1,253
Views
49
CrossRef citations to date
0
Altmetric
Review Article

Recent advances in the microbiological diagnosis of bloodstream infections

, , , & ORCID Icon
Pages 351-370 | Received 28 Mar 2017, Accepted 17 Nov 2017, Published online: 29 Nov 2017

References

  • Aghayee S, Benadiba C, Notz J, Kasas S, Dietler G, Longo G. 2013. Combination of fluorescence microscopy and nanomotion detection to characterize bacteria. J Mol Recognit. 26:590–595.
  • Alexander BD, Ashley ED, Reller LB, Reed SD. 2006. Cost savings with implementation of PNA FISH testing for identification of Candida albicans in blood cultures. Diagn Microbiol Infect Dis. 54:277–282.
  • Allaouchiche B, Jaumain H, Zambardi G, Chassard D, Freney J. 1999. Clinical impact of rapid oxacillin susceptibility testing using a PCR assay in Staphylococcus aureus bactaeremia. J Infect. 39:198–204.
  • Anderson NW, Buchan BW, Riebe KM, Parsons LN, Gnacinski S, Ledeboer NA. 2012. Effects of solid-medium type on routine identification of bacterial isolates by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 50:1008–1013.
  • Arabestani MR, Rastiany S, Kazemi S, Mousavi SM. 2015. Conventional, molecular methods and biomarkers molecules in detection of septicemia. Adv Biomed Res. 4:120.
  • Avdic E, Wang R, Li DX, Tamma PD, Shulder SE, Carroll KC, Cosgrove SE. 2017. Sustained impact of a rapid microarray-based assay with antimicrobial stewardship interventions on optimizing therapy in patients with Gram-positive bacteraemia. J Antimicrob Chemother. 72:3191–3198.
  • Bacconi A, Richmond GS, Baroldi MA, Laffler TG, Blyn LB, Carolan HE, Frinder MR, Toleno DM, Metzgar D, Gutierrez JR, et al. 2014. Improved sensitivity for molecular detection of bacterial and Candida infections in blood. J Clin Microbiol. 52:3164–3174.
  • Barenfanger J, Graham DR, Kolluri L, Sangwan G, Lawhorn J, Drake CA, Verhulst SJ, Peterson R, Moja LB, Ertmoed MM, et al. 2008. Decreased mortality associated with prompt Gram staining of blood cultures. Am J Clin Pathol. 130:870–876.
  • Barnini S, Brucculeri V, Morici P, Ghelardi E, Florio W, Lupetti A. 2016. A new rapid method for direct antimicrobial susceptibility testing of bacteria from positive blood cultures. BMC Microbiol. 16:185.
  • Barnini S, Ghelardi E, Brucculeri V, Morici P, Lupetti A. 2015. Rapid and reliable identification of Gram-negative bacteria and Gram-positive cocci by deposition of bacteria harvested from blood cultures onto the MALDI-TOF plate. BMC Microbiol. 15:124.
  • Bauer KA, West JE, Balada-Llasat JM, Pancholi P, Stevenson KB, Goff DA. 2010. An antimicrobial stewardship program’s impact with rapid polymerase chain reaction methicillin-resistant Staphylococcus aureus/S. aureus blood culture test in patients with S. aureus bacteremia. Clin Infect Dis. 51:1074–1080.
  • Beuving J, van der Donk CF, Linssen CF, Wolffs PF, Verbon A. 2011. Evaluation of direct inoculation of the BD Phoenix system from positive Bactec blood cultures for both Gram-positive cocci and Gram-negative rods. BMC Microbiol. 11:156.
  • Beyda ND, Alam MJ, Garey KW. 2013. Comparison of the T2Dx instrument with T2Candida assay and automated blood culture in the detection of Candida species using seeded blood samples. Diagn Microbiol Infect Dis. 77:324–326.
  • Blaschke AJ, Heyrend C, Byington CL, Fisher MA, Barker E, Garrone NF, Thatcher SA, Pavia AT, Barney T, Alger GD, et al. 2012. Rapid identification of pathogens from positive blood cultures by multiplex polymerase chain reaction using the FilmArray system. Diagn Microbiol Infect Dis. 74:349–355.
  • Bloos F, Sachse S, Kortgen A, Pletz MW, Lehmann M, Straube E, Riedemann NC, Reinhart K, Bauer M. 2012. Evaluation of a polymerase chain reaction assay for pathogen detection in septic patients under routine condition: an observational study. PLoS One. 7:e46003.
  • Bookstaver PB, Nimmich EB, Smith IIITJ, Justo JA, Kohn J, Hammer KL, Troficanto C, Albrecht HA, Al-Hasan MN. 2017. Cumulative effect of an antimicrobial stewardship and rapid diagnostic testing bundle on early streamlining of antimicrobial therapy in gram-negative bloodstream infections. Antimicrob Agents Chemother. 61. https://doi.org/10.1128/AAC.00189-17
  • Brown J, Paladino JA. 2010. Impact of rapid methicillin-resistant Staphylococcus aureus polymerase chain reaction testing on mortality and cost effectiveness in hospitalized patients with bacteraemia: a decision model. Pharmacoeconomics. 28:567–575.
  • Bruins MJ, Bloenberger P, Ruijs GJ, Wolfhagen MJ. 2004. Identification and susceptibility testing of Enterobacteriaceae and Pseudomonas aeruginosa by direct inoculation from positive BACTEC blood culture bottles into Vitek 2. J Clin Microbiol. 42:7–11.
  • Buchan BW, Riebe KM, Ledeboer NA. 2012. Comparison of the MALDI Biotyper system using Sepsityper specimen processing to routine microbiological methods for identification of bacteria from positive blood culture bottles. J Clin Microbiol. 50:346–352.
  • Buehler SS, Madison B, Snyder SR, Derzon JH, Cornish NE, Saubolle MA, Weissfeld AS, Weinstein MP, Liebow EB, Wolk DM. 2016. Effectiveness of practices to increase timeliness of providing targeted therapy for inpatients with bloodstream infections: a laboratory medicine best practices systematic review and meta-analysis. Clin Microbiol Rev. 29:59–103.
  • Burckhardt I, Zimmermann S. 2011. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J Clin Microbiol. 49:3321–3324.
  • Carlet J, Collignon P, Goldmann D, Goossens H, Gyssens IC, Harbarth S, Jarlier V, Levy SB, N'Doye B, Pittet D, et al. 2011. Society’s failure to protect a precious resource: antibiotics. Lancet. 376:369–371.
  • Carrara L, Navarro F, Turbau M, Seres M, Morán I, Quintana I, Martino R, González Y, Brell A, Cordon O, et al. 2013. Molecular diagnosis of bloodstream infections with a new dual-priming oligonucleotide-based multiplex PCR assay. J Med Microbiol. 62:1673–1679.
  • Carretto E, Bardaro M, Russello G, Mirra M, Zuelli C, Barbarini D. 2013. Comparison of the Staphylococcus QuickFISH BC test with the tube coagulase test performed on positive blood cultures for evaluation and application in a clinical routine setting. J Clin Microbiol. 51:131–135.
  • Celandroni F, Salvetti S, Gueye SA, Mazzantini D, Lupetti A, Senesi S, Ghelardi E. 2016. Identification and pathogenic potential of clinical Bacillus and Paenibacillus isolates. PLoS One. 11:e0152831.
  • Chang S-S, Hsieh W-H, Liu T-S, Lee SH, Wang CH, Chou HC, Yeo YH, Tseng CP, Lee CC. 2013. Multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis – a systemic review and meta-analysis. PLoS One. 8:e62323.
  • Charles PE, Dalle F, Aube H, Doise JM, Quenot JP, Aho LS, Chavanet P, Blettery B. 2005. Candida spp. colonization significance in critically ill medical patients: a prospective study. Intensive Care Med. 31:393–400.
  • Cherkaoui A, Hibbs J, Emonet S, Tangomo M, Girard M, Francois P, Schrenzel J. 2010. Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J Clin Microbiol. 48:1169–1175.
  • Christner M, Rohde H, Wolters M, Sobottka I, Wegscheider K, Aepfelbacher M. 2010. Rapid identification of bacteria from positive blood culture bottles by use of matrix-assisted laser desorption-ionization time of flight mass spectrometry fingerprinting. J Clin Microbiol. 48:1584–1591.
  • Clancy CJ, Nguyen MH. 2013. Finding the “missing 50%” of invasive candidiasis: how nonculture diagnostics will improve understanding of disease spectrum and transform patient care. Clin Infect Dis. 56:1284–1292.
  • Clark AE, Kaleta EJ, Arora A, Wolk DM. 2013. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev. 26:547–603.
  • Clerc O, Prod’hom G, Senn L, Jaton K, Zanetti G, Calandra T, Greub G. 2014. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry and PCR-based rapid diagnosis of Staphylococcus aureus bacteraemia. Clin Microbiol Infect. 20:355–360.
  • Clerc O, Prod’hom G, Vogne C, Bizzini A, Calandra T, Greub G. 2013. Impact of matrix-assisted laser desorption ionization time-of-flight mass spectrometry on the clinical management of patients with Gram-negative bacteremia: a prospective observational study. Clin Infect Dis. 56:1101–1107.
  • Cockerill FR 3rd, Wilson JW, Vetter EA, Goodman KM, Torgerson CA, Harmsen WS, Schleck CD, Ilstrup DM, Washington JA 2nd, Wilson WR. 2004. Optimal testing parameters for blood cultures. Clin Infect Dis. 38:1724–1730.
  • Cosgrove SE, Li DX, Tamma PD, Avdic E, Hadhazy E, Wakefield T, Gherna M, Carroll KC. 2016. Use of PNA FISH for blood cultures growing Gram-positive cocci in chains without a concomitant antibiotic stewardship intervention does not improve time to appropriate antibiotic therapy. Diagn Microbiol Infect Dis. 86:86–92.
  • Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y. 2003. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis. 36:53–59.
  • Coulter S, Merollini K, Roberts JA, Graves N, Halton K. 2015. The need for cost-effectiveness analyses of antimicrobial stewardship programmes: a structured review. Int J Antimicrob Agents. 46:140–149.
  • Dark P, Blackwood B, Gates S, McAuley D, Perkins GD, McMullan R, Wilson C, Graham D, Timms K, Warhurst G. 2015. Accuracy of LightCycler® SeptiFast for the detection and identification of pathogens in the blood of patients with suspected sepsis: a systematic review and meta-analysis. Intensive Care Med. 41:21–33.
  • de Cueto M, Ceballos E, Martinez-Martinez L, Perea EJ, Pascual A. 2004. Use of positive blood cultures for direct identification and susceptibility testing with the Vitek 2 system. J Clin Microbiol. 42:3734–3738.
  • Diab M, El-Damarawy M, Shemis M. 2008. Rapid identification of methicillin-resistant staphylococci bacteremia among intensive care unit patients. Medscape J Med. 10:126.
  • Dixon P, Davies P, Hollingworth W, Stoddart M, MacGowan A. 2015. A systematic review of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry compared to routine microbiological methods for the time taken to identify microbial organisms from positive blood cultures. Eur J Clin Microbiol Infect Dis. 34:863–876.
  • Du Z, Yang R, Guo Z, Song Y, Wang J. 2002. Identification of Staphylococcus aureus and determination of its methicillin resistance by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem. 74:5487–5491.
  • Dunne WM Jr, Case LK, Isgriggs L, Lublin DM. 2005. In-house validation of the BACTEC 9240 blood culture system for detection of bacterial contamination in platelet concentrates. Transfusion. 45:1138–1142.
  • Dunne WM Jr, Westblade LF, Ford B. 2012. Next-generation and whole-genome sequencing in the diagnostic clinical microbiology laboratory. Eur J Clin Microbiol Infect Dis. 31:1719–1726.
  • Faridi MA, Ramachandraiah H, Banerjee I, Ardabili S, Zelenin S, Russom A. 2017. Elasto-inertial microfluidics for bacteria separation from whole blood for sepsis diagnostics. J Nanobiotechnol. 15:3.
  • Fiori B, D'Inzeo T, Di Florio V, De Maio F, De Angelis G, Giaquinto A, Campana L, Tanzarella E, Tumbarello M, Antonelli M, et al. 2014. Performance of two resin-containing blood culture media in detection of bloodstream infections and in direct matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) broth assays for isolate identification: clinical comparison of the BacT/Alert Plus and Bactec Plus systems. J Clin Microbiol. 52:3558–3567.
  • Fiori B, D'Inzeo T, Giaquinto A, Menchinelli G, Liotti FM, de Maio F, De Angelis G, Quaranta G, Nagel D, Tumbarello M, et al. 2016. Optimized use of the MALDI BioTyper system and the FilmArray BCID panel for direct identification of microbial pathogens from positive blood cultures. J Clin Microbiol. 54:576–584.
  • Forrest GN, Mankes K, Jabra-Rizk MA, Weekes E, Johnson JK, Lincalis DP, Venezia RA. 2006. Peptide nucleic acid fluorescence in situ hybridization-based identification of Candida albicans and its impact on mortality and antifungal therapy costs. J Clin Microbiol. 44:3381–3383.
  • Forrest GN, Roghmann MC, Toombs LS, Johnson JK, Weekes E, Lincalis DP, Venezia RA. 2008. Peptide nucleic acid fluorescent in situ hybridization for hospital-acquired enterococcal bacteremia: delivering earlier effective antimicrobial therapy. Antimicrob Agents Chemother. 52:3558–3563.
  • Forrest GN. 2007. PNA FISH: present and future impact on patient management. Expert Rev Mol Diagn. 7:231–236.
  • French K, Evans J, Tanner H, Gossain S, Hussain A. 2016. The clinical impact of rapid, direct MALDI-ToF identification of bacteria from positive blood cultures. PLoS One. 11:e0169332.
  • Freund L. 2013. Bruker Gets 510(k) OK for MALDI Biotyper. FDANews Device Daily Bulletin. Washington, DC: FDA/U.S. Department of Health and Human Services. http://www.fdanews.com/articles/160734-bruker-gets-510k-ok-for-maldi-biotyper.
  • Fujita S, Yosizaki K, Ogushi T, Uechi K, Takemori Y, Senda Y. 2011. Rapid identification of gram-negative bacteria with and without CTX-M extended-spectrum β-lactamase from positive blood culture bottles by PCR followed by microchip gel electrophoresis. J Clin Microbiol. 49:1483–1488.
  • Funke G, Funke-Kissling P. 2004. Use of the BD Phoenix automated microbiology system for direct identification and susceptibility testing of Gram-negative rods from positive blood cultures in a three-phase trial. J Clin Microbiol. 42:1466–1470.
  • Gagnaire J, Dauwalder O, Boisset S, Khau D, Freydiere AM, Ader F, Bes M, Lina G, Tristan A, Reverdy ME, et al. 2012. Detection of Staphylococcus aureus delta-toxin production by whole-cell MALDI-TOF mass spectrometry. PLoS One. 7:e40660.
  • Garey KW, Rege M, Pai MP, Mingo DE, Suda KJ, Turpin RS, Bearden DT. 2006. Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multi-institutional study. Clin Infect Dis. 43:25–31.
  • Gherardi G, Angeletti S, Panitti M, Pompilio A, Di Bonaventura G, Crea F, Avola A, Fico L, Palazzo C, Sapia GF, et al. 2012. Comparative evaluation of the Vitek-2 Compact and Phoenix systems for rapid identification and antibiotic susceptibility testing directly from blood cultures of Gram-negative and Gram-positive isolates. Diagn Microbiol Infect Dis. 72:20–31.
  • Giacobbe DR, Del Bono V, Trecarichi EM, De Rosa FG, Giannella M, Bassetti M, Bartoloni A, Losito AR, Corcione S, Bartoletti M, et al. 2015. Risk factors for bloodstream infections due to colistin-resistant KPC-producing Klebsiella pneumoniae: results from a multicenter case-control-control study. Clin Microbiol Infect. 21:1106.e1–1108.
  • Glerant JC, Hellmuth D, Schmit JL, Ducroix JP, Jounieaux V. 1999. Utility of blood cultures in community-acquired pneumonia requiring hospitalization: influence of antibiotic treatment before admission. Respir Med. 93:208–212.
  • Gosiewski T, Flis A, Sroka A, Kędzierska A, Pietrzyk A, Kędzierska J, Drwiła R, Bulanda M. 2014. Comparison of nested, multiplex, qPCR; FISH; SeptiFast and blood culture methods in detection and identification of bacteria and fungi in blood of patients with sepsis. BMC Microbiol. 14:313.
  • Griffin PM, Price GR, Schooneveldt JM, Schlebusch S, Tilse MH, Urbanski T, Hamilton B, Venter D. 2012. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry to identify vancomycin-resistant enterococci and investigate the epidemiology of an outbreak. J Clin Microbiol. 50:2918–2931.
  • Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT, Andrasević AT, Cantón R, Carmeli Y, Friedrich AW, Giske CG, et al. 2017. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis. 17:153–163.
  • Habib G, Hoen B, Tornos P, Thuny F, Prendergast B, Vilacosta I, Moreillon P, de Jesus Antunes M, Thilen U, Lekakis J, et al. 2009. Guidelines on the prevention, diagnosis, and treatment of infective endocarditis (new version 2009): the Task Force on the Prevention, Diagnosis, and Treatment of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and the International Society of Chemotherapy (ISC) for Infection and Cancer. Eur Heart J. 30:2369–2413.
  • Hall L, Le Febre KM, Deml SM, Wohlfiel SL, Wengenack NL. 2012. Evaluation of the yeast traffic light PNA FISH probes for identification of Candida species from positive blood cultures. J Clin Microbiol. 50:1446–1448.
  • Hamula CL, Hughes K, Fisher BT, Zaoutis TE, Singh IR, Velegraki A. 2016. T2Candida provides rapid and accurate species identification in pediatric cases of candidemia. Am J Clin Pathol. 145:858–861.
  • Harris DM, Hata DJ. 2013. Rapid identification of bacteria and Candida using PNA-FISH from blood and peritoneal fluid cultures: a retrospective clinical study. Ann Clin Microbiol Antimicrob. 12:2.
  • Hazelton BJ, Thomas LC, Unver T, Iredell JR. 2013. Rapid identification of Gram-positive pathogens and their resistance genes from positive blood culture broth using a multiplex tandem RT-PCR assay. J Med Microbiol. 62:223–231.
  • He Y, Li H, Lu X, Stratton CW, Tang YW. 2010. Mass spectrometry Biotyper system identifies enteric bacterial pathogens directly from colonies grown on selective stool culture media. J Clin Microbiol. 48:3888–3892.
  • Heil EL, Daniels LM, Long DM, Rodino KG, Weber DJ, Miller MB. 2012. Impact of a rapid peptide nucleic acid fluorescence in situ hybridization assay on treatment of Candida infections. Am J Health Syst Pharm. 69:1910–1914.
  • Holtzman C, Whitney D, Barlam T, Miller NS. 2011. Assessment of impact of peptide nucleic acid fluorescence in situ hybridization for rapid identification of coagulase-negative staphylococci in the absence of antimicrobial stewardship intervention. J Clin Microbiol. 49:1581–1582.
  • Hooff GP, van Kampen JJ, Meesters RJ, van Belkum A, Goessens WH, Luider TM. 2012. Characterization of β-lactamase enzyme activity in bacterial lysates using MALDI-mass spectrometry. J Proteome Res. 11:79–84.
  • Hrabák J, Studentová V, Walková R, Zemlicková H, Jakubu V, Chudácková E, Gniadkowski M, Pfeifer Y, Perry JD, Wilkinson K, et al. 2012. Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 50:2441–2443.
  • Hrabák J, Walková R, Studentová V, Chudácková E, Bergerová T. 2011. Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 49:3222–3227.
  • Huang AM, Newton D, Kunapuli A, Gandhi TN, Washer LL, Isip J, Collins CD, Nagel JL. 2013. Impact of rapid organism identification via matrix-assisted laser desorption/ionization time-of-flight combined with antimicrobial stewardship team intervention in adult patients with bacteremia and candidemia. Clin Infect Dis. 57:1237–1245.
  • Idelevich EA, Schüle I, Grünastel B, Wüllenweber J, Peters G, Becker K. 2014a. Rapid identification of microorganisms from positive blood cultures by MALDI-TOF mass spectrometry subsequent to very short-term incubation on solid medium. Clin Microbiol Infect. 20:1001–1006.
  • Idelevich EA, Schüle I, Grünastel B, Wüllenweber J, Peters G, Becker K. 2014b. Acceleration of antimicrobial susceptibility testing of positive blood cultures by inoculation of Vitek 2 cards with briefly incubated solid medium cultures. J Clin Microbiol. 52:4058–4062.
  • Ishikawa H, Kutsukake E, Chiba K, Fukui T, Matsumoto T. 2011. The performance of the BD geneOhm MRSA™ assay for MRSA isolated from clinical patients in Japan, including the effects of specimen contamination and ways to improve it. J Infect Chemother. 17:214–218.
  • Jamal W, Saleem R, Rotimi VO. 2013. Rapid identification of pathogens directly from blood culture bottles by Bruker matrix-assisted laser desorption laser ionization-time of flight mass spectrometry versus routine methods. Diagn Microbiol Infect Dis. 76:404–408.
  • Jeng K, Gaydos CA, Blyn LB, Yang S, Won H, Matthews H, Toleno D, Hsieh YH, Carroll KC, Hardick J, et al. 2012. Comparative analysis of two broad-range PCR assays for pathogen detection in positive-blood-culture bottles: PCR-high-resolution melting analysis versus PCR-mass spectrometry. J Clin Microbiol. 50:3287–3292.
  • Jordan JA, Durso MB. 2005. Real-time polymerase chain reaction for detecting bacterial DNA directly from blood of neonates being evaluated for sepsis. J Mol Diagn. 7:575–581.
  • Jordan JA, Jones-Laughner J, Durso MB. 2009. Utility of pyrosequencing in identifying bacteria directly from positive blood culture bottles. J Clin Microbiol. 47:368–372.
  • Jordana-Lluch E, Carolan HE, Giménez M, Sampath R, Ecker DJ, Quesada MD, Mòdol JM, Arméstar F, Blyn LB, Cummins LL, et al. 2013. Rapid diagnosis of bloodstream infections with PCR followed by mass spectrometry. PLoS One. 8:e62108.
  • Jordana-Lluch E, Giménez M, Quesada MD, Rivaya B, Marcó C, Domínguez MJ, Arméstar F, Martró E, Ausina V. 2015. Evaluation of the broad-range PCR/ESI-MS technology in blood specimens for the molecular diagnosis of bloodstream infections. PLoS One. 10:e0140865.
  • Josten M, Reif M, Szekat C, Al-Sabti N, Roemer T, Sparbier K, Kostrzewa M, Rohde H, Sahl HG, Bierbaum G. 2013. Analysis of the matrix-assisted laser desorption ionization-time of flight mass spectrum of Staphylococcus aureus identifies mutations that allow differentiation of the main clonal lineages. J Clin Microbiol. 51:1809–1817.
  • Jung JS, Popp C, Sparbier K, Lange C, Kostrzewa M, Schubert S. 2014. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid detection of β-lactam resistance in Enterobacteriaceae derived from blood cultures. J Clin Microbiol. 52:924–930.
  • Kikuchi K, Matsuda M, Iguchi S, Mizutani T, Hiramatsu K, Tega-Ishii M, Sansaka K, Negishi K, Shimada K, Umemura J, et al. 2017. Potential impact of rapid blood culture testing for Gram-positive bacteremia in Japan with the Verigene Gram-Positive Blood Culture test. Can J Infect Dis Med Microbiol. 2017:4896791.
  • Kilic A, Basustaoglu AC. 2011. Double triplex real-time PCR assay for simultaneous detection of Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus hominis, and Staphylococcus haemolyticus and determination of their methicillin resistance directly from positive blood culture bottles. Res Microbiol. 162:1060–1066.
  • Kirn TJ, Weinstein MP. 2013. Update on blood cultures: how to obtain, process, report, and interpret. Clin Microbiol Infect. 19:513–520.
  • Koh LL, O'Rourke S, Brennan M, Clooney L, Cafferkey M, McCallion N, Drew RJ. 2017. Impact of a rapid molecular test for positive blood cultures from neonatal intensive care patients on clinical management: a retrospective audit. Ir J Med Sci. https://doi.org/10.1007/s11845-017-1649-1
  • Kok J, Thomas LC, Olma T, Chen SC, Iredell JR. 2011. Identification of bacteria in blood culture broths using matrix-assisted laser desorption-ionization Sepsityper and time of flight mass spectrometry. PLoS One. 6:e23285.
  • Kumar A, Ellis P, Arabi Y, Roberts D, Light B, Parrillo JE, Dodek P, Wood G, Kumar A, Simon D, et al. 2009. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest. 136:1237–1248.
  • Laakso S, Kirveskari J, Tissari P, Mäki M. 2011. Evaluation of high-throughput PCR and microarray-based assay in conjunction with automated DNA extraction instruments for diagnosis of sepsis. PLoS One. 6:e26655.
  • Laffler TG, Cummins LL, McClain CM, Quinn CD, Toro MA, Carolan HE, Toleno DM, Rounds MA, Eshoo MW, Stratton CW, et al. 2013. Enhanced diagnostic yields of bacteremia and candidemia in blood specimens by PCR-electrospray ionization mass spectrometry. J Clin Microbiol. 51:3535–3541.
  • Lagacé-Wiens PR, Adam HJ, Karlowsky JA, Nichol KA, Pang PF, Guenther J, Webb AA, Miller C, Alfa MJ. 2012. Identification of blood culture isolates directly from positive blood cultures by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry and a commercial extraction system: analysis of performance, cost, and turnaround time. J Clin Microbiol. 50:3324–3328.
  • Lagu T, Rothberg MB, Shieh MS, Pekow PS, Steingrub JS, Lindenauer PK. 2012. What is the best method for estimating the burden of severe sepsis in the United States? J Crit Care. 27:414.e1–419.
  • Laine S. 2013. New test system identifies 193 different yeasts and bacteria known to cause illness. FDA News Release. Washington, DC: FDA/U.S. Department of Health and Human Services. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm365907.htm.
  • Lasch P, Fleige C, Stämmler M, Layer F, Nübel U, Witte W, Werner G. 2014. Insufficient discriminatory power of MALDI-TOF mass spectrometry for typing of Enterococcus faecium and Staphylococcus aureus isolates. J Microbiol Methods. 100:58–69.
  • Lau AF, Wang H, Weingarten RA, Drake SK, Suffredini AF, Garfield MK, Chen Y, Gucek M, Youn JH, Stock F, et al. 2014. A rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for single-plasmid tracking in an outbreak of carbapenem-resistant Enterobacteriaceae. J Clin Microbiol. 52:2804–2812.
  • Lee A, Mirrett S, Reller LB, Weinstein MP. 2007. Detection of bloodstream infections in adults: how many blood cultures are needed? J Clin Microbiol. 45:3546–3548.
  • Leitner E, Kessler HH, Spindelboeck W, Hoenigl M, Putz-Bankuti C, Stadlbauer-Köllner V, Krause R, Grisold AJ, Feierl G, Stauber RE. 2013. Comparison of two molecular assays with conventional blood culture for diagnosis of sepsis. J Microbiol Methods. 92:253–255.
  • Lockwood AM, Perez KK, Musick WL, Ikwuagwu JO, Attia E, Fasoranti OO, Cernoch PL, Olsen RJ, Musser JM. 2016. Integrating rapid diagnostics and antimicrobial stewardship in two community hospitals improved process measures and antibiotic adjustment time. Infect Control Hosp Epidemiol. 37:425–432.
  • Loonen AJ, Jansz AR, Stalpers J, Wolffs PF, van den Brule AJ. 2012. An evaluation of three processing methods and the effect of reduced culture times for faster direct identification of pathogens from BacT/Alert blood cultures by MALDI-TOF MS. Eur J Clin Microbiol Infect Dis. 31:1575–1583.
  • Lupetti A, Barnini S, Castagna B, Capria AL, Nibbering PH. 2010a. Rapid identification and antimicrobial susceptibility profiling of Gram-positive cocci in blood cultures with the Vitek 2 system. Eur J Clin Microbiol Infect Dis. 29:89–95.
  • Lupetti A, Barnini S, Castagna B, Nibbering PH, Campa M. 2010b. Rapid identification and antimicrobial susceptibility testing of Gram-positive cocci in blood cultures by direct inoculation into the BD Phoenix system. Clin Microbiol Infect. 16:986–991.
  • Lupetti A, Barnini S, Dodi C, Menconi M, Favre C, Giagnoni M, Florio W, Nibbering PH, Campa M. 2014. New rapid methods cannot replace the current method to diagnose bloodstream infections. J Med Microbiol. 63:767–769.
  • Lupetti A, Barnini S, Morici P, Ghelardi E, Nibbering PH, Campa M. 2013. Saponin promotes rapid identification and antimicrobial susceptibility profiling of Gram-positive and Gram-negative bacteria in blood cultures with the Vitek 2 system. Eur J Clin Microbiol Infect Dis. 32:493–502.
  • Ly T, Gulia J, Pyrgos V, Waga M, Shoham S. 2008. Impact upon clinical outcomes of translation of PNA FISH-generated laboratory data from the clinical microbiology bench to bedside in real time. Ther Clin Risk Manag. 4:637–640.
  • Machen A, Drake T, Wang YF. 2014. Same day identification and full panel antimicrobial susceptibility testing of bacteria from positive blood culture bottles made possible by a combined lysis-filtration method with MALDI-TOF Vitek mass spectrometry and the VITEK2 system. PLoS One. 9:e87870.
  • McCann CD, Moore MS, May LS, McCarroll MG, Jordan JA. 2015. Evaluation of real-time PCR and pyrosequencing for screening incubating blood culture bottles from adults with suspected bloodstream infection. Diagn Microbiol Infect Dis. 81:158–162.
  • McKenzie R, Reimer LG. 1987. Effect of antimicrobials on blood cultures in endocarditis. Diagn Microbiol Infect Dis. 8:165–172.
  • Mencacci A, Leli C, Montagna P, Cardaccia A, Meucci M, Bietolini C, Cenci E, Pasticci MB, Bistoni F. 2012. Diagnosis of infective endocarditis: comparison of the Lightcycler Septifast real-time PCR with blood culture. J Med Microbiol. 61:881–883.
  • Menezes LC, Rocchetti TT, Bauab Kde C, Cappellano P, Quiles MG, Carlesse F, de Oliveira JS, Pignatari AC. 2013. Diagnosis by real-time polymerase chain reaction of pathogens and antimicrobial resistance genes in bone marrow transplant patients with bloodstream infections. BMC Infect Dis. 13:166.
  • Merino E, Caro E, Ramos JR, Boix V, Gimeno A, Rodríguez JC, Riera G, Más P, Sanchéz-Paya J, Reus S, et al. 2017. Impact of a stewardship program on bacteraemia in adult inpatients. Rev Esp Quimioter. 30:257–263.
  • Metzgar D, Frinder MW, Rothman RE, Peterson S, Carroll KC, Zhang SX, Avornu GD, Rounds MA, Carolan HE, Toleno DM, et al. 2016. The IRIDICA BAC BSI Assay: rapid, sensitive and culture-independent identification of bacteria and Candida in blood. PLoS One. 11:e0158186.
  • Mito T, Hirota Y, Suzuki S, Noda K, Uehara T, Ohira Y, Ikusaka M. 2016. Bartonella henselae infective endocarditis detected by a prolonged blood culture. Intern Med. 55:3065–3067.
  • Mongelli G, Romeo MA, Denaro C, Gennaro M, Fraggetta F, Stefani S. 2015. Added value of multi-pathogen probe-based real-time PCR SeptiFast in the rapid diagnosis of bloodstream infections in patients with bacteraemia. J Med Microbiol. 64:670–675.
  • Moore MS, McCann CD, Jordan JA. 2013. Molecular detection of culture-confirmed bacterial bloodstream infections with limited enrichment time. J Clin Microbiol. 51:3720–3725.
  • Moore MS, McCarroll MG, McCann CD, May L, Younes N, Jordan JA. 2016. Direct screening of blood by PCR and pyrosequencing for a 16S rRNA gene target from emergency department and intensive care unit patients being evaluated for bloodstream infection. J Clin Microbiol. 54:99–105.
  • Morgan MA, Marlowe E, Novak-Weekly S, Miller JM, Painter TM, Salimnia H, Crystal B. 2011. A 1.5 hour procedure for identification of Enterococcus species directly from blood cultures. J Vis Exp. 48:2616.
  • Moussaoui W, Jaulhac B, Hoffmann AM, Ludes B, Kostrzewa M, Riegel P, Prévost G. 2010. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identifies 90% of bacteria directly from blood culture vials. Clin Microbiol Infect. 16:1631–1638.
  • Mylonakis E, Clancy CJ, Ostrosky-Zeichner L, Garey KW, Alangaden GJ, Vazquez JA, Groeger JS, Judson MA, Vinagre YM, Heard SO, et al. 2015. T2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood: a clinical trial. Clin Infect Dis. 60:892–899.
  • Nagel JL, Huang AM, Kunapuli A, Gandhi TN, Washer LL, Lassiter J, Patel T, Newton DW. 2014. Impact of antimicrobial stewardship intervention on coagulase-negative Staphylococcus blood cultures in conjunction with rapid diagnostic testing. J Clin Microbiol. 52:2849–2854.
  • Nakano S, Matsumura Y, Kato K, Yunoki T, Hotta G, Noguchi T, Yamamoto M, Nagao M, Ito Y, Takakura S, et al. 2014. Differentiation of vanA-positive Enterococcus faecium from vanA-negative E. faecium by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Int J Antimicrob Agents. 44:256–259.
  • Neely LA, Audeh M, Phung NA. 2013. T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. Sci Transl Med. 5:182ra54.
  • Nguyen DT, Yeh E, Perry S, Luo RF, Pinsky BA, Lee BP, Sisodiya D, Baron EJ, Banaei N. 2010. Real-time PCR testing for mecA reduces vancomycin usage and length of hospitalization for patients infected with methicillin-sensitive staphylococci. J Clin Microbiol. 48:785–790.
  • Nieman AE, Savelkoul PH, Beishuizen A, Henrich B, Lamik B, MacKenzie CR, Kindgen-Milles D, Helmers A, Diaz C, Sakka SG, et al. 2016. A prospective multicenter evaluation of direct molecular detection of blood stream infection from a clinical perspective. BMC Infect Dis. 16:314.
  • Ning Y, Hu R, Yao G, Bo S. 2016. Time to positivity of blood culture and its prognostic value in bloodstream infection. Eur J Clin Microbiol Infect Dis. 35:619–624.
  • Ohlsson P, Evander M, Petersson K, Mellhammar L, Lehmusvuori A, Karhunen U, Soikkeli M, Seppä T, Tuunainen E, Spangar A, et al. 2016. Integrated acoustic separation, enrichment, and microchip polymerase chain reaction detection of bacteria from blood for rapid sepsis diagnostics. Anal Chem. 88:9403–9411.
  • Opota O, Jaton K, Greub G. 2015. Microbial diagnosis of bloodstream infection: towards molecular diagnosis directly from blood. Clin Microbiol Infect. 21:323–331.
  • Page A, O’Rourke S, Brennan M, Clooney L, Le Blanc D, Griffin J, Eogan M, Drew RJ. 2017. Impact of Xpert MRSA/SA blood culture PCR assay on management of positive blood cultures in obstetric patients: a retrospective audit. Ir J Med Sci. 186:995–998.
  • Pana ZD, Vikelouda K, Roilides E. 2016. Diagnosis of invasive fungal diseases in pediatric patients. Expert Rev Anti Infect Ther. 14:1203–1213.
  • Parcell BJ, Orange GV. 2013. PNA-FISH assays for early targeted bacteraemia treatment. J Microbiol Methods. 95:253–255.
  • Parta M, Goebel M, Thomas J, Matloobi M, Stager C, Musher DM. 2010. Impact of an assay that enables rapid determination of Staphylococcus species and their drug susceptibility on the treatment of patients with positive blood culture results. Infect Control Hosp Epidemiol. 31:1043–1048.
  • Pasqualini L, Mencacci A, Leli C, Montagna P, Cardaccia A, Cenci E, Montecarlo I, Pirro M, di Filippo F, Cistaro E, et al. 2012. Diagnostic performance of a multiple real-time PCR assay in patients with suspected sepsis hospitalized in an internal medicine ward. J Clin Microbiol. 50:1285–1288.
  • Patel R. 2013. Matrix-assisted laser desorption ionization-time of flight mass spectrometry in clinical microbiology. Clin Infect Dis. 57:564–572.
  • Patel TS, Kaakeh R, Nagel JL, Newton DW, Stevenson JG. 2016. Cost analysis of implementing matrix-assisted laser desorption ionization-time of flight mass spectrometry plus real-time antimicrobial stewardship intervention for bloodstream infections. J Clin Microbiol. 55:60–67.
  • Perez KK, Olsen RJ, Musick WL, Cernoch PL, Davis JR, Land GA, Peterson LE, Musser JM. 2013. Integrating rapid pathogen identification and antimicrobial stewardship significantly decreases hospital costs. Arch Pathol Lab Med. 137:1247–1254.
  • Perez KK, Olsen RJ, Musick WL, Cernoch PL, Davis JR, Peterson LE, Musser JM. 2014. Integrating rapid diagnostics and antimicrobial stewardship improves outcomes in patients with antibiotic-resistant Gram-negative bacteremia. J Infect. 69:216–225.
  • Peters RP, van Agtmael MA, Gierveld S, Danner SA, Groeneveld AB, Vandenbroucke-Grauls CM, Savelkoul PH. 2007. Quantitative detection of Staphylococcus aureus and Enterococcus faecalis DNA in blood to diagnose bacteremia in patients in the intensive care unit. J Clin Microbiol. 45:3641–3646.
  • Pfaller MA, Wolk DM, Lowery TJ. 2015. T2MR and T2Candida: novel technology for the rapid diagnosis of candidemia and invasive candidiasis. Future Microbiol. 11:103–117.
  • Pitt WG, Alizadeh M, Husseini GA, McClellan DS, Buchanan CM, Bledsoe CG, Robison RA, Blanco R, Roeder BL, Melville M, et al. 2016. Rapid separation of bacteria from blood-review and outlook. Biotechnol Prog. 32:823–839.
  • Radic M, Goic-Barisic I, Novak A, Rubic Z, Tonkic M. 2016. Evaluation of PNA FISH® Yeast Traffic Light in identification of Candida species from blood and non-blood culture specimens. Med Mycol. 54:654–658.
  • Regueiro BJ, Varela-Ledo E, Martinez-Lamas L, Rodriguez-Calviño J, Aguilera A, Santos A, Gomez-Tato A, Alvarez-Escudero J. 2010. Automated extraction improves multiplex molecular detection of infection in septic patients. PLoS One. 5:e13387.
  • Romero-Gómez MP, Muñoz-Velez M, Gómez-Gil R, Mingorance J. 2013. Evaluation of combined use of MALDI-TOF and Xpert® MRSA/SA BC assay for the direct detection of methicillin resistance in Staphylococcus aureus from positive blood culture bottles. J Infect. 67:91–92.
  • Ruiz-Giardín JM, Martin-Díaz RM, Jaqueti-Aroca J, Garcia-Arata I, San Martín-López JV, Sáiz-Sánchez Buitrago M. 2015. Diagnosis of bacteraemia and growth times. Int J Infect Dis. 41:6–10.
  • Saffert RT, Cunningham SA, Mandrekar J, Patel R. 2012. Comparison of three preparatory methods for detection of bacteremia by MALDI-TOF mass spectrometry. Diagn Microbiol Infect Dis. 73:21–26.
  • Sanguinetti M, Posteraro B. 2016. Mass spectrometry applications in microbiology beyond microbe identification: progress and potential. Expert Rev Proteomics. 14:1–13.
  • Saracli MA, Fothergill AW, Sutton DA, Wiederhold NP. 2015. Detection of triazole resistance among Candida species by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Med Mycol. 53:736–742.
  • Sauer S, Kliem M. 2010. Mass spectrometry tools for the classification and identification of bacteria. Nat Rev Microbiol. 8:74–82.
  • Schlebusch S, Price GR, Hinds S, Nourse C, Schooneveldt JM, Tilse MH, Liley HG, Wallis T, Bowling F, Venter D, et al 2010. First outbreak of PVL-positive nonmultiresistant MRSA in a neonatal ICU in Australia: comparison of MALDI-TOF and SNP-plus-binary gene typing. Eur J Clin Microbiol Infect Dis. 29:1311–1314.
  • Schubert S, Weinert K, Wagner C, Gunzl B, Wieser A, Maier T, Kostrzewa M. 2011. Novel, improved sample preparation for rapid, direct identification from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. J Mol Diagn. 13:701–706.
  • Seng P, Rolain JM, Fournier PE, La Scola B, Drancourt M, Raoult D. 2010. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol. 5:1733–1754.
  • Spanu T, Posteraro B, Fiori B, D’Inzeo T, Campoli S, Ruggeri A, Tumbarello M, Canu G, Trecarichi EM, Parisi G, et al. 2012. Direct MALDI-TOF mass spectrometry assay of blood culture broths for rapid identification of Candida species causing bloodstream infections: an observational study in two large microbiology laboratories. J Clin Microbiol. 50:176–179.
  • Sparbier K, Lange C, Jung J, Wieser A, Schubert S, Kostrzewa M. 2013. MALDI Biotyper-based rapid resistance detection by stable-isotope labeling. J Clin Microbiol. 51:3741–3748.
  • Sparbier K, Schubert S, Weller U, Boogen C, Kostrzewa M. 2012. Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based functional assay for rapid detection of resistance against β-lactam antibiotics. J Clin Microbiol. 50:927–937.
  • Spencer DH, Sellenriek P, Burnham CA. 2011. Validation and implementation of the genexpert MRSA/SA blood culture assay in a pediatric setting. Am J Clin Pathol. 136:690–694.
  • Stamper PD, Cai M, Howard T, Speser S, Carroll KC. 2007. Clinical validation of the molecular BD geneohm staphsr assay for direct detection of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in positive blood cultures. J Clin Microbiol. 45:2191–2196.
  • Stevenson LG, Drake SK, Murray PR. 2010. Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 48:444–447.
  • Stevenson M, Pandor A, Martyn-St James M, Rafia R, Uttley L, Stevens J, Sanderson J, Wong R, Perkins GD, McMullan R, et al. 2016. Sepsis: the LightCycler SeptiFast Test MGRADE®, SepsiTest™ and IRIDICA BAC BSI assay for rapidly identifying bloodstream bacteria and fungi – a systematic review and economic evaluation. Health Technol Assess. 20:1–246.
  • Stupar P, Opota O, Longo G, Prod'hom G, Dietler G, Greub G, Kasas S. 2017. Nanomechanical sensor applied to blood culture pellets: a fast approach to determine the antibiotic susceptibility against agents of bloodstream infections. Clin Microbiol Infect. 23:400–405.
  • Suarez S, Ferroni A, Lotz A, Jolley KA, Guérin P, Leto J, Dauphin B, Jamet A, Maiden MC, Nassif X, et al. 2013. Ribosomal proteins as biomarkers for bacterial identification by mass spectrometry in the clinical microbiology laboratory. J Microbiol Methods. 94:390–396.
  • Tan KE, Ellis BC, Lee R, Stamper PD, Zhang SX, Carroll KC. 2012. Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J Clin Microbiol. 50:3301–3308.
  • Tattevin P, Watt G, Revest M, Arvieux C, Fournier PE. 2015. Update on blood culture-negative endocarditis. Med Mal Infect. 45:1–8.
  • Templier V, Livache T, Boisset S, Maurin M, Slimani S, Mathey R, Roupioz Y. 2017. Biochips for direct detection and identification of bacteria in blood culture-like conditions. Sci Rep. 7:9457.
  • Teranishi H, Ohzono N, Inamura N, Kato A, Wakabayashi T, Akaike H, Terada K, Ouchi K. 2015. Detection of bacteria and fungi in blood of patients with febrile neutropenia by real-time PCR with universal primers and probes. J Infect Chemother. 21:189–193.
  • Timbrook TT, Morton JB, McConeghy KW, Caffrey AR, Mylonakis E, LaPlante KL. 2017. The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis. Clin Infect Dis. 64:15–23.
  • van Belkum A, Chatellier S, Girard V, Pincus D, Deol P, Dunne WM. Jr. 2015. Progress in proteomics for clinical microbiology: MALDI-TOF MS for microbial species identification and more. Expert Rev Proteomics. 12:595–605.
  • Vella A, De Carolis E, Vaccaro L, Posteraro P, Perlin DS, Kostrzewa M, Posteraro B, Sanguinetti M. 2013. Rapid antifungal susceptibility testing by matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis. J Clin Microbiol. 51:2964–2969.
  • Waites KB, Brookings ES, Moser SA, Zimmer BL. 1998. Direct bacterial identification from positive BacT/Alert blood cultures using MicroScan overnight and rapid panels. Diagn Microbiol Infect Dis. 32:21–26.
  • Walker B, Powers-Fletcher MV, Schmidt RL, Hanson KE. 2016. Cost-effectiveness analysis of multiplex PCR with magnetic resonance detection versus empiric or blood culture-directed therapy for management of suspected candidemia. J Clin Microbiol. 54:718–726.
  • Wang HY, Kim J, Kim S, Park SD, Kim HY, Choi HK, Uh Y, Lee H. 2015. Performance of PCR-REBA assay for screening and identifying pathogens directly in whole blood of patients with suspected sepsis. J Appl Microbiol. 119:1433–1442.
  • Wang YR, Chen Q, Cui SH, Li FQ. 2013. Characterization of Staphylococcus aureus isolated from clinical specimens by matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Biomed Environ Sci. 26:430–436.
  • Wellinghausen N, Kochem AJ, Disqué C, Mühl H, Gebert S, Winter J, Matten J, Sakka SG. 2009. Diagnosis of bacteremia in whole-blood samples by use of a commercial universal 16S rRNA gene-based PCR and sequence analysis. J Clin Microbiol. 47:2759–2765.
  • Willems E, Smismans A, Cartuyvels R, Coppens G, Van Vaerenbergh K, Van den Abeele A-M, Frans J. 2012. The preanalytical optimization of blood cultures: a review and the clinical importance of benchmarking in 5 Belgian hospitals. Diagn Microb Infect Dis. 73:1–8.
  • Wolk DM, Struelens MJ, Pancholi P, Davis T, Della-Latta P, Fuller D, Picton E, Dickenson R, Denis O, Johnson D, et al. 2009. Rapid detection of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in wound specimens and blood cultures: multicenter preclinical evaluation of the Cepheid Xpert MRSA/SA skin and soft tissue and blood culture assays. J Clin Microbiol. 47:823–826.
  • Yonetani S, Okazaki M, Araki K, Makino H, Fukugawa Y, Okuyama T, Ohnishi H, Watanabe T. 2012. Direct inoculation method using BacT/Alert 3D and BD Phoenix system allows rapid and accurate identification and susceptibility testing for both Gram-positive cocci and Gram-negative rods in aerobic blood cultures. Diagn Microbiol Infect Dis. 73:129–134.
  • Zervou FN, Zacharioudakis IM, Kurpewski J, Mylonakis E. 2017. T2 magnetic resonance for fungal diagnosis. Methods Mol Biol. 1508:305–319.
  • Ziegler I, Fagerström A, Strålin K, Mölling P. 2016. Evaluation of a commercial multiplex PCR assay for detection of pathogen DNA in blood from patients with suspected sepsis. PLoS One. 11:e0167883.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.