891
Views
48
CrossRef citations to date
0
Altmetric
Review Articles

Recent advances in tackling microbial multidrug resistance with essential oils: combinatorial and nano-based strategies

, , , ORCID Icon, &
Pages 338-357 | Received 03 Nov 2019, Accepted 04 Jun 2020, Published online: 01 Jul 2020

References

  • Abreu AC, McBain AJ, Simões M. 2012. Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep. 29(9):1007–1021.
  • Adhavan P, Kaur G, Princy A, Murugan R. 2017. Essential oil nanoemulsions of wild patchouli attenuate multi-drug resistant Gram-positive, Gram-negative and Candida albicans. Ind Crops Prod. 100:106–116.
  • Adorjan B, Buchbauer G. 2010. Biological properties of essential oils: an updated review. Flavour Fragr J. 25(6):407–426.
  • Aelenei P, Miron A, Trifan A, Bujor A, Gille E, Aprotosoaie AC. 2016. Essential oils and their components as modulators of antibiotic activity against Gram-negative bacteria. Medicines (Basel). 3(3):19.
  • Aelenei P, Rimbu CM, Guguianu E, Dimitriu G, Aprotosoaie AC, Brebu M, Horhogea CE, Miron A. 2019. Coriander essential oil and linalool – interactions with antibiotics against Gram-positive and Gram-negative bacteria. Lett Appl Microbiol. 68(2):156–164.
  • Ahmed A, Hiremath N, Jacob H. 2017. Antimicrobial efficacies of essential oils/nanoparticles incorporated polylactide films against L. monocytogenes and S. typhimurium on contaminated cheese. Int J Food Prop. 20(1):53–67.
  • Balasubramani S, Moola AK, Vivek K, Ranjitha Kumari BD. 2018. Formulation of nanoemulsion from leaves essential oil of Ocimum basilicum L. and its antibacterial, antioxidant and larvicidal activities (Culex quinquefasciatus). Microb Pathog. 125:475–485.
  • Bassolé IHN, Juliani HR. 2012. Essential oils in combination and their antimicrobial properties. Molecules. 17(4):3989–4006.
  • Benjemaa M, Neves MA, Falleh H, Isoda H, Ksouri R, Nakajima M. 2018. Nanoencapsulation of Thymus capitatus essential oil: formulation process, physical stability characterization and antibacterial efficiency monitoring. Ind Crops Prod. 113:414–421.
  • Bhatt S, Sharma J, Singh M, Saini V. 2018. Solid lipid nanoparticles: a promising technology for delivery of poorly water-soluble drugs. Acta Pharmaceutica. 56(3):27–49.
  • Bilcu M, Grumezescu AM, Oprea AE, Popescu RC, Mogoșanu GD, Hristu R, Stanciu GA, Mihailescu DF, Lazar V, Bezirtzoglou E, et al. 2014. Efficiency of vanilla, patchouli and ylang ylang essential oils stabilized by iron oxide@C14 nanostructures against bacterial adherence and biofilms formed by Staphylococcus aureus and Klebsiella pneumoniae clinical strains. Molecules. 19(11):17943–17956.
  • Bilia AR, Guccione C, Isacchi B, Righeschi C, Firenzuoli F, Bergonzi MC. 2014. Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. Evid Based Complement Alternat Med. 2014:651593.
  • Borges A, Lopez-Romero JC, Oliveira D, Giaouris E, Simões M. 2017. Prevention, removal and inactivation of Escherichia coli and Staphylococcus aureus biofilms using selected monoterpenes of essential oils. J Appl Microbiol. 123(1):104–115.
  • Burt S. 2004. Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol. 94(3):223–253.
  • Chandra H, Bishnoi P, Yadav A, Patni B, Mishra AP, Nautiyal AR. 2017. Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials – a review. Plants (Basel, Switzerland). 6(4):16.
  • Chevalier S, Bouffartigues E, Bodilis J, Maillot O, Lesouhaitier O, Feuilloley MGJ, Orange N, Dufour A, Cornelis P. 2017. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiol Rev. 41(5):698–722.
  • Chuesiang P, Siripatrawan U, Sanguandeekul R, McClements DJ, McLandsborough L. 2019b. Antimicrobial activity of PIT-fabricated cinnamon oil nanoemulsions: effect of surfactant concentration on morphology of foodborne pathogens. Food Control. 98:405–411.
  • Chuesiang P, Siripatrawan U, Sanguandeekul R, Yang JS, McClements DJ, McLandsborough L. 2019a. Antimicrobial activity and chemical stability of cinnamon oil in oil-in-water nanoemulsions fabricated using the phase inversion temperature method. LWT Food Sci Technol. 110:190–196.
  • Cirino IC, Menezes-Silva SM, Silva HT, de Souza EL, Siqueira-Júnior JP. 2014. The essential oil from Origanum vulgare L. and its individual constituents carvacrol and thymol enhance the effect of tetracycline against Staphylococcus aureus. Chemotherapy. 60(5–6):290–293.
  • Coutinho H, Matias E, Santos K, Tintino SR, Souza C, Guedes G, Santos F, Costa J, Falcão-Silva V, Siqueira-Júnior J. 2010. Enhancement of the norfloxacin antibiotic activity by gaseous contact with the essential oil of Croton zehntneri. J Young Pharm. 2(4):362–364.
  • Coutinho HDM, Rodrigues FFG, Nascimento EMM, Costa JGM, Falcão-Silva VS, Siqueira-Júnior JP. 2011. Synergism of gentamicin and norfloxacin with the volatile compounds of Lippia microphylla Cham. (Verbenaceae). J Essent Oil Res. 23(2):24–28.
  • Cristani M, D'Arrigo M, Mandalari G, Castelli F, Sarpietro MG, Micieli D, Venuti V, Bisignano G, Saija A, Trombetta D. 2007. Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. J Agric Food Chem. 55(15):6300–6308.
  • Cui H, Li W, Li C, Vittayapadung S, Lin L. 2016. Liposome containing cinnamon oil with antibacterial activity against methicillin-resistant Staphylococcus aureus biofilm. Biofouling. 32(2):215–225.
  • da Silva Gündel S, de Souza ME, Quatrin PM, Klein B, Wagner R, Gundel A, Vaucher RA, Santos RCV, Ourique AF. 2018b. Nanoemulsions containing Cymbopogon flexuosus essential oil: development, characterization, stability study and evaluation of antimicrobial and antibiofilm activities. Microb Pathog. 118:268–276.
  • da Silva Gündel S, Velho MC, Diefenthaler MK, Favarin FR, Copetti PM, de Oliveira Fogaca A, Klein B, Wagner R, Gundel A, Sagrillo MR, et al. 2018a. Basil oil-nanoemulsions: development, cytotoxicity and evaluation of antioxidant and antimicrobial potential. J Drug Deliv Sci Technol. 46:378–383.
  • Dadgostar P. 2019. Antimicrobial resistance: implications and costs. Infect Drug Resist. 12:3903–3910.
  • de Kraker ME, Stewardson AJ, Harbarth S. 2016. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 13(11):e1002184.
  • de Sousa Oliveira K, de Lima LA, Cobacho NB, Dias SC, Franco OL. 2016. Mechanisms of antibacterial resistance: shedding some light on these obscure processes? In: Kon K, Rai M, editors. Antibiotic resistance. Mechanisms and new antimicrobial approaches. London: Academic Press; p. 19–37.
  • Dias Antunes M, da Silva Dannenberg G, Fiorentini AM, Pinto VZ, Lim LT, da Rosa Zavareze EG, Dias AR. 2017. Antimicrobial electrospun ultrafine fibers from zein containing eucalyptus essential oil/cyclodextrin inclusion complex. Int J Biol Macromol. 104(Pt A):874–882.
  • dos Santos PP, Flores SH, de Oliveira Rios A, Chiste RC. 2016. Biodegradable polymers as wall materials to the synthesis of bioactive compound nanocapsules. Trends Food Sci Technol. 53:23–33.
  • Duncan B, Li X, Landis RF, Kim ST, Gupta A, Wang LS, Ramanathan R, Tang R, Boerth JA, Rotello VM. 2015. Nanoparticle-stabilized capsules for the treatment of bacterial biofilms. *ACS Nano. 9(8):7775–7782.
  • Durão P, Balbontín R, Gordo I. 2018. Evolutionary mechanisms shaping the maintenance of antibiotic resistance. Trends Microbiol. 26(8):677–691.
  • Edris AE. 2007. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother Res. 21(4):308–323.
  • Fadli M, Bolla J-M, Mezrioui N-E, Pagès J-M, Hassani L. 2014. First evidence of antibacterial and synergistic effects of Thymus riatarum essential oil with conventional antibiotics. Ind Crops Prod. 61:370–376.
  • Fadli M, Chevalier J, Saad A, Mezrioui NE, Hassani L, Pages JM. 2011. Essential oils from Moroccan plants as potential chemosensitisers restoring antibiotic activity in resistant Gram-negative bacteria. Int J Antimicrob Agents. 38(4):325–330.
  • Fadli M, Pagès JM, Mezrioui NE, Abbad A, Hassan L. 2016. Artemisia herba-alba Asso and Cymbopogon citratus (DC.) Stapf essential oils and their capability to restore antibiotics efficacy. Ind Crops Prod 89:399–404.
  • Fadli M, Saad A, Sayadi S, Chevalier J, Mezrioui N-E, Pagès J-M, Hassani L. 2012. Antibacterial activity of Thymus maroccanus and Thymus broussonetii essential oils against nosocomial infection – bacteria and their synergistic potential with antibiotics. Phytomedicine. 19(5):464–471.
  • Fazly Bazzaz BS, Khameneh B, Namazi N, Iranshahi M, Davoodi D, Golmohammadzadeh S. 2018. Solid lipid nanoparticles carrying Eugenia caryophyllata essential oil: the novel nanoparticulate systems with broad-spectrum antimicrobial activity. Lett Appl Microbiol. 66(6):506–513.
  • Feng X, Li J, Zhang X, Liu T, Ding J, Chen X. 2019. Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. J Control Release. 302:19–41.
  • Ghaderi-Ghahfarokhi M, Barzegar M, Sahari MA, Azizi MH. 2016. Nanoencapsulation approach to improve antimicrobial and antioxidant activity of thyme essential oil in beef burgers during refrigerated storage. Food Bioprocess Technol. 9(7):1187–1201.
  • Gharenaghadeh S, Karimi N, Forghani S, Nourazarian M, Gharenaghadeh S, Jabbari V, Khiabani MS, Kafil HS. 2017. Application of Salvia multicaulis essential oil-containing nanoemulsion against food-borne pathogens. Food Biosci. 19:128–133.
  • Gharib R, Greige-Gerges H, Fourmentin S, Charcosset C, Auezova L. 2015. Liposomes incorporating cyclodextrin-drug inclusion complexes: current state of knowledge. Carbohydr Polym. 129:175–186.
  • Gradinaru AC, Aprotosoaie AC, Trifan A, Spac A, Brebu M. 2014. Interactions between cardamom essential oil and conventional antibiotics against Staphylococcus aureus clinical isolates. Farmacia. 62:1214–1222.
  • Grădinaru AC, Trifan A, Şpac A, Brebu M, Miron A, Aprotosoaie AC. 2018. Antibacterial activity of traditional spices against lower respiratory tract pathogens: combinatorial effects of Trachyspermum ammi essential oil with conventional antibiotics. Lett Appl Microbiol. 67(5):449–457.
  • Gyawali R, Ibrahim SA. 2014. Natural products as antimicrobial agents. Food Control. 46:412–429.
  • Hamed SF, Sadek Z, Edris A. 2012. Antioxidant and antimicrobial activities of clove bud essential oil and eugenol nanoparticles in alcohol-free microemulsion. J Oleo Sci. 61(11):641–648.
  • Hammer KA, Carson CF, Riley TV. 2012. Effects of Melaleuca alternifolia (Tea Tree) essential oil and the major monoterpene component terpinen-4-ol on the development of single- and multistep antibiotic resistance and antimicrobial susceptibility. Antimicrob Agents Chemother. 56(2):909–915.
  • Hammer KA, Carson CF. 2011. Antibacterial and antifungal activities of essential oils. In: Thormar H, editor. Lipids and essential oils as antimicrobial agents. Chichester (UK): John Wiley & Sons, Ltd; p. 255–295.
  • Hemaiswarya S, Kruthiventi AK, Doble M. 2008. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine. 15(8):639–652.
  • Hershberg R. 2017. Antibiotic-independent adaptive effects of antibiotic resistance mutations. Trends Genet. 33(8):521–528.
  • Heydari MA, Mobini M, Salehi M. 2017. The synergic activity of eucalyptus leaf oil and silver nanoparticles against some pathogenic bacteria. Arch Pediatr Infect Dis. 5:e61654.
  • Hyldgaard M, Mygind T, Meyer RL. 2012. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol. 3:12.
  • Jamil B, Abbasi R, Abbasi S, Imran M, Khan SU, Ihsan A, Javed S, Bokhari H, Imran M. 2016. Encapsulation of cardamom essential oil in chitosan nano-composites: in-vitro efficacy on antibiotic-resistant bacterial pathogens and cytotoxicity studies. Front Microbiol. 7:1580.
  • Jayakumar R, Nwe N, Tokura S, Tamura H. 2007. Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol. 40(3):175–181.
  • Keawchaoon L, Yoksan R. 2011. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids Surf B Biointerfaces. 84(1):163–171.
  • Kerekes EB, Vidács A, Takó M, Petkovits T, Vágvölgyi C, Horváth G, Balázs VL, Krisch J. 2019. Anti-biofilm effect of selected essential oils and main components on mono- and polymicrobic bacterial cultures. Microorganisms. 7(9):345. DOI:3390/microorganisms7090345.
  • Kfoury M, Auezova L, Greige-Gerges H, Fourmentin S. 2015. Promising applications of cyclodextrins in food: improvement of essential oils retention, controlled release and antiradical activity. Carbohydr Polym. 131:264–272.
  • Kfoury M, Landy D, Ruellan S, Auezova L, Greige-Gerges H, Fourmentin S. 2017. Nootkatone encapsulation by cyclodextrins: effect on water solubility and photostability. Food Chem. 236:41–48.
  • Langeveld WT, Veldhuizen EJ, Burt SA. 2014. Synergy between essential oil components and antibiotics: a review. Crit Rev Microbiol. 40(1):76–94.
  • Letchford K, Burt H. 2007. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm. 65(3):259–269.
  • Li KK, Yin SW, Yang XQ, Tang CH, Wei ZH. 2012. Fabrication and characterization of novel antimicrobial films derived from thymol-loaded zein-sodium caseinate (SC) nanoparticles. J Agric Food Chem. 60(46):11592–11600.
  • Li M, Zhu L, Liu B, Du L, Jia X, Han L, Jin Y. 2016. Tea tree oil nanoemulsions for inhalation therapies of bacterial and fungal pneumonia. Colloids Surf B Biointerfaces. 141:408–416.
  • Liakos IL, Abdellatif MH, Innocenti C, Scarpellini A, Carzino R, Brunetti V, Marras S, Brescia R, Drago F, Pompa PP. 2016. Antimicrobial lemongrass essential oil-copper ferrite cellulose acetate nanocapsules. Molecules. 21(4):520.
  • Liakos IL, Iordache F, Carzino R, Scarpellini A, Oneto M, Bianchini P, Grumezescu AM, Holban AM. 2018. Cellulose acetate – essential oil nanocapsules with antimicrobial activity for biomedical applications. Colloids Surf B Biointerfaces. 172:471–479.
  • Liang R, Xu S, Shoemaker CF, Li Y, Zhong F, Huang Q. 2012. Physical and antimicrobial properties of peppermint oil nanoemulsions. J Agric Food Chem. 60(30):7548–7555.
  • Liolios CC, Gortzi O, Lalas S, Tsaknis J, Chinou I. 2009. Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity. Food Chem. 112(1):77–83.
  • Liu Q-R, Wang W, Qi J, Huang Q, Xiao J. 2019. Oregano essential oil loaded soybean polysaccharide films: effect of Pickering type immobilization on physical and antimicrobial properties. Food Hydrocolloids. 87:165–172.
  • Lorenzi V, Muselli A, Bernardini AF, Berti L, Pagès JM, Amaral L, Bolla JM. 2009. Geraniol restores antibiotic activities against multidrug-resistant isolates from Gram-negative species. Antimicrob Agents Chemother. 53(5):2209–2211.
  • Low WL, Martin C, Hill DJ, Kenward MA. 2013. Antimicrobial efficacy of liposome-encapsulated silver ions and tea tree oil against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. Lett Appl Microbiol. 57(1):33–39.
  • Lu WC, Huang DW, Wang CR, Yeh CH, Tsai JC, Huang YT, Li PH. 2018. Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. J Food Drug Anal. 26(1):82–89.
  • Ma XY, Wang CY, Li YY, Li J, Wan QQ, Chen JH, Tay FR, Niu LN. 2019. Considerations and caveats in combating ESKAPE pathogens against nosocomial infections. Adv Sci (Weinh). 5:19011872.
  • MacGowan PA, on behalf of the BSAC Working Parties on Resistance Surveillance. 2008. Clinical implications of antimicrobial resistance for therapy. J Antimicrob Chemother. 62 (Supplement 2):ii105–ii114.
  • McMahon M, Blair I, Moore J, McDowell D. 2007. Habituation to sub-lethal concentrations of tea tree oil (Melaleuca alternifolia) is associated with reduced susceptibility to antibiotics in human pathogens. J Antimicrob Chemother. 59(1):125–127.
  • McMahon M, Tunney MM, Moore JE, Blair IS, Gilpin DF, McDowell D. 2008. Changes in antibiotic susceptibility in staphylococci habituated to sublethal concentrations of tea tree oil (Melaleuca alternifolia). Lett Appl Microbiol. 47(4):263–268.
  • Moghimi RA, Atousa A, Rafati H, Abtahi HR, Amini S, Feizabadi MM. 2018. Antibacterial and anti-biofilm activity of nanoemulsion of Thymus daenensis oil against multi-drug resistant Acinetobacter baumannii. J Mol Liq. 265:765–780.
  • Monte DFM, Tavares AG, Albuquerque AR, Sampaio FC, Oliveira T, Franco OL, Souza EL, Magnani M. 2014. Tolerance response of multidrug-resistant Salmonella enterica strains to habituation to Origanum vulgare L. essential oil. Front Microbiol. 5:721.
  • Mouton JW, Brown DFJ, Apfalter P, Cantón R, Giske CG, Ivanova M, MacGowan AP, Rodloff A, Soussy C-J, Steinbakk M, et al. 2012. The role of pharmacokinetics/pharmacodynamics in setting clinical MIC breakpoints: the EUCAST approach. Clin Microbiol Infect. 18(3):E37–E45.
  • Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. 2019. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front Microbiol. 10:519.
  • Munita JM, Arias CA. 2016. Mechanisms of antibiotic resistance. Microbiol Spectr. 4(2):VMBF-0016-2015. DOI:10.1128/microbiolspec.VMBF-0016-2015.
  • Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V. 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel). 6(12):1451–1474.
  • Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. 2019. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 37(1):177–192..
  • Perez AP, Perez N, Lozano CMS, Altube MJ, de Farias MA, Portugal RV, Buzzola F, Morilla MJ, Romero EL. 2019. The anti MRSA biofilm activity of Thymus vulgaris essential oil in nanovesicles. Phytomedicine. 57:339–351.
  • Pisoschi AM, Pop A, Cimpeanu C, Turcuş V, Predoi G, Iordache F. 2018. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity – a critical view . Eur J Med Chem. 157:1326–1345.
  • Posadzki P, Alotaibi A, Ernst E. 2012. Adverse effects of aromatherapy: a systematic review of case reports and case series. Int J Risk Saf Med. 24(3):147–161.
  • Prakash A, Baskaran R, Paramasivam N, Vadivel V. 2018b. Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: a review. Food Res Int. 111:509–523.
  • Prakash B, Kujur A, Yadav A, Kumar A, Singh PP, Dubey NK. 2018a. Nanoencapsulation: an efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control. 89:1–11.
  • Prasch S, Bucar F. 2015. Plant derived inhibitors of bacterial efflux pumps: an update. Phytochem Rev. 14(6):961–974.
  • Rai M, Paralikar P, Jogee P, Agarkar G, Ingle AP, Derita M, Zacchino S. 2017. Synergistic antimicrobial potential of essential oils in combination with nanoparticles: emerging trends and future perspectives. Int J Pharm. 519(1–2):67–78.
  • Rasmussen TB, Givskov M. 2006. Quorum sensing inhibitors: a bargain of effects. Microbiology (Reading, Engl). 152 (Pt 4):895–904.
  • Rodenak-Kladniew B, Scioli Montoto S, Sbaraglini ML, Di Ianni M, Ruiz ME, Talevi A, Alvarez VA, Durán N, Castro GR, Islan GA. 2019. Hybrid ofloxacin/eugenol co-loaded solid lipid nanoparticles with enhanced and targetable antimicrobial properties. Int J Pharm. 569:118575.
  • Russo R, Corasaniti MT, Bagetta G, Morrone LA. 2015. Exploitation of cytotoxicity of some essential oils for translation in cancer therapy. Evid Based Complement Alternat Med. 2015:397821.
  • Santos EH, Kamimura JA, Hill LE, Gomes CL. 2015. Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT Food Sci Technol. 60(1):583–592.
  • Sarkic A, Stappen I. 2018. Essential oils and their single compounds in cosmetics – a critical review. Cosmetics. 5(1):11.
  • Saviuc C-M, Drumea V, Olariu L, Chifiriuc M-C, Bezirtzoglou E, Lazăr V. 2015. Essential oils with microbicidal and antibiofilm activity. Curr Pharm Biotechnol. 16(2):137–151.
  • Savoia D. 2012. Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol. 7(8):979–990.
  • Sayed U, Sharma K, Parte S. 2017. Application of essential oils for finishing of textile substrates. J Textile Eng Fashion Technol. 1:42–47.
  • Shah B, Davidson PM, Zhong Q. 2012. Nanocapsular dispersion of thymol for enhanced dispersibility and increased antimicrobial effectiveness against Escherichia coli O157:H7 and Listeria monocytogenes in model food systems. Appl Environ Microbiol. 78:8848–8853.
  • Shah B, Davidson PM, Zhong Q. 2013. Nanodispersed eugenol has improved antimicrobial activity against Escherichia coli O157:H7 and Listeria monocytogenes in bovine milk. Int J Food Microbiol. 161(1):53–59.
  • Sherry M, Charcosset C, Fessi H, Greige-Gerges H. 2013. Essential oils encapsulated in liposomes: a review. J Liposome Res. 23(4):268–275.
  • Sherry E, Reynolds M, Sivananthan S, Mainawalala S, Warnke PH. 2004. Inhalational phytochemicals as possible treatment for pulmonary tuberculosis: two case reports. Am J Infect Control. 32(6):369–370.
  • Song X, Sun Y, Zhang Q, Yang X, Zheng F, He S, Wang Y. 2019. Failure of Staphylococcus aureus to acquire direct and cross tolerance after habituation to cinnamon essential oil. Microorganisms. 7(1):18.
  • Srivastava J, Chandra H, Nautiyal AR, Kalra SJS. 2014. Antimicrobial resistance (AMC) and plant-derived antimicrobials (PDAms) as an alternative drug line to control infections. 3 Biotech. 4(5):451–460.
  • Subramani R, Narayanasamy M, Feussner KD. 2017. Plant-derived antimicrobials to fight against multi-drug-resistant human pathogens. 3 Biotech. 7(3):172.
  • Sun X, Sui S, Ference C, Zhang Y, Sun S, Zhou N, Zhu W, Zhou K. 2014. Antimicrobial and mechanical properties of β-cyclodextrin inclusion with essential oils in chitosan films. J Agric Food Chem. 62(35):8914–8918.
  • Tariq S, Wani S, Rasool W, Shafi K, Bhat MA, Prabhakar A, Shalla AH, Rather MA. 2019. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb Pathog. 134:103580.
  • Tavares AG, Marinho do Monte DF, Dos Reis Albuquerque A, Correia Sampaio F, Magnani M, Pinto de Siqueira Júnior J, Leite de Souza E. 2015. Habituation of enterotoxigenic Staphylococcus aureus to Origanum vulgare L. essential oil does not induce direct-tolerance and cross-tolerance to salts and organic acids. Braz J Microbiol. 46(3):835–840.
  • Vahedikia N, Garavand F, Tajeddin B, Cacciotti I, Jafari SM, Omidi T, Zahedi Z. 2019. Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: physical, mechanical, structural and antimicrobial attributes. Colloids Surf B Biointerfaces. 177:25–32.
  • van Vuuren S, Suliman S, Viljoen A. 2009. The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Lett Appl Microbiol. 48(4):440–446.
  • van Vuuren S, Viljoen A. 2011. Plant-based antimicrobial studies-methods and approaches to study the interaction between natural products. Planta Med. 77(11):1168–1182.
  • Volodymyrivna Kon K, Rai MK. 2012. Plant essential oils and their constituents in coping with multidrug-resistant bacteria. Expert Rev Anti Infect Ther. 10(7):775–790.
  • Volodymyrivna Kon K, Rai MK. 2013. Combining essential oils with antibiotics and other antimicrobial agents to overcome multidrug-resistant bacteria. In: Kon K, Rai M, editors. Fighting multidrug resistance with herbal extracts, essential oils and their components. London: Academic Press; p. 149–164.
  • Wagner H, Ulrich-Merzenich G. 2009. Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine. 16(2–3):97–110.
  • Warnke PH, Sherry E, Russo PAJ, Açil Y, Wiltfang J, Sivananthan S, Sprengel M, Roldàn JC, Schubert S, Bredee JP, et al. 2006. Antibacterial essential oils in malodorous cancer patients: clinical observations in 30 patients. Phytomedicine. 13(7):463–467.
  • Wattanasatcha A, Rengpipat S, Wanichwecharungruang S. 2012. Thymol nanospheres as an effective anti-bacterial agent. Int J Pharm. 434(1–2):360–365.
  • White RL, Burgess DS, Manduru M, Bosso JA. 1996. Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test. Antimicrob Agents Chemother. 40(8):1914–1918.
  • Wolfram E, Trifan A. 2018. Computational aids for assessing bioactivities. In: Sarker SD, Nahar L, editors. Computational phytochemistry. Amsterdam, Oxford, Cambridge: Elsevier; p. 277–300.
  • Wu Y, Luo Y, Wang Q. 2012. Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid–liquid dispersion method. LWT Food Sci Technol. 48(2):283–290.
  • Xu T, Gao CC, Feng X, Huang M, Yang Y, Shen X, Tang X. 2019. Cinnamon and clove essential oils to improve physical, thermal and antimicrobial properties of chitosan-gum Arabic polyelectrolyte complexed films. Carbohydr Polym. 217:116–125.
  • Yap PSX, Krishnan T, Chan KG, Lim SHE. 2015. Antibacterial mode of action of Cinnamomum verum bark essential oil, alone and in combination with piperacillin, against a multi-drug-resistant Escherichia coli strain. J Microbiol Biotechnol. 25(8):1299–1306.
  • Yap PS, Krishnan T, Yiap BC, Hu CP, Chan KG, Lim SH. 2014b. Membrane disruption and anti-quorum sensing effects of synergistic interaction between Lavandula angustifolia (lavender oil) in combination with antibiotic against plasmid-conferred multi-drug-resistant Escherichia coli. J Appl Microbiol. 116(5):1119–1128.
  • Yap PS, Yiap BC, Ping HC, Lim SH. 2014a. Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol J. 8:6–14.
  • Zahi MR, El Hattab M, Liang H, Yuan Q. 2017. Enhancing the antimicrobial activity of d-limonene nanoemulsion with the inclusion of ε-polylysine. Food Chem. 221:18–23.
  • Zhang Y, Niu Y, Luo Y, Ge M, Yang T, Yu L, Wang Q. 2014. Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate-chitosan hydrochloride double layers. Food Chem. 142:269–275.
  • Zhou Y, Sun S, Bei W, Zahi MR, Yuan Q, Liang H. 2018. Preparation and antimicrobial activity of oregano essential oil Pickering emulsion stabilized by cellulose nanocrystals. Int J Biol Macromol. 112:7–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.