800
Views
78
CrossRef citations to date
0
Altmetric
Research Article

Methanotrophs, Methylosinus trichosporium OB3b, sMMO, and Their Application to Bioremediation

, &
Pages 335-373 | Published online: 29 Sep 2008

REFERENCES

  • Fox B, Bourneman J, Wackett L, and Lipscomb J. 1990. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry 29: 6419–6427.
  • Tsien H, Brusseau G, Hanson R, and Wackett L. 1989. Degradation of trichloroethylene by Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 55: 3155–3161.
  • Higgins I, Best D, and Hammond R. 1980. New findings in methane-utilising bacteria highlight their importance in the biosphere and their commercial potential. Nature 286: 561–564.
  • Anthony C. 1983. The Biochemistry of Methylotrophs. Academic Press, London.
  • Alvarez-Cohen L and Mc Carty P. 1991. Effects of toxicity and reductant supply on trichloroethylene transformation by a mixed methanotrophic culture. Appl. Environ. Microbiol. 57: 228–235.
  • Oldenhuis R, Oedzes J, Waarde J, and Janssen D. 1991. Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene. Appl. Environ. Microbiol. 57: 7–14.
  • Oldenhuis R, Vink R, Janssen D, and Witholt B. 1989. Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxy-genase. Appl. Environ. Microbiol. 55: 2819–2826.
  • Colby J, Stirling D, and Dalton H. 1977. The soluble methane monooxygenase of Methylo-coccus capsulatus (Bath). J. Biochem. 165: 395–402.
  • Hou C, Patel R, Laskin A, and Barnaby N. 1980. Microbial oxidation of gaseous hydrocarbons: oxidation of lower n-alkenes and n-alkanes by resting cell suspensions of various methylotrophic bacteria, and the effect of methane metabolites. FEMS Microbiol. Lett. 9: 267–270.
  • Phelps T, Niedzielski J, Schram R, Herbes S, and Whites D. 1990. Biodegradation of TCE in continuous recycle expanded bed reactor. Appl. Environ. Microbiol. 56: 1702–1709.
  • Stirling D and Dalton H. 1979. Aerobic metabolism of methane and methanol. In: Chemical and Biochemical Fundamentals 379–408.
  • Stanley S, Prior S, Leak S, and Dalton H. 1983. Copper stress underlies the fundamental change in the intracellular location of methane monooxygenase in methane-oxidizing organisms: studies in batch and continuous cultures. Biotechnol. Lett. 5: 487–492.
  • Scott D, Brannan D, and Higgins I. 1981. The effect of growth conditions on intracytoplas-mic membranes and methane monooxygenase activities in Methylosinus trichosporium OB3b. J. Gen. Microbiol. 125: 63–72.
  • Tonge G, Harrison D, and Higgins I. 1977. Purification of the methane monooxygenase enzyme system from Methylosinus tricho-sporium OB3b. J. Biochem. 161: 333–344.
  • Hou C 1986. Recent progress in research on methanotrophs and methane monooxygenases. Biotechnol. Gen. Eng. Rev. 4: 145–168.
  • Burrows K, Cornish A, Scott D, and Higgins I. 1984. Substrate specificities of the soluble and particulate methane monooxygenase of Methylosinus trichosporium OB3b. J. Gen. Microbiol. 130: 3327–3333.
  • Prior S and Dalton H. 1985. The effect of copper ions on membrane content and methane monooxygenase activity in methanol grown cells of Methylococcus capsulatus (Bath). J. Gen. Microbiol. 131: 155–163.
  • Phelps P, Agarwal S, Speitel G, and Georgiou G. 1992. Methylosinus trichosporium OB3b mutants having constitutive expression of soluble methane monooxygenase in the presence of high levels of copper. Appl. Environ. Microbiol. 58: 11, 3701–3708.
  • Fitch M, Graham D, Arnold R, Agarwal S, Phelps P, Speitel G, and Georgiou G. 1993. Phenotypic characterisation of copper-resistant mutants of Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. .59: 9, 2771–2776.
  • Stainthorpe A, Salmond G, Dalton H, and Murrell J. 1990. Screening of obligate methanotrophs for soluble methane mono-oxygenase genes. FEMS Microbiol. Lett. 70: 211–216.
  • Tsien H and Hanson R. 1992. Soluble methane monooxygenase component B gene probe for identification of methanotrophs that rapidly degrade trichloroethylene. Appl. Environ. Microbiol. 58: 953–960.
  • Green J and Dalton H. 1985. Protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath). J. Biol. Chem. 15795–15801.
  • Park S, Hanna M, Taylor R, and Droege W. 1991. Batch cultivation of Methylosinus trichosporium OB3b. I. Production of soluble methane monooxygenase. Biotechnol. Bioeng. 38: 423–433.
  • Shah N, Park S, Taylor R, and Droege M. 1992. Cultivation of Methylosinus trichosporium OB3b for the production of particulatemethane monooxygenase. Abstr. Am. Chem. Soc. 203: 1, 98–BIOT.
  • Shah N, Park S, Taylor R, and Droege M. 1992. Cultivation of Methylosinus trichosporium OB3b. III. Production of par-ticulate methane monooxygenase in continuous culture. Biotechnol. Bioeng. 40: 6, 705–712.
  • Patel R and Savas J. 1987. Purification and properties of the hydroxylase component of methane monooxygenase. J. Bacteriol. 169: 2313–2317.
  • Pilkington S and Dalton H. 1991. Purification and characterization of the soluble methane monooxygenase from Methylosinus sporium 5 demonstrates the highly conserved nature of this enzyme in methanotrophs. FEMS Microbiol. Lett. 78: 103–108.
  • Nakajima T, Uchiyama H, Yagi O, and Nakahara T. 1992. Purification and properties of a soluble methane monooxygenase from Methylocystis sp. M. Biosci, Biotechnol. Biochem. 56: 5, 736–740.
  • Koh S, Bowman J, and Sayler G. 1993. Soluble methane monooxygenase production and trichloroethylene degradation by a type I methanotroph. Appl. Environ. Microbiol. 59: 960–967.
  • Cardy D, Laidler V, Salmond G, and Murrell J. 1991. The methane monooxygenase gene cluster of Methylosinus trichosporium OB3b — cloning and sequencing of the mmoC gene. Arch. Microbiol. 156: 6, 477–483.
  • Dalton H. 1992. Biological methane activation — lessons for the chemists. Catalysis Today 13: 2–3, 455–461.
  • Fox B, Froland W, Dege J, and Lipscomb J. 1989. Methane monooxygenase from Methylosinus trichosporium OB3b. J. Biol. Chem. 264: 10023–10033.
  • Woodland M and Dalton H. 1984. Purification and characterisation of component A of the methane monooxygenase from Methylo-coccus capsulatus (Bath). J. Biol. Chem. 259: 53–59.
  • Ruzicka F, Huang D, Donnelly M, and Frey P. 1990. Methane monooxygenase catalysed oxygenation of 1,1-dimethylcyclopropane — evidence for radical and carbocationic intermediates. Biochemistry. 29: 7, 1696–1700.
  • Drummond D, Smith S, and Dalton H. 1992. Evidence for two histidine ligands at the di-iron site of methane monooxygenase. J. Biochem. 210: 629–637.
  • Fox B, Liu Y, Dege J, and Lipscomb J. 1991. Complex formation between the components of methane monooxygenase from Methylo-sinus trichosporium OB3b. J. Biol. Chem. 266: 540–550.
  • Wilkens C, Dalton H, Podmore I, Dieghton N, and Syonous M. 1992. Biological methane activation involves the intermediary of carbon centred radicals. Eur. J. Biochem. 210: 67–72.
  • Adrians P. 1994. Evidence for chlorine migration during oxidation of 2-chlorobiphenyl by a type II methanotroph. Appl. Environ. Microbiol. 60: 1658–1662.
  • Adrians P and Gribogalic D. 1994. Come-tabolic transformation of monochlorophenyls and dichlorophenyls and chlorohydroxy-bi-phenyls by methanotrophic groundwater isolates. Environ. Sci. Technol. 28: 1325–1330.
  • Sullivan J and Chase H. 1996. 1,2,3-trichlorobenzene transformation by Methylo-sinus trichosporium OB3b expressing soluble methane monooxygenase. Appl. Microbiol. Biotechnol. 45: 427–433.
  • Brusseau G, Tsien G, Hanson R, and Wackett L. 1990. Optimization of trichloroethylene oxidation by methanotrophs and the use of a colourmetric assay to detect soluble methane monooxygenase activity. Biodegradation 1: 19–29.
  • Leak D and Dalton H. 1986. Growth yields of methanotrophs I. Effect of copper on the energetics of methane oxidation. Appl. Micro-biol. Biotechnol. 23: 470–476.
  • Nguyen H, Shiemke A, Jacobs S, Hales B, Lidstrom M, and Chan S. 1994. The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Biol. Chem. 269: 21, 14995–15005.
  • DiSpirito A, Gulledge J, Shiemke A K, Murrell, J C, Lidstrom M E, Krema, C L, 1992. Trichloroethylene oxidation by the membrane associated methane mono-oxygenase in type I, type II, and type X methanotrophs. Biodegradation 2: 151–164.
  • Collins M, Bucholz L and Remsen C. 1991. Effects of copper on Methylomonas albus BG8. Appl. Environ. Microbiol. 57: 1261–1264.
  • Anthony C. 1992. The structure of bacterial quinoprotein dehydrogenases. Int. J. Biochem. 24: 1, 29–39.
  • Colby J and Dalton H. 1979. Characterization of the second prosthetic group of the flavoenzyme NADH-acceptor reductase (Component C) of the methane mono-oxyge-nase from Methylococcus capsulatus (Bath). J. Biochem. 177: 903–908.
  • Yoch D, Chen Y, and Hardin M. 1990. Formate dehydrogenase from the methane oxi-dizer Methylosinus trichosporium OB3b. J. Bacteriol. 172: 4456–4463.
  • Chen Y and Yoch D. 1989. Isolation, characterisation and biological activity of ferredoxin-NAD+ reductase from the methane oxidizer Methylosinus trichosporium OB3b. J. Bacteriol. 5012–5016.
  • Oldenhuis R and Janssen D. 1992. Degradation of trichloroethylene by methanotrophic bacteria. Microbial growth on C1 Compounds (Murrell, J C and Kelly, D P Ed.). Intercept Ltd., Andover.
  • Volkering F, Breure A, and Vanandel J. 1993. Effect of microorganisms on the bioavailabil-ity and biodegradation of crystalline naphthalene. Appl. Microbiol. Biotechnol. 40: 4, 535–540.
  • Jenkins J, Kadner D, and Lion L. 1994. Methanotrophic bacteria and facilitated transport of hydrophobic pollutants in aquifer material. Abstr. Am. Chem. Soc. 205: 213.
  • Green J and Dalton H. 1986. Steady-state kinetic analysis of soluble methane mono-oxygenase from Methylococcus capsulatus (Bath). Biochem. J. 236: 1, 155–162.
  • Mounfort D, Pybus V, and Wilson R. 1990. Metal ion-mediated accumulation of alcohols during alkane oxidation by whole cells of Methylosinus trichosporium. Enzyme and Microbial Technol. 12: 343–349.
  • Mountford D. 1990. Oxidation of aromatic alcohols by purified methanol dehydro-genase from Methylosinus trichosporium. J. Bacteriol. 172: 3690–3694.
  • Anders W and Pohl L. 1985. Halogenated alkanes. Bioactivation of Foreign Compounds. Academic Press, Colorado.
  • Henschler D and Anders M. 1985. Haloge-nated alkenes and alkynes. Bioactivation of Foreign Compounds. Academic Press, Colorado.
  • Wackett L and Householder S. 1989. Toxic-ity of trichloroethylene to Pseudomonas putida FI is mediated by toluene dioxygenase. Appl. Environ. Microbiol. 55: 2723–2725.
  • Wolf C. 1982. Oxidation of foreign at carbon atoms. Metabolic Basis of Detoxification (Jackoby W B, Bend J R, and Caldwell J, Eds.). Academic Press, New York. 1–28.
  • Galli R and Mc Carty P. 1989. Biotransformation of 1,1,1-trichloroethane, trichlo-romethane and tetrachloromethane by a Clostridium sp. Appl. Environ. Microbiol. 55: 837–844.
  • Stainthorpe A, Murrell J, Salmond G, Dalton H, and Lees V. 1989. Molecular analysis of methane monooxygenase from Methylococcus capsulatus (Bath). Arch. Microbiol. 152: 2, 154–159.
  • Stainthorpe A, Lees V, Salmond G, Dalton H, and Murrell J. 1990. The methane mono-oxygenase gene cluster of Methylo-coccus capsulatus (Bath). Gene 91: 1, 27–34.
  • Stainthorpe A, Salmond G, Dalton H, and Murrell J. 1990. Screening of obligate methanotrophs for soluble methane mono-oxygenase genes. FEMS Microbiol Lett. 70: 2, 211–216.
  • Mullens I and Dalton H. 1987. Cloning of the gamma subunit methane monooxygenase from Methylococcus capsulatus. Bio-Technology 5: 5, 490–493.
  • Pilkington S, Salmond G, Murrell J and Dalton H. 1990. Identification of the gene encoding the regulatory protein B of soluble methane monooxygenase. FEMS Microbiol. Lett. 72: 3, 345–348.
  • Murrell J. 1992. Genetics and molecular biology of methanotrophs. FEMS Microbiol. Rev. 88: 3–4, 233–248.
  • West C, Salmond G, Dalton H, and Murrell J. 1992. Functional expression in Escherichia coli of proteins B and C from methane monooxygenase of Methylococcus capsulatus (Bath)a. J. Gen. Microbiol. 138: 1301–1307.
  • Mc Pheat W, Mann N, and Dalton H. 1987. Transfer of broad host range plasmids to the Type-I obligate Methanotroph Methylomonas Albus. FEMS Microbiol. Lett. 41: 2, 185–188.
  • Altaho N and Warner P. 1987. Restoration of phenotype in Escherichia coli auxotrophs by Pulb113 mediated mobilisation from methylo-trophic bacteria. FEMS Microbiol. Lett. 43: 2, 235–239.
  • West C, Salmond G, Dalton H and Murrell J. 1992. Functional expression in Escherichia coli of Protein B and Protein C from soluble methane monooxygenase of Methylococcus capsulatus (Bath). J. Gen. Microbiol. 138: 7, 1301–1307.
  • Freedman D and Gossett J. 1989. Biological reductive dechlorination of tetrachloroethyl-ene and trichloroethylene under methanogenic conditions. Appl. Environ. Microbiol. 55: 2144–2151.
  • Hou C. 1984. Propylene oxide production from propylene by immobilized whole cells of Methylosinus sp. CRL 31 in a gas-solid reactor. Appl. Microbiol. Biotechnol. 19: 1–4.
  • Green J and Dalton H. 1986. Steady-state kinetic analysis of soluble methane monooxygenase from Methylococcus capsulatus (Bath). J. Biochem. 236: 155–162.
  • Prior S and Dalton H. 1985. Acetylene as a suicide substrate and active site probe for methane monooxygenase from Methylococcus capsulatus (Bath). FEMS Microbiol. Lett. 29: 105–109.
  • Shears J and Wood P. 1985. Spectroscopic evidence for a photosensitive oxygenated state of ammonia monooxygenase. Biochem. J. 226: 2, 499–507.
  • Carlson H, Joergensen L, and Degn H. 1991. Inhibition by ammonia of methane utilisation in Methylococcus capsulatus (Bath). Appl. Microbiol. Biotechnol. 35: 124–127.
  • Eng W, Palumbo A, Haran S, and Standberg G. 1991. Methanol suppression of trichloro-ethane degradation by Methylosinus tricho-sporium OB3b and methane-oxidizing mixed cultures. App. Biochem. Biotechnol. 28/29: 887–889.
  • Topp E and Knowles R. 1984. Effects of nitrapyrin [2-chloro-6-(trichloromethyl) pyridine] on the obligate methanotroph Methylosinus trichosporium OB3b. App. Environ. Microbiol. 47: 258–262.
  • Mehta P, Mishra S, and Ghose T. 1987. Metha-nol accumulation by resting cells of Methylo-sinus trichosporium (I). J. Gen. App. Microbiol. 33: 221–229.
  • Janssen D, Grobben G, Hoekstra R, Oldenhuis R, and Witholt B. 1988. Degradation of trans–1,2-dichloroethane by mixed and pure cultures of methanotrophic bacteria. App. Microbiol. Biotechnol. 29: 392–399.
  • Broholm K, Jensen B, Christensen T, and Olsen L. 1990. Toxicity of 1,1,1-trichloro-ethane on a mixed culture of methane-oxidising bacteria. App. Environ. Microbiol. 56: 2488–2493.
  • Speitel G and Leonard J. 1992. A sequencing biofilm reactor for the treatment of chlorinated solvents using methanotrophs. Water Environ. Res. 64: 712–719.
  • Strand S, Wodrich J, and Stensel H. 1991. Biodegradation of chlorinated solvents in a sparged, methanotrophic biofilm reactor. Res. J. WPCF. 63: 859–866.
  • Standberg G, Donaldson T, and Farr L. 1989. Degradation of trichloroethylene and trans-1,2-dichloroethylene by a methanotrophic consortium in a fixed film packed bed reactor. Environ. Sci. Technol. 23: 1422–1425.
  • Siahpush H, Lin J, and Wang H. 1992. Effects of adsorbents on degradation of toxic organic compounds by co-immobilised systems. Biotechnol. Bioeng. 39: 619–628.
  • Speitel G and Mc Lay D. 1993. Biofilm reactors for treatment of gas streams containing chlorinated solvents. J. Environ. Eng. ASCE. 119: 4, 658–678.
  • Mc Farlane M, Vogel C, and Spain J. 1992. Methanotrophic cometabolism of trichloroet-hylene (TCE) in a two stage bioreactor system. Water Res. 26: 259–265.
  • Alvarez-Cohen L and Mc Carty P. 1991. Product toxicity and cometabolic competitive inhibition modelling of chloroform and trichlo-roethylene transformation by methanotrophic resting cells. Appl. Environ. Microbiol. 57: 1031–1037.
  • Alvarez-Cohen L and Mc Carty P. 1991. Two-stage dispersed growth treatment of haloge-nated aliphatic compounds by cometabolism. Environ. Sci. Technol. 25: 1387–1393.
  • Tongue G, Harrison D, and Higgins I. 1977. Purification and properties of the methane monooxygenase enzyme system from Methylosinus trichosporium OB3b. J. Biochem. 161: 333–344.
  • Cardinal L and Stenstrom M, (1991) Enhanced biodegradation of polyaromatic hydrocarbons in the activated sludge process. Research Journal WCPF. 63: 950–957
  • Brunhold C, Hunns J, Mackley M, and Thompson J. 1989. Experimental observations on flow patterns and energy losses from oscillatory flow in ducts containing sharp edges. Chem. Eng. Sci. 44: 1227–1244
  • Warhurst A and Fewson C. 1994. Biotransformation catalysed by the genus Rhodo-coccus. Crit. Rev. Biotechnol. 14: 29–73.
  • Engesser K, Cain R, and Knackmuss H. 1988. Bacterial metabolism of side chain fluorinated aromatics — co-metabolism of 3-trifluoro-methyl (Tfm)-benzoate by Pseudomonas putida (Arvilla) Mt2 and Rhodococcus rubropertinctus N657. Arch. Microbiol. 149: 3, 188–197.
  • Fuchs K, Schriener A, and Lingens F. 1991. Degradation of 2-methylalanine and chlorinated isomers of 2-methylalanine by Rhodo-coccus rhodochrous strain CTM. J. Gen. Microbiol. 137: 2033–2039.
  • Hensel J and Straube G. 1990. Kinetic studies of phenol degradation by Rhodococcus sp. P1 2. Continuous cultivation. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 57: 1, 33–36.
  • Apajalahti J and Salkinoja-Salonen M. 1986. Degradation of polychlorinated phenols by Rhodococcus chlorophenolicus. Appl. Micro-biol Biotechnol. 25: 62–67.
  • Apajalahti J, Karpanoja J, and Salkinoja-Salonen M. 1986. Rhodococcus chloro-phenolicus sp. nov., a chlorophenol-mineral-ising actinomycete. Int. Syst. Microbiol. 36: 246–251.
  • Appel M, Raabe T, and Lingens F. 1984. Degradation of o-toluidene by Rhodococcus rhodochrous. FEMS Microbiol. <i>Lett. 24: 123–126.
  • Uotila J, Salkinoja-Salonen M, and Apajalahti J. 1991. Dechlorination of pentachlorophenol by membrane bound enzymes of Rhodococcus chlorophenolicus PCP-1. Biodegradation 2: 25–31.
  • Cardy D, Laidler V, Salmond G, and Murrell J. 1991. Molecular analysis of the methane monooxygenase (mmoX) gene-cluster of Methylosinus trichosporium OB3b. Mol. Microbiol. 2: 335–342.
  • Joliff G, Mathieu L, Hahn V, Bayan N, Duchiron F, Renaud M, Shechter E, and Leblon G. 1992. Cloning and nucleotide sequence of the Csp1 gene encoding Ps1, one of the two major secreted proteins of Coryne-bacterium glutamicum — the deduced N-terminal region of Ps1 is similar to the Mycobacterium antigen 85 complex. Mol. Microbiol. 6: 16, 2349–2362.
  • Jahng D and Wood T. 1994. Trichloroeth-ylene and chloroform degradation by a recombinant Pseudomonad expressing solublemethane monooxygenase from Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 60: 7, 2473–2482.
  • Dellagostin O, Wall S, Norman E, Oshaughnessy T, Dale J, and Mc Fadden J. 1993. Construction and use of integrative vectors to express foreign genes in Mycobac-teria. Mol. Microbiol. 10: 5, 983–993.
  • Stainthorpe A, Salmond G, Dalton H, and Murrell J. 1990. Screening of obligate methanotrophs for soluble methane mono-oxygenase genes. FEMS Microbiol. Lett. 70: 211–216.
  • Sullivan J and Chase H. 1995. Biotransformation of chlorinated and non-chlorinated aromatics and alicyclics by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. 3rd International Symposium on Biochemical Engineering. Stuttgart, in press.
  • Speitel G and Leonard J. 1992. A sequencing biofilm reactor for the treatment of chlorinated solvents using methanotrophs. Water Environ. Res. 64: 5, 712–719.
  • Oldenhuis R, Oedzes J, van der Waarde J, and Janssen D. 1991. Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl. Environ. Micro-biol. 55: 2819–2826.
  • Shao Z, Seffens W, Mulbry W, and Behki R. 1995. Cloning and expression of the s-triaz-ine hydrolase gene (trza) from Rhodococcus corallinus and development of Rhodococcus recombinant strains capable of dealkylating and dechlorinating the herbicide atrazine. J. Bacteriol. 177: 20, 5748–5755.
  • Murrell J. 1992. The genetics and molecular biology of obligate methane-oxidising bacteria. 115–148. (Murrell J C and Dalton H. Eds. ), Methane and methanol utilisers. Plenum Press, New York.
  • Murrell J, Mc Gowan V, and Cardy D. 1993. Detection of methylotrophic bacteria in natural samples by molecular probing techniques. Chemosphere 26: 1–4, 1–11.
  • Whittenbury R, Davies S, and Davies J. 1970. Exospores and cysts formed by methaneutilising bacteria. J. Gen. Microbiol. 61: 219–226.
  • Bulygina E, Galchenko V, Govorukhina N, Netrusov A, Nikitin D, Trotsenko Y, and Chumakov K. 1990. Taxonomic studies on methylotrophic bacteria by 5s ribosomal RNA sequencing. J. Gen. Microbiol. 136: 441–446.
  • Tsuji K, Tsien H-C, Hanson R, De Palma S, Scholtz R, and La Roche S. 1990. Ribosomal RNA sequence analysis for the determination for phylogenetic relationship among methylo-trophs. J. Gen. Microbiol. 136: 1–10.
  • Bowman J, Sly L, and Hayward A. 1991. Contribution of genome characteristics to assessment of taxonomy of obligate methano-trophs. Int. J. Syst. Bacteriol. 41: 2, 301–305.
  • Omelchenko M, Vasileva L, Zavrzin G, Saveleva N, Lysenko A, Mityushina L, Kamelenina V, and Trotsenko Y. 1996. A novel psychrophilic methanotroph of the genus Methylobacter. Microbiology 65: 3, 339–343.
  • Walter G, Strand S, Herwig R, Treat T, and Stensel S. 1997. Trichloroethylene and methane feeding strategies to sustain degradation by methanotrophic enrichment. Water Environ. Res. 69: 6, 1066–1074.
  • Ensley B and Kurisko P. 1994. A gas lift bioreactor for vapour phase destruction of chlorinated organics. Appl. Environ. Micro-biol. 60: 285–290.
  • Folson B and Chapman P. 1991. Performance characterisation of model bioreactor for the biodegradation of trichloroethylene by Pseudomonas cepacia G4. Appl. Environ. Microbiol. 57: 1602–1608.
  • Landa A, Sipkema M, Weijma J, Beenackers A, Dolfing J, and Janssen D. 1994. Come-tabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate. Appl. Environ. Microbiol. 60: 3368–3374.
  • Shields M, Reagin M, Gerger R, Somerville C, Schaubhut, Cambell R and Hu-Primmer J. 1994. Constitutive degradation of trichloroet-hylene by an altered bacterium in a gas phase bioreactor. 50–65. In: Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds. Hinchee R E, Leeson A, Semprini L, and Ong S, Eds., Lewis Publishers, Boca Raton, FL.
  • Sun A and Wood T. 1997. Trichloroethylene mineralisation in a fixed film bioreactor using a pure culture expressing constitutively toluene ortho monooxygenase. Biotechnol. Bioeng. 55: 676–685.
  • Hendrich M, Munch E, Fox B, and Lipscomb . 1990. J. Am. Chem. Soc. 112: 5861–5865.
  • DeWitt J, Bentsen J, Rosenzweig A, Hedman B, Green J, Pilkington S, Papaefthymiou G, Dalton H, Hodgdon K, and Lippard S. 1991. J. Am. Chem. Soc. 113: 9219–9235.
  • Rosenzweig A, Frederick C, Lippard S, and Norlund P 1993. Nature 366: 537–543.
  • Pulver S, Froland W, Fox B, Lipscomb J, and Solomon E. 1993. J. Am. Chem. Soc. 115: 12409–12422.
  • Shen R, Chi-Li Y, Qing-Quan Ma, and Shu-Ben L. 1997. Direct evidence for a soluble methane monooxygenase from Type I methanotrophic bacteria: purification and properties of a soluble methane mono-oxyge-nase from Methylomonas sp. GYJ3. Arch. Biochem. Biophys. 345: 2, 223–229.
  • Mc Donald I, Uchiyama H, Kambe S, Yagi O, and Murrell J. 1997. The soluble methane monooxygenase gene cluster of the trichloro-ethylene-degrading methanotroph Methylo-cystis sp. strain M. Appl. Environ. Microbiol. 63: 5, 1898–1904.
  • Sontoh S and Semrau J. 1998. Methane and trichloroethylene degradation by Methylosinus trichosporium OB3b expressing particulate methane monooxygenase. Appl. Environ. Microbiol. 64: 1106–1114.
  • Nielsen A, Gerdes K, and Murrell J. 1997. Copper-dependent reciprocal transcriptional regulation of methane monooxygenase genes in Methylococcus capsulatus and Methylo-sinus trichosporium OB3b. Mol. Microbiol. 25: 2. 399–409.
  • Rosenzweig A, Brandstetter H, Whittington D, Nordlund P, Lippard S, and Frederick C. 1997. Crystal structures of the methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): implications for the substrate gating and component interactions. Prot. Struct. Funct. Genet. 29: 141–152.
  • Lloyd J, Bhambra A, Murrell J, and Dalton H. 1997. Inactivation of the regulatory protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath) by proteoly-sis can be overcome by a Gly and Gln modification. Eur. J. Biochem. 248: 72–79.
  • Matheson L, Jahnke L, and Oremland R. 1997. Inhibition of methane oxidation by Methylo-coccus capsulatus (Bath) with hydrochloro-fluorocarbons and fluorinated methanes. Appl. Environ. Microbiol. 63: 2952–2956.
  • van Hylckama Vlieg J, de Koning W, and Janssen D. 1997. Effect of chlorinated ethene conversion on viability and activity of Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 63: 4961–4964.
  • Tellez C, Gaus K, Graham D, Arnold R, and Guzman R. 1998. Isolation of copper biochelates from Methylosinus trichosporium OB3b and soluble methane monooxygenase mutants. Appl. Environ.Microbiol. 64: 1115–1122.
  • Semba H and Sakano. 1997. A para-site-specific hydroxylation of aromatic compounds by Mycobacterium sp. strain 12523: stabilization of the hydroxylation activity. Appl. Microbiol. Biotechnol. 48: 256–260.
  • Shimomura T, Suda F, Uchiyama H, and Yagi O. 1997. Biodegradation of trichloroethylene by Methylocystis sp. strain M immobilized in gel beads in a fluidized bed reactor. Water Res. 31: 9, 2383–2386.
  • Chang H and Alvarez-Cohen L. 1997. Two-stage methanotrophic bioreactor for the treatment of chlorinated organic waste water. Water Res. 31: 8, 2026–2036.
  • Paulsen K, Liu Y, Fox B, Lipscomb J, Munck J, and Stankovich T. 1994. Oxidation reduction potentials of the methane monooxygenase hydroxylase component from Methylosinus trichosporium OB3b. Biochemistry 33: 713–722.
  • Kazlauskaite H, Hill A, Wilkins P, and Dalton H. 1996. Direct electrochemistry of the hy-droxylase of the soluble methane monooxy-genase from Methylococcus capsulatus (Bath). Eur. J. Biochem. 241: 552–556.
  • Froland W, Andersson K, Lee S, Liu Y, and Lipscomb J. 1992. Methane monooxygenase component B and reductase alter the regioselectivity of the hydroxylase component-catalysed reactions. J. Biol. Chem. 267: 17588–17597.
  • Liu K and Lippard S. 1991. Redox properties of the hydroxylase component of methane monooxygenase from Methylococcus cap-sulatus (Bath): effects of protein B, reductase and substrate. J. Biol. Chem. 266: 12836–12839.
  • Davydov A, Davydov R, Graslund A, Lipscomb J, and Andersson K. 1997. Radi-olytic reduction of methane monooxygenase dinuclear iron cluster at 77 K. J. Biol. Chem. 272: 7, 22–7026.
  • Pilkington S and Dalton H. 1990. Soluble methane monooxygenase from Methylococcus capsulatus (Bath). Method. Enzymol. 188: 181–190.
  • Misra T. 1992. Bacterial resistance to inorganic mercury salts and organomercurials. Plasmid 27: 4–16.
  • Ansari A, Bradner J, and O’Halloran T. 1995. DNA-bend modulation in a repressor-to-acti-vator switching mechanism. Nature 374: 371–375.
  • Silver S and Walderhaug M. 1992. Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. Microbiol. Rev. 56: 195–228.
  • Mills S, Lim C, and Cooksey D. 1994. Purification and characterisation of CopR, a tran-scriptional activator protein that binds to a conserved domain (cop box) in copper induc-ible promoters of Pseudomonas syringae. Mol. Gen. Genet. 244: 341–351.
  • Smith D and Dalton H. 1989. Solubilization of methane monooxygenase from Methylo-coccus capsulatus (Bath). Eur. J. Biochem. 182: 667–671.
  • Nguyen H, Shiemke A, Jacobs S, Hales B, Lidstrom M, and Chan S. 1994. The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Biol. Chem. 269: 14995–15005.
  • Zahn J and DiSpirito A. 1996. Membrane associated methane monooxygenase from Methylococcus capsulatus (Bath). J. Bacteriol. 178: 1018–1029.
  • Semrau J, Christoservdov A, Lebron J, Costello A, Davagnino J, Kenna E, Holmes A, Finch R, Murrell J, and Lidstrom M. 1995. Particulate methane monooxygenase genes in methanotrophs. J. Bacteriol. 177: 3071–3079.
  • Costello A, Peeples T, and Lidstrom M. 1995. Duplicate methane monooxygenase genes in methanotrophs. Poster presentation at 8th International Symposium on Microbial Growth on C1 Compounds. August 27–September 1, 1995, San Diego, California.
  • Nguyen H, Zhu M, Elliott S, Nakagawa K, Hedman B, Costello A, Peeples T, Wilkinson B, Morimoto H, Williams P, Floss H, Lidstrom M, Hodgson K, and Chan S. 1996. The bio chemistry of the particulate methane mono-oxygenase. In: Microbial Growth on C1 Compounds. Lidstrom M, Tabita F, Eds. Dorecht:KluwerAcademic Publishers, 150–158.
  • Arciero D, Vanelli T, Logan T, and Hooper A. 1989. Degradation of trichloroethylene by the ammonia-oxidising bacterium Nitro-somonas europaea. Biochem. Biophys. Res. Commun. 159: 640–643.
  • Chang L and Alvarez-Cohen L. 1996. Biodegradation of individual and multiple chlorinated aliphatic compounds by methane-oxidizing cultures. Appl. Environ. Microbiol. 62: 3371–3377.
  • Dolan M and Mc Carthy P. 1995. Methano-trophic chloroethylene transformation capacities and 1,1-dichloroethene transformation product toxicity. Environ. Sci. Technol. 29: 2741–2747.
  • Fitch M, Speitel G, and Georgiou G. . 1996. Degradation of trichloroethylene by metha-nol grown cultures of Methylosinus tricho-sporium OB3b PP358. Appl. Environ. Microbiol. 62: 1124–1128.
  • van Hylckama J, de Koning W, and Janssen D. 1996. Transformation kinetics of chlorinated ethenes by Methylosinus trichosporium OB3b and detection of unstable epoxides by on-line gas chromatography. Appl. Environ. Microbiol. 62: 3304–3312.
  • Trotsenko Y and Shishkina T. 1990. Studies of phosphate metabolism in obligate methano-trophs. FEMS Microbiol. Rev. 87: 267–272.
  • Nichols P, Manuso C, and White D. 1987. Measurement of methanotroph and methano-gen signature phospholipids for the use in assessment of biomass and community structure in model systems. Org. Geochem. 11: 451–461.
  • Linton J and Vokes J. 1986. Growth of the methane-utilizing bacterium Methylococcus NCIMB 11083 in mineral salts medium with methanol as the sole carbon source. FEMS Microbiol. Lett. 4: 125–128.
  • Henson J, Yates M, and Cochran J. 1989. Metabolism of chlorinated methanes, ethanes, ethylenes by mixed bacterial cultures grown on methane. J. Ind. Microbiol. 4: 29–35.
  • Dalton H, Golding B, and Waters B. 1981. Oxidation of cyclopropane, methylcyclopro-pane, and arenes with the monooxygenase system from Methylococcus capsulatus (Bath). J. C. S Chem. Commun. 189: 482–483.
  • Bowman J, Sly L, Nichols P, and Hayward A. 1993. Revised taxonomy of the methano-trophs — description of Methylobactergen-Nov, validation of Methylosinus and Methylo-cystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int. J. Syst. Bacteriol. 44: 2, 375.
  • Bowman J, Sly L, and Hayward A. 1991. Contribution of genome characteristics to assessment of taxonomy of obligate methano-trophs. Int. J. Syst. Bacteriol. 41: 2, 301–305.
  • Shao Z, Dick W, and Behki R. 1995. An improved Escherichia coli Rhodococcus shuttle vector and plasmid transformation in Rhodococcus sp. using electroporation. Lett. Appl. Microbiol. .21: 4, 261–266.
  • Shao Z and Behki R. 1995. Cloning of the genes for degradation of the herbicides EPTC (s-ethyl dipropylthiocarbamate) and atrazine from Rhodococcus sp. strain TE1 Appl. <i>Environ. Microbiol. 61: 5, 2061–2065.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.