341
Views
21
CrossRef citations to date
0
Altmetric
Review Article

Factors pivotal for designing of nanoantimicrobials: an exposition

&
Pages 79-94 | Received 19 Dec 2015, Accepted 25 Mar 2017, Published online: 19 Apr 2017

References

  • Abed N, Couvreur P. 2014. Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections. Int J Antimicrob Agents 43:485–496.
  • Aggarwal P, Uppal B, Ghosh R, Krishna Prakash S, Chakravarti A, Jha AK, Rajeshwari K. 2016. Multi drug resistance and Extended Spectrum Beta Lactamases in clinical isolates of Shigella: a study from New Delhi, India. Travel Med Infect Dis. 14:407–413.
  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. 2013. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 8:102.
  • Alhajlan M, Alhariri M, Omri A. 2013. Efficacy and safety of liposomal clarithromycin and its effect on Pseudomonas aeruginosa virulence factors. Antimicrob Agents Chemother. 57:2694–2704.
  • Allaker RP, Memarzadeh K. 2014. Nanoparticles and the control of oral infections. Int J Antimicrob Agents. 43:95–104.
  • Allen TM, Cullis PR. 2004. Drug delivery systems: entering the mainstream. Science. 303:1818–1822.
  • Andrade F, Rafael D, Videira M, Ferreira D, Sosnik A, Sarmento B. 2013. Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Adv Drug Deliv Rev. 65:1816–1827.
  • Aruguete DM, Kim B, Hochella MF, Ma Y, Cheng Y, Hoegh A, Liu J, Pruden A. 2013. Antimicrobial nanotechnology: its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology. Env Sci Process Impact. 15:93–102.
  • Bald D, Koul A. 2013. Advances and strategies in discovery of new antibacterials for combating metabolically resting bacteria. Drug Discov Today. 18:250–255.
  • Bartosz G. 2009. Reactive oxygen species: destroyers or messengers? Biochem Pharmacol. 77:1303–1315.
  • Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. 2015. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 13:42–51.
  • Blaskovich MA, Zuegg J, Elliott AG, Cooper MA. 2015. Helping chemists discover new antibiotics. ACS Infect Dis. 1:285–287.
  • Blecher K, Nasir A, Friedman A. 2011. The growing role of nanotechnology in combating infectious disease. Virulence. 2:395–401.
  • Bochot A, Fattal E. 2012. Liposomes for intravitreal drug delivery: a state of the art. J Control Release. 161:628–634.
  • Borse V, Pawar V, Shetty G, Mullaji A, Srivastava R. 2016. Nanobiotechnology perspectives on prevention and treatment of ortho-paedic implant associated infection. Curr Drug Deliv. 13:175–185.
  • Bradfield SJ, Kumar P, White JC, Ebbs SD. 2016. Zinc, copper, or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: yield effects and projected dietary intake from consumption. Plant Physiol Biochem. 110:128–137.
  • Briones E, Colino CI, Lanao JM. 2008. Delivery systems to increase the selectivity of antibiotics in phagocytic cells. J Control Release. 125:210–227.
  • Budai L, Hajdú M, Budai M, Gróf P, Béni S, Noszál B, Klebovich I, Antal I. 2007. Gels and liposomes in optimized ocular drug delivery: Studies on ciprofloxacin formulations. Int J Pharm. 343:34–40.
  • Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, Jacoby GA, Kishony R, Kreiswirth BN, Kutter E, et al. 2011. Tackling antibiotic resistance. Nat Rev Microbiol. 9:894–896.
  • Cabiscol E, Tamarit J, Ros J. 2000. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol. 3:3–8.
  • Campoccia D, Montanaro L, Arciola CR. 2013. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 34:8533–8554.
  • Chakraborty SP, Sahu SK, Mahapatra SK, Santra S, Bal M, Roy S, Pramanik P. 2010. Nanoconjugated vancomycin: new opportunities for the development of anti-VRSA agents. Nanotechnology. 21:105103.
  • Chakraborty SP, Sahu SK, Pramanik P, Roy S. 2012. In vitro antimicrobial activity of nanoconjugated vancomycin against drug resistant Staphylococcus aureus. Int J Pharm. 436:659–676.
  • Chang HH, Cohen T, Grad YH, Hanage WP, O'Brien TF, Lipsitch M. 2015. Origin and proliferation of multiple-drug resistance in bacterial pathogens. Microbiol Mol Biol Rev. 79:101–116.
  • Chatterjee S, Bandyopadhyay A, Sarkar K. 2011. Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J Nanobiotechnology. 9:34.
  • Chen F, Liu XM, Rice KC, Li X, Yu F, Reinhardt RA, Bayles KW, Wang D. 2009. Tooth-binding micelles for dental caries prevention. Antimicrob Agents Chemother. 53:4898–4902.
  • Costerton JW, Stewart PS, Greenberg EP. (1999). Bacterial biofilms: a common cause of persistent infections. Science. 284:1318–1322.
  • Courvalin P. 2016. Why is antibiotic resistance a deadly emerging disease? Clin Microbiol Infect. 22:405–407.
  • Crommelin DJA, Florence AT. 2013. Towards more effective advanced drug delivery systems. Int J Pharm. 454:496–511.
  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. 2012. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 161:505–522.
  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science. 280:295–298.
  • de Paz LE, Resin A, Howard KA, Sutherland DS, Wejse PL. 2011. Antimicrobial effect of chitosan nanoparticles on Streptococcus mutans biofilms. Appl Environ Microbiol. 77:3892–3895.
  • Delcour AH. 2009. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta. 1794:808–816.
  • Desjardins A, Chen T, Khalil H, Sayasith K, Lagacé J. 2002. Differential behaviour of fluid liposomes toward mammalian epithelial cells and bacteria: restriction of fusion to bacteria. J Drug Target. 10:47–54.
  • DiTizio V, Ferguson GW, Mittelman MW, Khoury AE, Bruce AW, DiCosmo F. 1998. A liposomal hydrogel for the prevention of bacterial adhesion to catheters. Biomaterials. 19:1877–1884.
  • Doi Y, Adams-Haduch JM, Peleg AY, D'Agata EMC. 2012. The role of horizontal gene transfer in the dissemination of extended-spectrum beta-lactamase–producing Escherichia coli and Klebsiella pneumoniae isolates in an endemic setting. Diagn Microbiol Infect Dis. 74:34–38.
  • Dornelles CM, Correa AA, Campos DS, Franco OL. 2013. Nanoformulated antibiotics: the next step for pathogenic bacteria control. Curr Med Chem. 20:1232–1240.
  • Drulis-Kawa Z, Dorotkiewicz-Jach A. 2010. Liposomes as delivery systems for antibiotics. Int J Pharm. 387:187–198.
  • Ebbs SD, Bradfield SJ, Kumar P, White JC, Musante C, Ma X. 2016. Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions. Environ Sci Nano. 3:114–126.
  • Fair RJ, Tor Y. 2014. Antibiotics and bacterial resistance in the 21st century. Perspect Medi Chem. 6:25.
  • Falagas ME, Bliziotis IA. 2007. Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era? Int J Antimicrob Agents. 29:630–636.
  • Fernandes P. 2015. The global challenge of new classes of antibacterial agents: an industry perspective. Curr Opin Pharmacol. 24:7–11.
  • Fernandes MM, Ivanova K, Francesko A, Rivera D, Torrent-Burgués J, Gedanken A, Mendonza E, Tzanov T. 2016. Escherichia coli and Pseudomonas aeruginosa eradication by nano-penicillin G. Nanomedicine. 12:2061–2069.
  • Fleming A. 1929. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol. 10:226.
  • Flemming HC, Neu TR, Wozniak DJ. 2007. The EPS matrix: the “house of biofilm cells”. J Bacteriol. 189:7945–7947.
  • Florence AT. 2012. “Targeting” nanoparticles: the constraints of physical laws and physical barriers. J Control Release. 164:115–24.
  • Forier K, Raemdonck K, De Smedt SC, Demeester J, Coenye T, Braeckmans K. 2014. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J Control Release. 190:607–623.
  • Fouladkhah A, Geornaras I, Sofos JN. 2013. Biofilm formation of O157 and non-O157 Shiga toxin-producing Escherichia coli and multidrug-resistant and susceptible Salmonella typhimurium and newport and their inactivation by sanitizers. J Food Sci. 78:880–886.
  • Gan Q, Wang T, Cochrane C, McCarron P. 2005. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids Surf B Biointerfaces. 44:65–73.
  • Guo L, Yuan W, Lu Z, Li CM. 2013. Polymer/nanosilver composite coatings for antibacterial applications. Colloids Surf A. 439:69–83.
  • Habimana O, Le Goff C, Juillard V, Bellon-Fontaine M-N, Buist G, Kulakauskas S, Briandet R. 2007. Positive role of cell wall anchored proteinase PrtP in adhesion of lactococci. BMC Microbiol. 7:36.
  • Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M. 2012. Antibacterial properties of nanoparticles. Trends Biotechnol. 30:499–511.
  • Hall-Stoodley L, Costerton JW, Stoodley P. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2:95–108.
  • Hamouda IM. 2012. Current perspectives of nanoparticles in medical and dental biomaterials. J Biomed Res. 26:143–151.
  • Hassan MM, Ranzoni A, Phetsang W, Blaskovich MA, Cooper MA. 2016. Surface ligand density of antibiotic-nanoparticle conjugates enhances target avidity and membrane permeabilization of vancomycin-resistant bacteria. Bioconjugate Chem 28:353–361.
  • Hofmann AF, Eckmann L. 2006. How bile acids confer gut mucosal protection against bacteria. Proc Natl Acad Sci USA. 103:4333–4334.
  • Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. 2010. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 35:322–332.
  • Holmes AH, Moore LS, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, Guerin PJ, Piddock LJV. 2016. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 387:176–187.
  • Hou J, Miao L, Wang C, Wang P, Ao Y, Qian J, Dai S. 2014. Inhibitory effects of ZnO nanoparticles on aerobic wastewater biofilms from oxygen concentration profiles determined by microelectrodes. J Hazard Mater. 276:164–170.
  • Hu M, Zhang C, Mu Y, Shen Q, Feng Y. 2010. Indole affects biofilm formation in bacteria. Indian J Microbiol. 50:362–368.
  • Huang CM, Chen CH, Pornpattananangkul D, Zhang L, Chan M, Hsieh M-F, Zhang L. 2011. Eradication of drug resistant Staphylococcus aureus by liposomal oleic acids. Biomaterials. 32:214–221.
  • Huh AJ, Kwon YJ. 2011. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release. 156:128–145.
  • Hwang G, Ahn IS, Mhin BJ, Kim JY. 2012. Adhesion of nano-sized particles to the surface of bacteria: mechanistic study with the extended DLVO theory. Colloids Surf B Biointerfaces. 97:138–144.
  • Hwang TJ, Carpenter D, Kesselheim AS. 2015. Paying for innovation: reimbursement incentives for antibiotics. Sci Transl Med. 7:276fs9.
  • Imran M, Revol-Junelles AM, Francius G, Desobry S. 2016. Diffusion of fluorescently labeled bacteriocin from edible nanomaterials and embedded nano-bioactive coatings. ACS Appl Mater Interfaces. 8:21618–21631.
  • Ivask A, George S, Bondarenko O, Kahru A. 2012. Metal-containing nano-antimicrobials: differentiating the impact of solubilized metals and particles. In nano-antimicrobials. Berlin Heidelberg: Springer; p. 253–290.
  • Jackman JA, Yoon BK, Li D, Cho N-J. 2016b. Nanotechnology formulations for antibacterial free fatty acids and monoglycerides. Molecules. 21:305.
  • Jackman JA, Lee J, Cho NJ. 2016a. Nanomedicine for infectious disease applications: innovation towards broad‐spectrum treatment of viral infections. Small. 12:1133–1139.
  • Jamil B, Bokhari H, Imran M. 2017. Mechanism of action: how nano-antimicrobials act? Curr Drug Targets 18:363–373.
  • Jamil B, Habib H, Abbasi SA, Ihsan A, Nasir H, Imran M. 2016. Development of cefotaxime impregnated chitosan as nano-antibiotics: de Novo strategy to combat biofilm forming multi-drug resistant pathogens. Front Microbiol. 7:330.
  • Jing ZW, Jia YY, Wan N, Luo M, Huan M-L, Kang T-B, Zhou S-Y, Zhang B-L. 2016. Design and evaluation of novel pH-sensitive ureido-conjugated chitosan/TPP nanoparticles targeted to Helicobacter pylori. Biomaterials. 84:276–285.
  • Johnson AP, Woodford N. 2013. Global spread of antibiotic resistance: the example of New Delhi metallo-β-lactamase (NDM)-mediated carbapenem resistance. J Med Microbiol. 62:499–513.
  • Jung SW, Thamphiwatana S, Zhang L, Obonyo M. 2015. Mechanism of antibacterial activity of liposomal linolenic acid against Helicobacter pylori. PLoS One. 10:e0116519.
  • Kåhrström CT. 2013. Environmental microbiology: plant bacteria thrive in storm clouds Nat Rev Microbiol. 11:146.
  • Kamaruzzaman NF, Kendall S, Good L. 2016. Targeting the hard to reach: challenges and novel strategies in the treatment of intracellular bacterial infections. Br J Pharmacol. [Epub ahead of print]. doi: 10.1111/bph.13664
  • Kearns DB. 2010. A field guide to bacterial swarming motility. Nat Rev Microbiol. 8:634–644.
  • Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y, et al. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine. 3:95–101.
  • Koo OM, Rubinstein I, Onyuksel H. 2005. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine. 1:193–212.
  • Kreyling WG, Semmler-Behnke M, Chaudhry Q. 2010. A complementary definition of nanomaterial. Nano Today. 5:165–168.
  • Kubacka A, Diez MS, Rojo D, Bargiela R, Ciordia S, Zapico I, Albar JP, Barbas C, Martins dos Santos VAP, Fernández-García M, et al. 2014. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci Rep. 19:4.
  • Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, et al. 2010. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 10:597–602.
  • Kumari A, Yadav SK, Yadav SC. 2010. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 75:1–18.
  • Kus JV, Gebremedhin A, Dang V, Tran S-L, Serbanescu A, Foster DB. 2011. Bile salts induce resistance to polymyxin in enterohemorrhagic Escherichia coliO157: H7. J Bacteriol. 193:4509–4515.
  • Li X, Robinson SM, Gupta A, Saha K, Jiang Z, Moyano DF, Sahar A, Riley MA, Rotello VM. 2014. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano. 8:10682–10686.
  • Liu Y, Busscher HJ, Zhao B, Li Y, Zhang Z, van der Mei HC, Ren Y, Shi L. 2016. Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in Staphylococcal biofilms. ACS Nano. 10:4779–4789.
  • Liu XM, Zhang Y, Chen F, Khutsishvili I, Fehringer EV, Marky LA, Bayles KW, Wang D. 2012. Prevention of orthopedic device-associated osteomyelitis using oxacillin-containing biomineral-binding liposomes. Pharm Res. 29:3169–3179.
  • Lutwyche P, Cordeiro C, Wiseman DJ, St-Louis M, Uh M, Hope MJ, Webb MS, Finlay BB. 1998. Intracellular delivery and antibacterial activity of gentamicin encapsulated in pH-sensitive liposomes. Antimicrob Agents Ch. 42:2511–2520.
  • Ma T, Shang BC, Tang H, Zhou T-H, Xu G-L, Li H-L, Chen Q-H, Xu Y-Q . 2011. Nano-hydroxyapatite/chitosan/konjac glucomannan scaffolds loaded with cationic liposomal vancomycin: preparation, in vitro release and activity against Staphylococcus aureus biofilms. J Biomater Sci Polym Ed. 22:1669–1681.
  • Madsen JS, Burmølle M, Hansen LH, Sørensen SJ. 2012. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol. 65:183–195.
  • Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, et al. 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 18:268–281.
  • Mahon E, Salvati A, Baldelli Bombelli F, Lynch I, Dawson KA . 2012. Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. J Control Release. 161:164–174.
  • Mandal B, Bhattacharjee H, Mittal N, Sah H, Balabathula P, Thoma LA, Wood GC. 2013. Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomed Nanotechnol. 9:474–491.
  • Manke A, Wang L, Rojanasakul Y. 2013. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int. 94:2916.
  • Marquez B. 2005. Bacterial efflux systems and efflux pumps inhibitors. Biochimie. 87:1137–1147.
  • Maurin M, Raoult D. 2001. Use of aminoglycosides in treatment of infections due to intracellular bacteria. Antimicrob Agents Chemother. 45:2977–2986.
  • Meers P, Neville M, Malinin V, Scotto AW, Sardaryan G, Kurumunda R, Mackinson C, James G, Fisher S, Perkins WR, et al. 2008. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J Antimicrob Chemother. 61:859–868.
  • Merchant Z, Buckton G, Taylor KMG, Stapleton P, Saleem IY, Zariwala MG, Somavarapu S. 2016. A new era of pulmonary delivery of nano-antimicrobial therapeutics to treat chronic pulmonary infections. Curr Pharm Des. 22:2577–2598.
  • Michael RW, Brown PJC, Peter G. 1990. Influence of growth rate on susceptibility to antimicrobial agents: modification of the cell envelope and batch and continuous culture studies. Antimicrob Agents Chemother. 34:1623–1628.
  • Montagu A, Joly-Guillou ML, Guillet C, Bejaud J, Rossines E, Saulnier P. 2016. Demonstration of the interactions between aromatic compound-loaded lipid nanocapsules and Acinetobacter baumannii bacterial membrane. Int J Pharm. 506:280–288.
  • Mugabe C, Azghani AO, Omri A. 2005. Liposome-mediated gentamicin delivery: development and activity against resistant strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients. J Antimicrob Chemother. 55:269–271.
  • Muppidi K, Wang J, Betageri G, Pumerantz AS. 2011. PEGylated liposome encapsulation increases the lung tissue concentration of vancomycin. Antimicrob Agents Chemother. 55:4537–4542.
  • Mura S, Nicolas J, Couvreur P. 2013. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 12:991–1003.
  • Nacucchio MC, Bellora MJ, Sordelli DO, D'Aquino M. 1985. Enhanced liposome-mediated activity of piperacillin against staphylococci. Antimicrob Agents Chemother. 27:137–139.
  • Obonyo M, Zhang L, Thamphiwatana S, Pornpattananangkul D, Fu V, Zhang L. 2012. Antibacterial activities of liposomal linolenic acids against antibiotic-resistant Helicobacter pylori. Mol Pharm. 9:2677–2685.
  • Oh YK, Nix DE, Straubinger RM. 1995. Formulation and efficacy of liposome-encapsulated antibiotics for therapy of intracellular Mycobacterium avium infection. Antimicrob Agents Ch. 39:2104–2111.
  • Parveen S, Misra R, Sahoo SK. 2012. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine. 8:147–166.
  • Pelgrift RY, Friedman AJ. 2013. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 65:1803–1815.
  • Perez F, Endimiani A, Hujer KM, Bonomo RA. 2007. The continuing challenge of ESBLs. Curr Opin Pharmacol. 7:459–469.
  • Piddock LJ. 2016. Assess drug-resistance phenotypes, not just genotypes. Nat Microbiol. 1:16120.
  • Pornpattananangkul D, Fu V, Thamphiwatana S, Zhang L, Chen M, Vecchio J, Gao W, Huang C-M, Zhang L. 2013. In vivo treatment of Propionibacterium acnes infection with liposomal lauric acids. Adv HealthC Mater. 2:1322–1328.
  • Poulikakos P, Tansarli GS, Falagas ME. 2014. Combination antibiotic treatment versus monotherapy for multidrug-resistant, extensively drug-resistant, and pandrug-resistant Acinetobacter infections: a systematic review. Eur J Clin Microbiol Infect Dis. 33:1675–1685.
  • Pumerantz K, Muppidi S, Agnihotri C, Guerra C, Venketaraman V, Wang J, Betageri G. 2011. Preparation of liposomal vancomycin and intracellular killing of methicillin resistant Staphylococcus aureus (MRSA). Int J Antimicrob Agents. 37:140–144.
  • Qayyum S, Khan AU. 2016. Nanoparticles vs. biofilms: a battle against another paradigm of antibiotic resistance. Med Chem Comm. 7:1479–1498.
  • Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W. 2003. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 4:1457–1465.
  • Radzig MA, Nadtochenko VA, Koksharova OA, Kiwi J, Lipasova VA, Khmel IA. 2013. Antibacterial effects of silver nanoparticles on gram-negative bacteria: influence on the growth and biofilms formation, mechanisms of action. Colloids Surf B Biointerfaces. 102:300–306.
  • Roy CR, Kagan JC. 2000. Evasion of phagosome lysosome fusion and establishment of a replicative organelle by the intracellular pathogen Legionella pneumophila. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000–2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK6111/
  • Sachetelli S, Khalil H, Chen T, Beaulac C, Sénéchal S, Lagacé J. 2000. Demonstration of a fusion mechanism between a fluid bactericidal liposomal formulation and bacterial cells. Biochim Biophys Acta. 1463:254–266.
  • Safari J, Zarnegar Z. 2014. Advanced drug delivery systems: nanotechnology of health design: a review. J Saudi Chem Soc. 18:85–99.
  • Salmaso S, Caliceti P. 2013. Stealth properties to improve therapeutic efficacy of drug nanocarriers. J Drug Deliv. 2013:374252.
  • Sana TG, Monack DM. 2016. Microbiology: the dark side of antibiotics. Nature. 534:624–625.
  • Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. 2007. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine. 3:168–171.
  • Shamaila S, Zafar N, Riaz S, Sharif R, Nazir J, Naseem S. 2016. Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials. 6:71.
  • Shen Z, Nieh MP, Li Y. 2016. Decorating nanoparticle surface for targeted drug delivery: opportunities and challenges. Polymers. 8:83.
  • Sheng Z, Liu Y. 2011. Effects of silver nanoparticles on wastewater biofilms. Water Res. 45:6039–6050.
  • Silhavy TJ, Kahne D, Walker S. 2010. The bacterial cell envelope. Cold Spring Harb Perspect Biol. 2:a000414.
  • Singh R, Smitha MS, Singh SP. 2014. The role of nanotechnology in combating multi-drug resistant bacteria. J Nanosci Nanotechnol. 14:4745–4756.
  • Singla R, Guliani A, Kumari A, Yadav SK. 2016. Metallic nanoparticles, toxicity issues and applications in medicine. In: Nanoscale materials in targeted drug delivery, theragnosis and tissue regeneration. Singapore: Springer; p. 41–80.
  • Smith AW. 2005. Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems? Adv Drug Deliv Rev. 57:1539–1550.
  • Sosnik A, Carcaboso AM, Glisoni RJ, Moretton MA, Chiappetta DA. 2010. New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery. Adv Drug Deliv Rev. 62:547–559.
  • Stewart PS. 2002. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol. 292:107–113.
  • Stewart PS. 2003. Diffusion in biofilms. J Bacteriol. 185:1485–1491.
  • Suri SS, Fenniri H, Singh B. 2007. Nanotechnology-based drug delivery systems. J Occup Med Toxicol. 2:16.
  • Tariq M, Mohurle S, Patravale VB, Aruna K. 2016. Formulation of β-lactam antibiotic encapsulated micro- and multiple-emulsions, and evaluation of its antibacterial activity against β-lactamase producing uropathogens. Int J Curr Microbiol App Sci. 5:190–201.
  • Thamphiwatana S, Gao W, Obonyo M, Zhang L. 2014. In vivo treatment of Helicobacter pylori infection with liposomal linolenic acid reduces colonization and ameliorates inflammation. Proc Natl Acad Sci USA. 111:17600–17605.
  • Thorley AJ, Tetley TD. 2013. New perspectives in nanomedicine. Pharmacol Therapeut. 140:176–185.
  • Usman MS. 2013. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine. 8:4467–4479.
  • Wang D, Lin Z, Wang T, Yao Z, Qin M, Zheng S, Lu W. 2016. Where does the toxicity of metal oxide nanoparticles come from: the nanoparticles, the ions, or a combination of both? J Hazard Mater. 308:328–334.
  • Watnick P, Kolter R. 2000. Biofilm, city of microbes. J Bacteriol. 182:2675–2679.
  • Wood TK, Knabel SJ, Kwan BW. 2012. Bacterial persister cell formation and dormancy. Appl Environ Microbiol. 79:7116–7121.
  • Wright GD, Sutherland AD. 2007. New strategies for combating multidrug-resistant bacteria. Trends Mol Med. 13:260–267.
  • Xie Y, He Y, Irwin PL, Jin T, Shi X. 2011. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol. 77:2325–2331.
  • Xie S, Tao Y, Pan Y, Qu W, Cheng G, Huang L, Chen D, Wang X, Liu Z, Yuan Z. 2014. Biodegradable nanoparticles for intracellular delivery of antimicrobial agents. J Control Release. 187:101–117.
  • Xiong MH, Bao Y, Yang XZ, Zhu Y-H, Wang J. 2014. Delivery of antibiotics with polymeric particles. Adv Drug Deliv Rev. 78:63–76.
  • Yamakami K, Tsumori H, Sakurai Y, Shimizu Y, Nagatoshi K, Sonomoto K. 2013. Sustainable inhibition efficacy of liposome-encapsulated nisin on insoluble glucan-biofilm synthesis by Streptococcus mutans. Pharm Biol. 51:267–270.
  • Yang CC, Mai YW. 2014. Thermodynamics at the nanoscale: a new approach to the investigation of unique physicochemical properties of nanomaterials. Mat Sci Eng R. 79:1–40.
  • Yang D, Pornpattananangkul D, Nakatsuji T, Chan M, Carson D, Huang C-M, Zhang L. 2009. The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes. Biomaterials. 30:6035–6040.
  • Yildirimer L, Thanh NTK, Loizidou M, Seifalian AM. 2011. Toxicology and clinical potential of nanoparticles. Nano Today. 6:585–607.
  • Zhang Y, Chan HF, Leong KW. 2013. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev. 65:104–120.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.