1,093
Views
18
CrossRef citations to date
0
Altmetric
Review Articles

Extracellular polysaccharide biosynthesis in Cordyceps

, &
Pages 359-380 | Received 27 Sep 2019, Accepted 17 Jun 2020, Published online: 28 Jul 2020

References

  • Amer AO, Valvano MA. 2002. Conserved aspartic acids are essential for the enzymic activity of the WecA protein initiating the biosynthesis of O-specific lipopolysaccharide and enterobacterial common antigen in Escherichia coli. Microbiology (Reading, Engl). 148(Pt 2):571–582.
  • Ball SG, van de Wal M, Visser R. 1998. Progress in understanding the biosynthesis of amylose. Trends Plant Sci. 3(12):462–467.
  • Bartnicki-Garcia S. 1968. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol. 22(1):87–108.
  • Becker A. 2015. Challenges and perspectives in combinatorial assembly of novel exopolysaccharide biosynthesis pathways. Front Microbiol. 6:687.
  • Bertin C, Pau-Roblot C, Courtois J, Manso-Silván L, Tardy F, Poumarat F, Citti C, Sirand-Pugnet P, Gaurivaud P, Thiaucourt F. 2015. Highly dynamic genomic loci drive the synthesis of two types of capsular or secreted polysaccharides within the Mycoplasma mycoides cluster. Appl Environ Microbiol. 81(2):676–687.
  • Bi S, Jing Y, Zhou Q, Hu X, Zhu J, Guo Z, Song L, Yu R. 2018. Structural elucidation and immunostimulatory activity of a new polysaccharide from Cordyceps militaris. Food Funct. 9(1):279–293.
  • Buleon A, Colonna P, Planchot V, Ball S. 1998. Starch granules: structure and biosynthesis. Int J Biol Macromol. 23(2):85–112.
  • Cao XY, Yang W, Lui JL, Ai HX. 2013. Isolation process and bioactive activity of bioactive polysaccharides from fungal mycelium. AMR. 726–731:401–405.
  • Chatterjee M, Berbezy P, Vyas D, Coates S, Barsby T. 2005. Reduced expression of a protein homologous to glycogenin leads to reduction of starch content in Arabidopsis leaves. Plant Sci. 168(2):501–509.
  • Chen SG, Siu KC, Wang WQ, Liu XX, Wu JY. 2013. Structure and antioxidant activity of a novel poly-N-acetylhexosamine produced by a medicinal fungus. Carbohydr Polym. 94(1):332–338.
  • Chen W, Liu GQ, Yang HD, Wu ZC, Yang HL. 2017a. Production and preliminary characterization of antioxidant polysaccharide by submerged culture of culinary and medicinal fungi Cordyceps militaris CICC14013. Int J Food Eng. 13(1):20160126.
  • Chen WX, Zhang WY, Shen WB, Wang KC. 2010. Effects of the acid polysaccharide fraction isolated from a cultivated Cordyceps sinensis on macrophages in vitro. Cell Immunol. 262(1):69–74.
  • Chen X, Ding ZY, Wang WQ, Siu KC, Wu JY. 2014a. An antioxidative galactomannan-protein complex isolated from fermentation broth of a medicinal fungus Cs-HK1. Carbohydr Polym. 112:469–474.
  • Chen X, Siu KC, Cheung YC, Wu JY. 2014b. Structure and properties of a (1→3)-β-D-glucan from ultrasound-degraded exopolysaccharides of a medicinal fungus. Carbohydr Polym. 106:270–275.
  • Chen X, Wu JY, Gui XT. 2016. Production and characterization of exopolysaccharides in mycelial culture of Cordyceps sinensis fungus Cs-HK1 with different carbon sources. Chin J Chem Eng. 24(1):158–162.
  • Chen Y, Li X-H, Zhou L-Y, Li W, Liu L, Wang D-D, Zhang W-N, Hussain S, Tian X-H, Lu Y-M. 2017b. Structural elucidation of three antioxidative polysaccharides from Tricholoma lobayense. Carbohydr Polym. 157:484–492.
  • Chen YQ, Wang N, Qu LH, Li TH, Zhang WM. 2001. Determination of the anamorph of Cordyceps sinensis inferred from the analysis of the ribosomal DNA internal transcribed spacers and 5.8S rDNA. Biochem Syst Ecol. 29(6):597–607.
  • Cheong KL, Meng LZ, Chen XQ, Wang LY, Wu DT, Zhao J, Li SP. 2016a. Structural elucidation, chain conformation and immuno-modulatory activity of glucogalactomannan from cultured Cordyceps sinensis fungus UM01. J Funct Foods. 25:174–185.
  • Cheong KL, Wang LY, Wu DT, Hu DJ, Zhao J, Li SP. 2016b. Microwave-assisted extraction, chemical structures, and chain conformation of polysaccharides from a novel Cordyceps sinensis fungus UM01. J Food Sci. 81(9):C2167–C2174.
  • Cui JD, Jia SR. 2010. Optimization of medium on exopolysaccharides production in submerged culture of Cordyceps militaris. Food Sci Biotechnol. 19(6):1567–1571.
  • Cuthbertson L, Kimber MS, Whitfield C. 2007. Substrate binding by a bacterial ABC transporter involved in polysaccharide export. Proc Natl Acad Sci U S A. 104(49):19529–19534.
  • Daniels C, Vindurampulle C, Morona R. 1998. Overexpression and topology of the Shigella flexneri O-antigen polymerase (Rfc/Wzy). Mol Microbiol. 28(6):1211–1222.
  • Davis JK. 2012. Combining polysaccharide biosynthesis and transport in a single enzyme: dual-function cell wall glycan synthases. Front Plant Sci. 3:138.
  • De Vuyst L, Degeest B. 1999. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev. 23(2):153–177.
  • De Vuyst L, De Vin F, Vaningelgem F, Degeest B. 2001. Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int Dairy J. 11(9):687–707.
  • Dong CH, Yao YJ. 2005. Nutritional requirements of mycelial growth of Cordyceps sinensis in submerged culture. J Appl Microbiol. 99(3):483–492.
  • Dong CH, Yao YJ. 2008. In vitro evaluation of antioxidant activities of aqueous extracts from natural and cultured mycelia of Cordyceps sinensis. Lebensm Wiss Technol. 41(4):669–677.
  • Duan X, Chi Z, Wang L, Wang X. 2008. Influence of different sugars on pullulan production and activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase involved in pullulan synthesis in Aureobasidium pullulans Y68. Carbohydr Polym. 73(4):587–593.
  • Franklin MJ, Nivens DE, Weadge JT, Howell PL. 2011. Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol. 2:167.
  • Guo H, Yi W, Song JK, Wang PG. 2008. Current understanding on biosynthesis of microbial polysaccharides. Curr Top Med Chem. 8(2):141–151.
  • Guo MM, Guo SP, Yang HJ, Bu N, Dong CH. 2016. Comparison of major bioactive compounds of the caterpillar medicinal mushroom, Cordyceps militaris (Ascomycetes), fruiting bodies cultured on wheat substrate and pupae. Int J Med Mushrooms. 18(4):327–336.
  • Hans CF, Klaus J. 1978. Biosynthesis of the 09 antigen of Escherichia coli. Eur J Biochem. 83(1):47–52.
  • Hartmann E, Konig H. 1991. Nucleotide-activated oligosaccharides are intermediates of the cell wall polysaccharide of Methanosarcina barkeri. Biol Chem Hoppe-Seyler. 372(11):971–974.
  • Hartmann E, Messner P, Allmeier G, Konig H. 1993. Proposed pathway for biosynthesis of the s-layer glycoprotein of Bacillus alvei. J Bacteriol. 175(14):4515–4519.
  • He L, Cheng JW, Wang YB, Li HB, Qian H, Li WQ, Ren XY. 2014. Statistics-based optimization of extracellular polysaccharide production from Hirsutella sinensis using a fermentation process and in vitro immunomodulatory activity. Food Sci Biotechnol. 23(2):451–457.
  • He L, Ji P, Cheng J, Wang Y, Qian H, Li W, Gong X, Wang Z. 2013. Structural characterization and immunostimulatory activity of a novel protein-bound polysaccharide produced by Hirsutella sinensis. Food Chem. 141(2):946–953.
  • Hong YQ, Cunneen MM, Reeves PR. 2012. The Wzx translocases for Salmonella enterica O-antigen processing have unexpected serotype specificity. Mol Microbiol. 84(4):620–630.
  • Hsieh CY, Tsai MJ, Hsu TH, Chang DM, Lo CT. 2005. Medium optimization for polysaccharide production of Cordyceps sinensis. Appl Biochem Biotechnol. 120(2):145–157.
  • Huang SJ, Huang FK, Li YS, Tsai SY. 2017a. The quality improvement of solid-state fermentation with Cordyceps militaris by UVB irradiation. Food Technol Biotechnol. 55(4):445–453.
  • Huang SJ, Huang FK, Purwidyantri A, Rahmandita A, Tsai SY. 2017b. Effect of pulsed light irradiation on bioactive, nonvolatile components and antioxidant properties of caterpillar medicinal mushroom Cordyceps militaris (Ascomycetes). Int J Med Mushrooms. 19(6):547–560.
  • Izquierdo L, Merino S, Regue M, Rodriguez F, Tomas JM. 2003. Synthesis of a Klebsiella pneumoniae O-antigen heteropolysaccharide (O12) requires an ABC 2 transporter. J Bacteriol. 185(5):1634–1641.
  • Ianiri G, Dagotto G, Sun S, Heitman J. 2019. Advancing functional genetics through Agrobacterium-mediated insertional mutagenesis and CRISPR/Cas9 in the commensal and pathogenic Yeast malassezia. Genetics. 212(4):1163–1179.
  • Jing Y, Cui X, Chen Z, Huang L, Song L, Liu T, Lv W, Yu R. 2014. Elucidation and biological activities of a new polysaccharide from cultured Cordyceps militaris. Carbohydr Polym. 102:288–296.
  • Jing Y, Zhu J, Liu T, Bi S, Hu X, Chen Z, Song L, Lv W, Yu R. 2015. Structural characterization and biological activities of a novel polysaccharide from cultured Cordyceps militaris and its sulfated derivative. J Agric Food Chem. 63(13):3464–3471.
  • Jolly L, Stingele F. 2001. Molecular organization and functionality of exopolysaccharide gene clusters in lactic acid bacteria. Int Dairy J. 11(9):733–745.
  • Kalynych S, Morona R, Cygler M. 2014. Progress in understanding the assembly process of bacterial O-antigen. FEMS Microbiol Rev. 38(5):1048–1065.
  • Keenleyside WJ, Perry M, Maclean L, Poppe C, Whitfield C. 1994. A plasmid-encoded rfbO:54 gene cluster is required for biosynthesis of the O:54 antigen in Salmonella enterica serovar Borreze. Mol Microbiol. 11(3):437–448.
  • Keenleyside WJ, Whitfield C. 1995. Lateral transfer of RFB genes: a mobilizable ColE1-type plasmid carries the rfbO:54 (O:54 antigen biosynthesis) gene cluster from Salmonella enterica serovar Borreze. J Bacteriol. 177(18):5247–5253.
  • Keenleyside WJ, Whitfield C. 1996. A novel pathway for O-polysaccharide biosynthesis in Salmonella enterica serovar Borreze. J Biol Chem. 271(45):28581–28592.
  • Kepler RM, Sung G-H, Ban S, Nakagiri A, Chen M-J, Huang B, Li Z, Spatafora JW. 2012. New teleomorph combinations in the entomopathogenic genus Metacordyceps. Mycologia. 104(1):182–197.
  • Kho C-H, Kan S-C, Chang C-Y, Cheng H-Y, Lin C-C, Chiou P-C, Shieh C-J, Liu Y-C. 2016. Analysis of exopolysaccharide production patterns of Cordyceps militaris under various light-emitting diodes. Biochem Eng J. 112:226–232.
  • Kiho T, Ookubo K, Usui S, Ukai S, Hirano K. 1999. Structural features and hypoglycemic activity of a polysaccharide (CS-F10) from the cultured mycelium of Cordyceps sinensis. Biol Pharm Bull. 22(9):966–970.
  • Kim HO, Lim JM, Joo JH, Kim SW, Hwang HJ, Choi JW, Yun JW. 2005. Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea. Bioresour Technol. 96(10):1175–1182.
  • Kim M-D, Seo D-H, Jung J-H, Jung D-H, Joe M-H, Lim S, Lee J-H, Park C-S. 2014. Molecular cloning and expression of amylosucrase from highly radiation-resistant Deinococcus radiopugnans. Food Sci Biotechnol. 23(6):2007–2012.
  • Kim SW, Hwang HJ, Xu CP, Sung JM, Choi JW, Yun JW. 2003. Optimization of submerged culture process for the production of mycelial biomass and exo-polysaccharides by Cordyceps militaris C738. J Appl Microbiol. 94(1):120–126.
  • Kim Y-S, Kim E-K, Natarajan SB, Hwang J-W, Kim S-E, Jeon N-J, Lee J-W, Jeong J-H, Kim H, Park P-J. 2016. Radical scavenging activities of Asterina pectinifera fermented with Cordyceps militaris mycelia. Food Sci Biotechnol. 25(Suppl 1):97–101.
  • Kim YS, Shin WB, Dong X, Kim EK, Nawarathna W, Kim H, Park PJ. 2017. Anti-inflammatory effect of the extract from fermented Asterina pectinifera with Cordyceps militaris mycelia in LPS-induced RAW264.7 macrophages. Food Sci Biotechnol. 26(6):1633–1640.
  • Kopmann HJ, Klaus J. 1975. Biosynthesis of the 09 Antigen of Escherichia coli. Eur J Biochem. 60(2):587–601.
  • Kramer GJ, Nodwell JR. 2017. Chromosome level assembly and secondary metabolite potential of the parasitic fungus Cordyceps militaris. BMC Genomics. 18(1):912.
  • Latge JP. 2007. The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol. 66(2):279–290.
  • Leung PH, Zhao SN, Ho KP, Wu JY. 2009. Chemical properties and antioxidant activity of exopolysaccharides from mycelial culture of Cordyceps sinensis fungus Cs-HK1. Food Chem. 114(4):1251–1256.
  • Levander F, Svensson M, Radstrom P. 2002. Enhanced exopolysaccharide production by metabolic engineering of Streptococcus thermophilus. Appl Environ Microbiol. 68(2):784–790.
  • Li HF, Zhang HS, Yi W, Shao J, Wang PG. 2005. Enzymatic synthesis of complex bacterial carbohydrate polymers. Polym Biocatal Biomater. 900:192–216.
  • Li SP, Li P, Dong TTX, Tsim K. 2001. Anti-oxidation activity of different types of natural Cordyceps sinensis and cultured Cordyceps mycelia. Phytomedicine. 8(3):207–212.
  • Li SP, Su ZR, Dong TTX, Tsim K. 2002. The fruiting body and its caterpillar host of Cordyceps sinensis show close resemblance in main constituents and anti-oxidation activity. Phytomedicine. 9(4):319–324.
  • Li SP, Zhang GH, Zeng Q, Huang ZG, Wang YT, Dong TTX, Tsim K. 2006. Hypoglycemic activity of polysaccharide, with antioxidation, isolated from cultured Cordyceps mycelia. Phytomedicine. 13(6):428–433.
  • Li XY, Wang L, Wang ZY. 2017. Structural characterization and antioxidant activity of polysaccharide from Hohenbuehelia serotina. Int J Biol Macromol. 98:59–66.
  • Li Y, He N, Guan H, Du G, Chen J. 2003. A novel polygalacturonic acid bioflocculant REA-11 produced by Corynebacterium glutamicum: a proposed biosynthetic pathway and experimental confirmation. Appl Microbiol Biotechnol. 63(2):200–206.
  • Li YT, Meng SL, Shi M, Hu XS, Yang YN, Zhang ZY. 2016a. Bioactivity evaluation of crude polysaccharide from rice bran fermented by Preussia aemulans and the changes in its nutritional contents. J Food Biochem. 40(5):664–672.
  • Li ZM, Nie KY, Wang ZJ, Luo DH. 2016b. Quantitative structure activity relationship models for the antioxidant activity of polysaccharides. PLoS One. 11(9):e0163536.
  • Lin QY, Long LK, Wu LL, Zhang FL, Wu SL, Zhang WM, Sun XM. 2017. Evaluation of different agricultural wastes for the production of fruiting bodies and bioactive compounds by medicinal mushroom Cordyceps militaris. J Sci Food Agric. 97(10):3476–3480.
  • Lin S, Liu Z-Q, Baker PJ, Yi M, Wu H, Xu F, Teng Y, Zheng Y-G. 2016. Enhancement of Cordyceps polysaccharide production via biosynthetic pathway analysis in Hirsutella sinensis. Int J Biol Macromol. 92:872–880.
  • Liu F, Zhu ZY, Sun XL, Gao H, Zhang YM. 2017. The preparation of three selenium-containing Cordyceps militaris polysaccharides: characterization and anti-tumor activities. Int J Biol Macromol. 99:196–204.
  • Liu X, Guo Y, Yu Y, Zeng W. 1989. Isolation and identification of the anamorphic state of Cordyceps sinensis. (Berk.) Sacc. J Mycosystema. 8(1):35–40.
  • Liu ZY, Liang ZQ, Liu AY, Yao YJ, Hyde KD, Yu ZN. 2002. Molecular evidence for teleomorph-anamorph connections in Cordyceps based on ITS-5.8S rDNA sequences. Mycol Res. 106(9):1100–1108.
  • Luangsa-Ard JJ, Ridkaew R, Tasanathai K, Thanakitpipattana D, Hywel-Jones N. 2011. Ophiocordyceps halabalaensis: a new species of Ophiocordyceps pathogenic to Camponotus gigas in Hala Bala Wildlife Sanctuary, Southern Thailand. Fungal Biol. 115(7):608–614.
  • Luo XP, Duan YQ, Yang WY, Zhang HH, Li CZ, Zhang JX. 2017. Structural elucidation and immunostimulatory activity of polysaccharide isolated by subcritical water extraction from Cordyceps militaris. Carbohydr Polym. 157:794–802.
  • Meng L, Sun SS, Li R, Shen ZP, Wang P, Jiang XL. 2015. Antioxidant activity of polysaccharides produced by Hirsutella sp and relation with their chemical characteristics. Carbohydr Polym. 117:452–457.
  • Mistou MY, Sutcliffe IC, van Sorge NM. 2016. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria. FEMS Microbiol Rev. 40(4):464–479.
  • Mohammadi T, van Dam V, Sijbrandi R, Vernet T, Zapun A, Bouhss A, Diepeveen-de Bruin M, Nguyen-Distèche M, de Kruijff B, Breukink E. 2011. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. Embo J. 30(8):1425–1432.
  • Moreno RB, Ruthes AC, Baggio CH, Vilaplana F, Komura DL, Iacomini M. 2016. Structure and antinociceptive effects of β-D-glucans from Cookeina tricholoma. Carbohydr Polym. 141:220–228.
  • Naegeli A, Michaud G, Schubert M, Lin C-W, Lizak C, Darbre T, Reymond J-L, Aebi M. 2014. Substrate specificity of cytoplasmic N-*Glycosyltransferase. J Biol Chem. 289(35):24521–24532.
  • Nikoh N, Fukatsu T. 2000. Interkingdom host jumping underground: phylogenetic analysis of entomoparasitic fungi of the genus Cordyceps. Mol Biol Evol. 17(4):629–638.
  • Nurmamat E, Xiao HX, Zhang Y, Jiao ZW. 2018. Effects of different temperatures on the chemical structure and antitumor activities of polysaccharides from Cordyceps militaris. Polymers. 10(4):430.
  • Oh JY, Cho EJ, Nam SH, Choi JW, Yun JW. 2007. Production of polysaccharide-peptide complexes by submerged mycelial culture of an entomopathogenic fungus Cordyceps sphecocephala. Process Biochem. 42(3):352–362.
  • Palfner G, Valenzuela-Munoz V, Gallardo-Escarate C, Parra LE, Becerra J, Silva M. 2012. Cordyceps cuncunae (Ascomycota, Hypocreales), a new pleoanamorphic species from temperate rainforest in southern Chile. Mycol Progress. 11(3):733–739.
  • Pegler DN, Yao YJ, Li Y. 1994. The Chinese ‘Caterpillar Fungus. Mycologist. 8(1):3–5.
  • Perepelov AV, Liu B, Senchenkova SN, Shashkov AS, Shevelev SD, Feng L, Wang L, Knirel YA. 2010. Structure of the O-antigen and characterization of the O-antigen gene cluster of Escherichia coli O108 containing 5,7-Diacetamido-3,5,7,9-tetradeoxy-L-glycero-D-galacto-non-2-ulosonic (8-Epilegionaminic) acid. Biochem Mosc. 75(1):19–24.
  • Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W. 2003. Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol. 133(3):1051–1071.
  • Rees DC, Johnson E, Lewinson O. 2009. ABC transporters: the power to change. Nat Rev Mol Cell Biol. 10(3):218–227.
  • Reeves PR, Hobbs M, Valvano MA, Skurnik M, Whitfield C, Coplin D, Kido N, Klena J, Maskell D, Raetz CR, et al. 1996. Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol. 4(12):495–503.
  • Ren YY, Sun PP, Ji YP, Wang XT, Dai SH, Zhu ZY. 2020. Carboxymethylation and acetylation of the polysaccharide from Cordyceps militaris and their α-glucosidase inhibitory activities. Nat Prod Res. 34(3):369–377.
  • Reyes F, Orellana A. 2008. Golgi transporters: opening the gate to cell wall polysaccharide biosynthesis. Curr Opin Plant Biol. 11(3):244–251.
  • Ruthes AC, Smiderle FR, Iacomini M. 2016. Mushroom heteropolysaccharides: a review on their sources, structure and biological effects. Carbohydr Polym. 136:358–375.
  • Saldias MS, Patel K, Marolda CL, Bittner M, Contreras I, Valvano MA. 2008. Distinct functional domains of the Salmonella enterica WbaP transferase that is involved in the initiation reaction for synthesis of the O antigen subunit. Microbiology (Reading, Engl). 154(Pt 2):440–453.
  • Samuel G, Reeves P. 2003. Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr Res. 338(23):2503–2519.
  • Sanjuan T, Tabima J, Restrepo S, Laessøe T, Spatafora JW, Franco-Molano AE. 2014. Entomopathogens of Amazonian stick insects and locusts are members of the Beauveria species complex (Cordyceps sensu stricto). Mycologia. 106(2):260–275.
  • Sato H, Ban S, Masuya H, Hosoya T. 2010. Reassessment of type specimens of Cordyceps and its allies described by Dr. Yosio Kobayasi, preserved in the National Museum of Nature and Science. Part 2. Cordyceps (Elaphocordyceps) on Elaphomyces. Mycoscience. 51(5):387–390.
  • Seibel J, Jordening HJ, Buchholz K. 2006. Glycosylation with activated sugars using glycosyltransferases and transglycosidases. Biocatal Biotransform. 24(5):311–342.
  • Sharma SK, Gautam N, Atri NS. 2015. Optimized extraction, composition, antioxidant and antimicrobial activities of exo and intracellular polysaccharides from submerged culture of Cordyceps cicadae. BMC Complement Altern Med. 15:446.
  • Shin JS, Chung SH, Lee WS, Lee JY, Kim JL, Lee KT. 2018. Immunostimulatory effects of cordycepin-enriched WIB-801CE from Cordyceps militaris in splenocytes and cyclophosphamide-induced immunosuppressed mice. Phytother Res. 32(1):132–139.
  • Shrestha B, Zhang WM, Zhang YJ, Liu XZ. 2012. The medicinal fungus Cordyceps militaris: research and development. Mycol Progress. 11(3):599–614.
  • Singh DG, Lomako J, Lomako WM, Whelan WJ, Meyer HE, Serwe M, Metzger JW. 1995. β-Glucosylarginine: a new glucose-protein bond in a self-glucosylating protein from sweet corn. FEBS Lett. 376(1–2):61–64.
  • Singh RS, Saini GK, Kennedy JF. 2008. Pullulan: microbial sources, production and applications. Carbohydr Polym. 73(4):515–531.
  • Smith JE, Rowan NJ, Sullivan R. 2002. Medicinal mushrooms: a rapidly developing area of biotechnology for cancer therapy and other bioactivities. Biotechnol Lett. 24(22):1839–1845.
  • Stone R. 2008. Mycology last stand for the body snatcher of the Himalayas? Science. 322(5905):1182.
  • Sun HQ, Zhu ZY, Tang YL, Ren YY, Song QY, Tang Y, Zhang YM. 2018. Structural characterization and antitumor activity of a novel Se-polysaccharide from selenium-enriched Cordyceps gunnii. Food Funct. 9(5):2744–2754.
  • Sun HQ, Zhu ZY, Yang XY, Meng M, Dai LC, Zhang YM. 2017. Preliminary characterization and immunostimulatory activity of a novel functional polysaccharide from Astragalus residue fermented by Paecilomyces sinensis. RSC Adv. 7(38):23875–23881.
  • Sung GH, Hywel-Jones NL, Sung JM, Luangsa-Ard JJ, Shrestha B, Spatafora JW. 2007. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol. 57:5–59.
  • Sung GH, Poinar GO, Spatafora JW. 2008. The oldest fossil evidence of animal parasitism by fungi supports a Cretaceous diversification of fungal-arthropod symbioses. Mol Phylogenet Evol. 49(2):495–502.
  • Sung GH, Spatafora JW, Zare R, Hodge KT, Gams W. 2001. A revision of Verticillium sect. Prostrata. II. Phylogenetic analyses of SSU and LSU nuclear rDNA sequences from anamorphs and teleomorphs of the Clavicipitaceae. Nova Hedwigia. 72(3–4):311–328.
  • Tocilj A, Munger C, Proteau A, Morona R, Purins L, Ajamian E, Wagner J, Papadopoulos M, Van Den Bosch L, Rubinstein JL, et al. 2008. Bacterial polysaccharide co-polymerases share a common framework for control of polymer length. Nat Struct Mol Biol. 15(2):130–138.
  • Tytgat HLP, Lebeer S. 2014. The sweet tooth of bacteria: common themes in bacterial glycoconjugates. Microbiol Mol Biol Rev. 78(3):372–417.
  • Wan RL, Sun J, He T, Hu YD, Zhao Y, Wu Y, Chun Z. 2017. Cloning cDNA and functional characterization of UDP-glucose pyrophosphorylase in Dendrobium officinale. Biologia Plant. 61(1):147–154.
  • Wang CC, Wu JY, Chang CY, Yu ST, Liu YC. 2019. Enhanced exopolysaccharide production by Cordyceps militaris using repeated batch cultivation. J Biosci Bioeng. 127(4):499–505.
  • Wang J, Kan L, Nie S, Chen H, Cui SW, Phillips AO, Phillips GO, Li Y, Xie M. 2015a. A comparison of chemical composition, bioactive components and antioxidant activity of natural and cultured Cordyceps sinensis. Lwt – Food Sci Technol. 63(1):2–7.
  • Wang J, Nie S, Chen S, Phillips AO, Phillips GO, Li Y, Xie M, Cui SW. 2018. Structural characterization of an alpha-1, 6-linked galactomannan from natural Cordyceps sinensis. Food Hydrocolloids. 78:77–91.
  • Wang J, Nie S, Cui SW, Wang Z, Phillips AO, Phillips GO, Li Y, Xie M. 2017a. Structural characterization and immunostimulatory activity of a glucan from natural Cordyceps sinensis. Food Hydrocolloids. 67:139–147.
  • Wang L, Wang G, Zhang J, Zhang G, Jia L, Liu X, Deng P, Fan K. 2011. Extraction optimization and antioxidant activity of intracellular selenium polysaccharide by Cordyceps sinensis SU-02. Carbohydr Polym. 86(4):1745–1750.
  • Wang LQ, Xu N, Zhang JJ, Zhao HJ, Lin L, Jia SH, Jia L. 2015b. Antihyperlipidemic and hepatoprotective activities of residue polysaccharide from Cordyceps militaris SU-12. Carbohydr Polym. 131:355–362.
  • Wang SQ, Wang B, Hua WP, Niu JF, Dang KK, Qiang Y, Wang ZZ. 2017b. De novo assembly and analysis of Polygonatum sibiricum transcriptome and identification of genes involved in polysaccharide biosynthesis. IJMS. 18(9):1950.
  • Wang Y, Zhao H, Miao X, Liu D, Jiang H, Liu P, Wang Y, Yin H. 2013. Structural determination and antitumor activities of a water-soluble polysaccharide from Mortierella hepiali. Fitoterapia. 86:13–18.
  • Wang Y-W, Hong T-W, Tai Y-L, Wang Y-J, Tsai S-H, Lien PTK, Chou T-H, Lai J-Y, Chu R, Ding S-T, et al. 2015c. Evaluation of an epitypified Ophiocordyceps formosana (Cordyceps s.l.) for its pharmacological potential. Evid Based Complement Alternat Med. 2015:189891–189813.
  • Wang ZM, Cheung YC, Leung PH, Wu JY. 2010. Ultrasonic treatment for improved solution properties of a high-molecular weight exopolysaccharide produced by a medicinal fungus. Bioresour Technol. 101(14):5517–5522.
  • Wei CY, Li WQ, Shao SS, He L, Cheng JW, Han SF, Liu Y. 2016. Structure and chain conformation of a neutral intracellular heteropolysaccharide from mycelium of Paecilomyces cicadae. Carbohydr Polym. 136:728–737.
  • Wen TC, Xiao YP, Han YF, Huang SK, Zha LS, Hyde KD, Kang JC. 2017. Multigene phylogeny and morphology reveal that the Chinese medicinal mushroom ‘Cordyceps gunnii’is Metacordyceps neogunnii sp. nov. Phytotaxa. 302(1):27–39.
  • Woodward R, Yi W, Li L, Zhao G, Eguchi H, Sridhar PR, Guo H, Song JK, Motari E, Cai L, et al. 2010. In vitro bacterial polysaccharide biosynthesis: defining the functions of Wzy and Wzz. Nat Chem Biol. 6(6):418–423.
  • Wu CY, Liang ZC, Tseng CY, Hu SH. 2016. Effects of illumination pattern during cultivation of fruiting body and bioactive compound production by the Caterpillar medicinal mushroom, Cordyceps militaris (Ascomycetes). Int J Med Mushrooms. 18(7):589–597.
  • Wu FY, Yan H, Ma XN, Jia JQ, Zhang GZ, Guo XJ, Gui ZZ. 2012. Comparison of the structural characterization and biological activity of acidic polysaccharides from Cordyceps militaris cultured with different media. World J Microbiol Biotechnol. 28(5):2029–2038.
  • Wu MM, Huang HD, Li GQ, Ren Y, Shi Z, Li XY, Dai XH, Gao G, Ren MN, Ma T. 2017a. The evolutionary life cycle of the polysaccharide biosynthetic gene cluster based on the Sphingomonadaceae. Sci Rep. 7:46484.
  • Wu YL, Zhou F, Jiang HT, Wang ZJ, Hua C, Wang RL. 2017b. Protective effect of purified polysaccharides from Cordyceps militaris substrate on acute ethanolic hepatotoxicity in male mice. Nanosci Nanotechnol Lett. 9(10):1453–1462.
  • Xiao DM, Yu S, Xiao JH. 2016. Antioxidant activities of alkali-soluble polysaccharides from medicinal mushroom Cordyceps taii and its chemical characteristics. Biomed Res – India. 27(1):199–206.
  • Xiao JH, Chen DX, Wan WH, Hu XJ, Qi Y, Liang ZQ. 2006. Enhanced simultaneous production of mycelia and intracellular polysaccharide in submerged cultivation of Cordyceps jiangxiensis using desirability functions. Process Biochem. 41(8):1887–1893.
  • Xiao JH, Xiao DM, Xiong Q, Liang ZQ, Zhong JJ. 2010. Nutritional requirements for the hyperproduction of bioactive exopolysaccharides by submerged fermentation of the edible medicinal fungus Cordyceps taii. Biochem Eng J. 49(2):241–249.
  • Xu JW, Ji SL, Li HJ, Zhou JS, Duan YQ, Dang LZ, Mo MH. 2015. Increased polysaccharide production and biosynthetic gene expressions in a submerged culture of Ganoderma lucidum by the overexpression of the homologous α-phosphoglucomutase gene. Bioprocess Biosyst Eng. 38(2):399–405.
  • Xu YF. 2016. Effect of polysaccharide from Cordyceps militaris (Ascomycetes) on physical fatigue induced by forced swimming. Int J Med Mushrooms. 18(12):1083–1092.
  • Yang HD, Wu ZC, He DJ, Zhou HB, Yang HL. 2017. Enzyme-assisted extraction and Pb2+ biosorption of polysaccharide from Cordyceps militaris. J Polym Environ. 25(4):1033–1043.
  • Yang S, Jin L, Ren XD, Lu JH, Meng QF. 2014. Optimization of fermentation process of Cordyceps militaris and antitumor activities of polysaccharides in vitro. J Food Drug Anal. 22(4):468–476.
  • Yang SL, Zhang H. 2016a. Optimization of the fermentation process of Cordyceps sobolifera Se-CEPS and its anti-tumor activity in vivo. J Biol Eng. 10:8.
  • Yang SL, Zhang H. 2016b. Production of intracellular selenium-enriched polysaccharides from thin stillage by Cordyceps sinensis and its bioactivities. Food Nutr Res. 60:30153.
  • Yi W, Liu X, Li Y, Li J, Xia C, Zhou G, Zhang W, Zhao W, Chen X, Wang PG. 2009. Remodeling bacterial polysaccharides by metabolic pathway engineering. Proc Natl Acad Sci U S A. 106(11):4207–4212.
  • Yong T, Zhang M, Chen D, Shuai O, Chen S, Su J, Jiao C, Feng D, Xie Y. 2016. Actions of water extract from Cordyceps militaris in hyperuricemic mice induced by potassium oxonate combined with hypoxanthine. J Ethnopharmacol. 194:403–411.
  • Yu R, Song L, Zhao Y, Bin W, Wang L, Zhang H, Wu Y, Ye W, Yao X. 2004. Isolation and biological properties of polysaccharide CPS-1 from cultured Cordyceps militaris. Fitoterapia. 75(5):465–472.
  • Yu RM, Yang W, Song LY, Yan CY, Zhang Z, Zhao Y. 2007. Structural characterization and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps militaris. Carbohydr Polym. 70(4):430–436.
  • Zeng PJ, Li J. Chen Yl, Zhang Lj. 2019. The structures and biological functions of polysaccharides from traditional Chinese herbs. In: L. Zhang, editors. Glycans and glycosaminoglycans as clinical biomarkers and therapeutics, Pt B. Vol. 163. New York: Elsevier, p. 423–444.
  • Zeng Y, Zhang Y, Zhang LJ, Cui SM, Sun YX. 2015a. Structural characterization and antioxidant and immunomodulation activities of polysaccharides from the spent rice substrate of Cordyceps militaris. Food Sci Biotechnol. 24(5):1591–1596.
  • Zeng YY, Han ZR, Yu GL, Hao JJ, Zhang LJ. 2015b. Polysaccharides purified from wild Cordyceps activate FGF2/FGFR1c signaling. J Ocean Univ China. 14(1):171–177.
  • Zhang Y, Li E, Wang C, Li Y, Liu X. 2012. Ophiocordyceps sinensis, the flagship fungus of China: terminology, life strategy and ecology. Mycology. 3(1):2–10.
  • Zheng H, Qiu X, Roy D, Segura M, Du P, Xu J, Gottschalk M. 2017. Genotyping and investigating capsular polysaccharide synthesis gene loci of non-serotypeable Streptococcus suis isolated from diseased pigs in Canada. Vet Res. 48(1):10.
  • Zhong L, Zhao LY, Yang FM, Yang WJ, Sun Y, Hu QH. 2017. Evaluation of anti-fatigue property of the extruded product of cereal grains mixed with Cordyceps militaris on mice. J Int Soc Sports Nutr. 14:15.
  • Zhou XW, Gong ZH, Su Y, Lin J, Tang KX. 2009. Cordyceps fungi: natural products, pharmacological functions and developmental products. J Pharm Pharmacol. 61(3):279–291.
  • Zhou JS, Bai Y, Dai RJ, Guo XL, Liu ZH, Yuan S. 2018. Improved polysaccharide production by homologous co-overexpression of phosphoglucomutase and UDP glucose pyrophosphorylase genes in the mushroom Coprinopsis cinerea. J Agric Food Chem. 66(18):4702–4709.
  • Zhu JS, Halpern GM, Jones K. 1998. The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis: Part I. J Altern Complement Med. 4(3):289–303.
  • Zhu ZY, Dong FY, Liu XC, Lv Q, Yang Y, Liu F, Chen L, Wang TT, Wang Z, Zhang YM. 2016a. Effects of extraction methods on the yield, chemical structure and anti-tumor activity of polysaccharides from Cordyceps gunnii mycelia. Carbohydr Polym. 140:461–471.
  • Zhu Z-Y, Guo M-Z, Liu F, Luo Y, Chen L, Meng M, Wang X-T, Zhang Y-M. 2016b. Preparation and inhibition on α-d-glucosidase of low molecular weight polysaccharide from Cordyceps militaris. Int J Biol Macromol. 93(Pt A):27–33.
  • Zhu ZY, Li Y, Sun HQ, Chen LJ, Tang YL, Liu XC, Zhang YM. 2016c. Screening of Cordyceps strains and optimization of its solid-state fermentation conditions on bioconversion of astragalus residue. Cellul Chem Technol. 50(2):257–263.
  • Zhu ZY, Liu F, Gao H, Sun HQ, Meng M, Zhang YM. 2016d. Synthesis, characterization and antioxidant activity of selenium polysaccharide from Cordyceps militaris. Int J Biol Macromol. 93(Pt A):1090–1099.
  • Zhu ZY, Liu NA, Si CL, Liu Y, Ding LN, Jing C, Liu AJ, Zhang YM. 2012. Structure and anti-tumor activity of a high-molecular-weight polysaccharide from cultured mycelium of Cordyceps gunnii. Carbohydr Polym. 88(3):1072–1076.
  • Zhu ZY, Liu XC, Tang YL, Dong FY, Sun HQ, Chen L, Zhang YM. 2016e. Effects of cultural medium on the formation and antitumor activity of polysaccharides by Cordyceps gunnii. J Biosci Bioeng. 122(4):494–498.
  • Zhu ZY, Liu Y, Si CL, Yuan J, Lv Q, Li YY, Dong GL, Liu AJ, Zhang YM. 2013. Sulfated modification of the polysaccharide from Cordyceps_gunnii mycelia and its biological activities. Carbohydr Polym. 92(1):872–876.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.