pneumoniae infection. Infect. Immun. 2001; 69: 1593–1598, [INFOTRIEVE], [CSA], [CROSSREF]
  • Wortham C., Grinberg L., Kaslow D. C., Briles D. E., McDaniel L. S., Lees A., Flora M., Snapper C. M., Mond J. J. Enhanced protective antibody responses to PspA after intranasal or subcutaneous injections of PspA genetically fused to granulocyte-macrophage colony-stimulating factor or interleukin-2. Infect. Immun. 1998; 66: 1513–1520, [INFOTRIEVE], [CSA]
  • Yamamoto M., McDaniel L. S., Kawabata K., Briles D. E., Jackson R., McGhee J. R., Kiyono H. Oral immunization with PspA elicits protective humoral immunity against Streptococcus pneumoniae infection. Infect. Immun. 1997; 65: 640–644, [INFOTRIEVE], [CSA]
  • Yother J., Briles D. E. Structural properties and evolutionay relationships of PspA, a surface protein of Streptococcus pneumoniae, as revealed by sequence analysis. J. Bacteriol. 1992; 174: 601–609, [INFOTRIEVE], [CSA]
  • Yother J., White J. M. Novel surface attachment mechanism of the Streptococcus pneumoniae protein PspA. J. Bacteriol. 1994; 176: 2976–2985, [INFOTRIEVE], [CSA]
  • Zhang J. R., Mostov K. E., Lamm M. E., Nanno M., Shimida S., Ohwaki M., Tuomanen E. The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell. 2000; 102: 827–837, [INFOTRIEVE], [CSA], [CROSSREF]
  • Zhang Y., Masi A. W., Barniak V., Mountzouros K., Hostetter M. K., Green B. A. Recombinant PhpA protein, a unique histidine motif-containing protein from Streptococcus pneumoniae, protects mice against intranasal pneumococcal challenge. Infect. Immun. 2001; 69: 3827–3836, [INFOTRIEVE], [CSA], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.