634
Views
11
CrossRef citations to date
0
Altmetric
Review Articles

Dysregulation of cofilin-1 activity—the missing link between herpes simplex virus type-1 infection and Alzheimer’s disease

, , , , , , , , , , , & show all
Pages 381-396 | Received 02 Feb 2020, Accepted 17 Jun 2020, Published online: 25 Jul 2020

References

  • Aizawa H, Wakatsuki S, Ishii A, Moriyama K, Sasaki Y, Ohashi K, Sekine-Aizawa Y, Sehara-Fujisawa A, Mizuno K, Goshima Y, et al. 2001. Phosphorylation of cofilin by LIM-kinase is necessary for semaphorin 3A-induced growth cone collapse. Nat Neurosci. 4(4):367–373.
  • Alhadidi Q, Nash KM, Alaqel S, Sayeed MSB, Shah ZA. 2018. Cofilin knockdown attenuates hemorrhagic brain injury-induced oxidative stress and microglial activation in mice. Neuroscience. 383:33–45.
  • Alhadidi Q, Shah ZA. 2018. Cofilin mediates LPS-induced microglial cell activation and associated neurotoxicity through activation of NF-κB and JAK-STAT pathway. Mol Neurobiol. 55(2):1676–1691.
  • Altmann A, Ng B, Landau S, Jagust W, Greicius M. 2015. Regional brain hypometabolism is unrelated to regional amyloid plaque burden. Brain. 138(12):3734–3746.
  • Association, A.S. 2020. Alzheimer's disease facts and figures. Alzheimers Dement. 16:391–460.
  • Azab W, Osterrieder K. 2017. Initial contact: the first steps in herpesvirus entry. Adv Anat Embryol Cell Biol. 223:1–27.
  • Balin BJ, Gerard HC, Arking EJ, Appelt DM, Branigan PJ, Abrams JT, Whittum-Hudson JA, Hudson AP. 1998. Identification and localization of Chlamydia pneumoniae in the Alzheimer's brain. Med Microbiol Immunol. 187(1):23–42.
  • Balin BJ, Hudson AP. 2018. Herpes viruses and Alzheimer's disease: new evidence in the debate. Lancet Neurol. 17(10):839–841.
  • Bamburg JR, Bernstein BW. 2016. Actin dynamics and cofilin-actin rods in Alzheimer disease. Cytoskeleton (Hoboken)). 73(9):477–497.
  • Barone E, Mosser S, Fraering PC. 2014. Inactivation of brain Cofilin-1 by age, Alzheimer's disease and γ-secretase. Biochim Biophys Acta. 1842(12 Pt A):2500–2509.
  • Bernstein BW, Chen H, Boyle JA, Bamburg JR. 2006. Formation of actin-ADF/cofilin rods transiently retards decline of mitochondrial potential and ATP in stressed neurons. Am J Physiol, Cell Physiol. 291(5):C828–839.
  • Bertram L, Tanzi RE. 2012. The genetics of Alzheimer's disease. In: Teplow DB, editor. Progress in molecular biology and translational science. Elsevier; p. 79–100.
  • Bourgade K, Garneau H, Giroux G, Le Page AY, Bocti C, Dupuis G, Frost EH, Fülöp T. 2015. β-Amyloid peptides display protective activity against the human Alzheimer's disease-associated herpes simplex virus-1. Biogerontology. 16(1):85–98.
  • Bravo-Cordero JJ, Magalhaes MA, Eddy RJ, Hodgson L, Condeelis J. 2013. Functions of cofilin in cell locomotion and invasion. Nat Rev Mol Cell Biol. 14(7):405–415.
  • Carbone I, Lazzarotto T, Ianni M, Porcellini E, Forti P, Masliah E, Gabrielli L, Licastro F. 2014. Herpes virus in Alzheimer's disease: relation to progression of the disease. Neurobiol Aging. 35(1):122–129.
  • Carter C. 2010. APP, APOE, complement receptor 1, clusterin and PICALM and their involvement in the herpes simplex life cycle. Neurosci Lett. 483(2):96–100.
  • Carter C. 2011. Alzheimer's disease: APP, gamma secretase, APOE, CLU, CR1, PICALM, ABCA7, BIN1, CD2AP, CD33, EPHA1, and MS4A2, and their relationships with herpes simplex, C. pneumoniae, other suspect pathogens, and the immune system. Int J Alzheimer’s Dis. 2011:1–34. 2011.
  • Carter CJ. 2013. Susceptibility genes are enriched in those of the herpes simplex virus 1/host interactome in psychiatric and neurological disorders. Pathog Dis. 69(3):240–261.
  • Chang K, Baginski J, Hassan SF, Volin M, Shukla D, Tiwari V. 2016. Filopodia and viruses: an analysis of membrane processes in entry mechanisms. Front Microbiol. 7:300
  • Chen VC, Wu SI, Huang KY, Yang YH, Kuo TY, Liang HY, Huang KL, Gossop M. 2018. Herpes zoster and dementia: a nationwide population-based cohort study. J Clin Psychiatry. 79. DOI:10.4088/JCP.16m11312.
  • Choi JH, Wang W, Park D, Kim SH, Kim KT, Min KT. 2018. IRES-mediated translation of cofilin regulates axonal growth cone extension and turning. Embo J. 37(5):e95266.
  • Cichon J, Sun C, Chen B, Jiang M, Chen XA, Sun Y, Wang Y, Chen G. 2012. Cofilin aggregation blocks intracellular trafficking and induces synaptic loss in hippocampal neurons. J Biol Chem. 287(6):3919–3929.
  • Civitelli L, Marcocci ME, Celestino I, Piacentini R, Garaci E, Grassi C, De Chiara G, Palamara AT. 2015. Herpes simplex virus type 1 infection in neurons leads to production and nuclear localization of APP intracellular domain (AICD): implications for Alzheimer's disease pathogenesis. J Neurovirol. 21(5):480–490.
  • Colonna M, Butovsky O. 2017. Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol. 35:441–468.
  • Cymerys J, Chodkowski M, Słońska A, Krzyżowska M, Bańbura MW. 2019. Disturbances of mitochondrial dynamics in cultured neurons infected with human herpesvirus type 1 and type 2. J Neurovirol. 25(6):765–782.
  • Davis RC, Maloney MT, Minamide LS, Flynn KC, Stonebraker MA, Bamburg JR. 2009. Mapping cofilin-actin rods in stressed hippocampal slices and the role of cdc42 in amyloid-beta-induced rods. J Alzheimers Dis. 18(1):35–50.
  • Davis RC, Marsden IT, Maloney MT, Minamide LS, Podlisny M, Selkoe DJ, Bamburg JR. 2011. Amyloid beta dimers/trimers potently induce cofilin-actin rods that are inhibited by maintaining cofilin-phosphorylation. Mol Neurodegener. 6:10.
  • De Chiara G, Piacentini R, Fabiani M, Mastrodonato A, Marcocci ME, Limongi D, Napoletani G, Protto V, Coluccio P, Celestino I, et al. 2019. Recurrent herpes simplex virus-1 infection induces hallmarks of neurodegeneration and cognitive deficits in mice. PLoS Pathog. 15(3):e1007617.
  • Deng Y, Wei J, Cheng J, Zhong P, Xiong Z, Liu A, Lin L, Chen S, Yan Z. 2016. Partial amelioration of synaptic and cognitive deficits by inhibiting cofilin dephosphorylation in an animal model of Alzheimer's disease. J Alzheimers Dis. 53(4):1419–1432.
  • Duyckaerts C, Delatour B, Potier MC. 2009. Classification and basic pathology of Alzheimer disease. Acta Neuropathol. 118(1):5–36.
  • Edison P, Archer HA, Hinz R, Hammers A, Pavese N, Tai YF, Hotton G, Cutler D, Fox N, Kennedy A, et al. 2007. Amyloid, hypometabolism, and cognition in Alzheimer disease. An [11C]PIB and [18F]FDG PET Study. 68(7):501–508.
  • Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK, Rodriguez AS, Mitchell T, Washicosky KJ, Gyorgy B, Breakefield XO, Tanzi RE, Moir RD. 2018. Alzheimer's disease-associated β-amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron. 99(1):56–63. e53.
  • Ezzat K, Pernemalm M, Pålsson S, Roberts TC, Järver P, Dondalska A, Bestas B, Sobkowiak MJ, Levänen B, Sköld M, et al. 2019. The viral protein corona directs viral pathogenesis and amyloid aggregation. Nat Commun. 10(1):2331.
  • Franco-Bocanegra DK, George B, Lau LC, Holmes C, Nicoll JaR, Boche D. 2019. Microglial motility in Alzheimer's disease and after Aβ42 immunotherapy: a human post-mortem study. Acta Neuropathol Commun. 7(1):174.
  • Fulga TA, Elson-Schwab I, Khurana V, Steinhilb ML, Spires TL, Hyman BT, Feany MB. 2007. Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol. 9(2):139–148.
  • Garvalov BK, Flynn KC, Neukirchen D, Meyn L, Teusch N, Wu X, Brakebusch C, Bamburg JR, Bradke F. 2007. Cdc42 regulates cofilin during the establishment of neuronal polarity. J Neurosci. 27(48):13117–13129.
  • Giacobini E, Gold G. 2013. Alzheimer disease therapy—moving from amyloid-β to tau. Nat Rev Neurol. 9(12):677–686.
  • Gu J, Lee CW, Fan Y, Komlos D, Tang X, Sun C, Yu K, Hartzell HC, Chen G, Bamburg JR, et al. 2010. ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nat Neurosci. 13(10):1208–1215.
  • Guo J, Wang W, Yu D, Wu Y. 2011. Spinoculation triggers dynamic actin and cofilin activity that facilitates HIV-1 infection of transformed and resting CD4 T cells. J Virol. 85(19):9824–9833.
  • Guo T, Noble W, Hanger DP. 2017. Roles of tau protein in health and disease. Acta Neuropathol. 133(5):665–704.
  • Haas JG, Lathe R. 2018. Microbes and Alzheimer's disease: new findings call for a paradigm change. Trends Neurosci. 41(9):570–573.
  • Harris SA, Harris EA. 2018. Molecular mechanisms for herpes simplex virus type 1 pathogenesis in Alzheimer's Disease. Front Aging Neurosci. 10:48.
  • Henderson BW, Gentry EG, Rush T, Troncoso JC, Thambisetty M, Montine TJ, Herskowitz JH. 2016. Rho-associated protein kinase 1 (ROCK1) is increased in Alzheimer's disease and ROCK1 depletion reduces amyloid-β levels in brain. J Neurochem. 138(4):525–531.
  • Heneka MT, Carson MJ, Khoury JE, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, et al. 2015. Neuroinflammation in Alzheimer's disease. Lancet Neurol. 14(4):388–405.
  • Hoffmann L, Rust MB, Culmsee C. 2019. Actin(g) on mitochondria - a role for cofilin1 in neuronal cell death pathways. Biol Chem. 400(9):1089–1097.
  • Itzhaki RF. 2018. Corroboration of a major role for herpes simplex virus type 1 in Alzheimer's disease. Front Aging Neurosci. 10:324.
  • Itzhaki RF, Lathe R. 2018. Herpes viruses and senile dementia: first population evidence for a causal link. J Alzheimers Dis. 64(2):363–366.
  • Itzhaki RF, Lathe R, Balin BJ, Ball MJ, Bearer EL, Braak H, Bullido MJ, Carter C, Clerici M, Cosby SL, et al. 2016. Microbes and Alzheimer’s disease. JAD. 51(4):979–984.
  • Itzhaki RF, Lin WR, Shang D, Wilcock GK, Faragher B, Jamieson GA. 1997. Herpes simplex virus type 1 in brain and risk of Alzheimer's disease. Lancet. 349(9047):241–244.
  • Jamieson GA, Maitland NJ, Wilcock GK, Craske J, Itzhaki RF. 1991. Latent herpes simplex virus type 1 in normal and Alzheimer's disease brains. J Med Virol. 33(4):224–227.
  • Jamieson GA, Maitland NJ, Wilcock GK, Yates CM, Itzhaki RF. 1992. Herpes simplex virus type 1 DNA is present in specific regions of brain from aged people with and without senile dementia of the Alzheimer type. J Pathol. 167(4):365–368.
  • Konakahara S, Ohashi K, Mizuno K, Itoh K, Tsuji T. 2004. CD29 integrin- and LIMK1/cofilin-mediated actin reorganization regulates the migration of haematopoietic progenitor cells underneath bone marrow stromal cells. Genes Cells. 9(4):345–358.
  • Kovaleva TF, Maksimova NS, Zhukov IY, Pershin VI, Mukhina IV, Gainullin MR. 2019. Cofilin: molecular and cellular functions and its role in the functioning of the nervous system. Neurochem J. 13(1):11–19.
  • Kramer T, Enquist L. 2012. Alphaherpesvirus infection disrupts mitochondrial transport in neurons. Cell Host Microbe. 11(5):504–514.
  • Kumar DKV, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, Lefkowitz A, Mccoll G, Goldstein LE, Tanzi RE, et al. 2016. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci Transl Med. 8(340):340ra72–340ra372.
  • Lafaille F, Harschnitz O, Lee YS, Zhang P, Hasek M, Kerner G, Itan Y, Ewaleifoh O, Rapaport F, Carlile T, et al. 2019. Human SNORA31 variations impair cortical neuron-intrinsic immunity to HSV-1 and underlie herpes simplex encephalitis. Nat Med. 25(12):1873–1884.
  • Letenneur L, Peres K, Fleury H, Garrigue I, Barberger-Gateau P, Helmer C, Orgogozo JM, Gauthier S, Dartigues JF. 2008. Seropositivity to herpes simplex virus antibodies and risk of Alzheimer's disease: a population-based cohort study. PLoS One. 3(11):e3637.
  • Li G, Zhou J, Budhraja A, Hu X, Chen Y, Cheng Q, Liu L, Zhou T, Li P, Liu E, et al. 2015. Mitochondrial translocation and interaction of cofilin and Drp1 are required for erucin-induced mitochondrial fission and apoptosis. Oncotarget. 6(3):1834–1849.
  • Li GB, Zhang HW, Fu RQ, Hu XY, Liu L, Li YN, Liu YX, Liu X, Hu JJ, Deng Q, et al. 2018. Mitochondrial fission and mitophagy depend on cofilin-mediated actin depolymerization activity at the mitochondrial fission site. Oncogene. 37(11):1485–1502.
  • Li Puma DD, Piacentini R, Leone L, Gironi K, Marcocci ME, De Chiara G, Palamara AT, Grassi C. 2019. Herpes simplex virus type-1 infection impairs adult hippocampal neurogenesis via amyloid-β protein accumulation. Stem Cells. 37(11):1467–1480.
  • Licastro F, Carbone I, Ianni M, Porcellini E. 2011. Gene signature in Alzheimer's disease and environmental factors: the virus chronicle. J Alzheimers Dis. 27(4):809–817.
  • Lindman KL, Weidung B, Olsson J, Josefsson M, Kok E, Johansson A, Eriksson S, Hallmans G, Elgh F, Lövheim H. 2019. A genetic signature including apolipoprotein Eε4 potentiates the risk of herpes simplex–associated Alzheimer's disease. Alzheimers Dement (N Y). 5:697–704.
  • Little CS, Joyce TA, Hammond CJ, Matta H, Cahn D, Appelt DM, Balin BJ. 2014. Detection of bacterial antigens and Alzheimer's disease-like pathology in the central nervous system of BALB/c mice following intranasal infection with a laboratory isolate of Chlamydia pneumoniae. Front Aging Neurosci. 6:304.
  • Long JM, Holtzman DM. 2019. Alzheimer disease: an update on pathobiology and treatment strategies. Cell. 179(2):312–339.
  • Lovheim H, Gilthorpe J, Adolfsson R, Nilsson LG, Elgh F. 2015a. Reactivated herpes simplex infection increases the risk of Alzheimer's disease. Alzheimers Dement. 11(6):593–599.
  • Lovheim H, Gilthorpe J, Johansson A, Eriksson S, Hallmans G, Elgh F. 2015b. Herpes simplex infection and the risk of Alzheimer's disease: a nested case-control study. Alzheimers Dement. 11(6):587–592.
  • Lovheim H, Norman T, Weidung B, Olsson J, Josefsson M, Adolfsson R, Nyberg L, Elgh F. 2019. Herpes simplex virus, APOEvarepsilon4, and cognitive decline in old age: results from the Betula Cohort Study. JAD. 67(1):211–220.
  • Lovheim H, Olsson J, Weidung B, Johansson A, Eriksson S, Hallmans G, Elgh F. 2018. Interaction between cytomegalovirus and herpes simplex virus type 1 associated with the risk of alzheimer's disease development. JAD. 61(3):939–945.
  • Lurain NS, Hanson BA, Martinson J, Leurgans SE, Landay AL, Bennett DA, Schneider JA. 2013. Virological and immunological characteristics of human cytomegalovirus infection associated with Alzheimer disease. J Infect Dis. 208(4):564–572.
  • Mandelkow E, Von Bergen M, Biernat J, Mandelkow EM. 2007. Structural principles of tau and the paired helical filaments of Alzheimer's disease. Brain Pathol. 17(1):83–90.
  • Marsden IT, Minamide LS, Bamburg JR. 2011. Amyloid-β-induced amyloid-β secretion: a possible feed-forward mechanism in Alzheimer's Disease. J Alzheimers Dis. 24(4):681–691.
  • Martin C, Aguila B, Araya P, Vio K, Valdivia S, Zambrano A, Concha MI, Otth C. 2014. Inflammatory and neurodegeneration markers during asymptomatic HSV-1 reactivation. J Alzheimers Dis. 39(4):849–859.
  • Mathur V, Burai R, Vest RT, Bonanno LN, Lehallier B, Zardeneta ME, Mistry KN, Do D, Marsh SE, Abud EM, et al. 2017. Activation of the STING-Dependent type i interferon response reduces microglial reactivity and neuroinflammation. Neuron. 96(6):1290–1302.
  • Mckhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, et al. 2011. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's Dement. 7(3):263–269.
  • Mendoza-Naranjo A, Contreras-Vallejos E, Henriquez DR, Otth C, Bamburg JR, Maccioni RB, Gonzalez-Billault C. 2012. Fibrillar amyloid-β1-42 modifies actin organization affecting the cofilin phosphorylation state: a role for Rac1/cdc42 effector proteins and the slingshot phosphatase. J Alzheimers Dis. 29(1):63–77.
  • Mendoza-Naranjo A, Gonzalez-Billault C, Maccioni RB. 2007. Abeta1-42 stimulates actin polymerization in hippocampal neurons through Rac1 and Cdc42 Rho GTPases. J Cell Sci. 120(Pt 2):279–288.
  • Minamide LS, Striegl AM, Boyle JA, Meberg PJ, Bamburg JR. 2000. Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nat Cell Biol. 2(9):628–636.
  • Miranda-Saksena M, Denes CE, Diefenbach RJ, Cunningham AL. 2018. Infection and transport of herpes simplex virus type 1 in neurons: role of the cytoskeleton. Viruses. 10(2):92.
  • Mizuno K. 2013. Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation. Cell Signal. 25(2):457–469.
  • Moir RD, Lathe R, Tanzi RE. 2018. The antimicrobial protection hypothesis of Alzheimer's disease. Alzheimers Dement. 14(12):1602–1614.
  • Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, Castellani RJ, Crain BJ, Davies P, Tredici KD, et al. 2012. Correlation of alzheimer disease neuropathologic changes with cognitive status: A review of the literature. J Neuropathol Exp Neurol. 71(5):362–381.
  • Nelson PT, Wang WX. 2010. MiR-107 is reduced in Alzheimer's disease brain neocortex: validation study. JAD. 21(1):75–79.
  • Noguchi J, Hayama T, Watanabe S, Ucar H, Yagishita S, Takahashi N, Kasai H. 2016. State-dependent diffusion of actin-depolymerizing factor/cofilin underlies the enlargement and shrinkage of dendritic spines. Sci Rep. 6:32897.
  • Patel T, Brookes KJ, Turton J, Chaudhury S, Guetta-Baranes T, Guerreiro R, Bras J, Hernandez D, Singleton A, Francis PT, et al. 2018. Whole-exome sequencing of the BDR cohort: evidence to support the role of the PILRA gene in Alzheimer's disease. Neuropathol Appl Neurobiol. 44(5):506–521.
  • Pei Y, Xiang YF, Chen JN, Lu CH, Hao J, Du Q, Lai CC, Qu C, Li S, Ju HQ, et al. 2011. Pentagalloylglucose downregulates cofilin1 and inhibits HSV-1 infection. Antiviral Res. 89(1):98–108.
  • Piacentini R, Civitelli L, Ripoli C, Marcocci ME, De Chiara G, Garaci E, Azzena G, Palamara A, Grassi C. 2011. HSV-1 promotes Ca2+ -mediated APP phosphorylation and Aβ accumulation in rat cortical neurons. Neurobiol Aging. 32(12):e2313–2326–2323.e26. 2323.
  • Piacentini R, Li Puma DD, Ripoli C, Marcocci ME, De Chiara G, Garaci E, Palamara AT, Grassi C. 2015. Herpes simplex virus type-1 infection induces synaptic dysfunction in cultured cortical neurons via GSK-3 activation and intraneuronal amyloid-β protein accumulation. Sci Rep. 5:15444.
  • Popow-Woźniak A, Mazur AJ, Mannherz HG, Malicka-Błaszkiewicz M, Nowak D. 2012. Cofilin overexpression affects actin cytoskeleton organization and migration of human colon adenocarcinoma cells. Histochem Cell Biol. 138(5):725–736.
  • Rahman T, Davies DS, Tannenberg RK, Fok S, Shepherd C, Dodd PR, Cullen KM, Goldsbury C. 2014. Cofilin rods and aggregates concur with tau pathology and the development of Alzheimer's disease. J Alzheimers Dis. 42(4):1443–1460.
  • Rathore N, Ramani SR, Pantua H, Payandeh J, Bhangale T, Wuster A, Kapoor M, Sun Y, Kapadia SB, Gonzalez L, et al. 2018. Paired Immunoglobulin-like Type 2 Receptor Alpha G78R variant alters ligand binding and confers protection to Alzheimer's disease. PLoS Genet. 14(11):e1007427.
  • Readhead B, Haure-Mirande JV, Funk CC, Richards MA, Shannon P, Haroutunian V, Sano M, Liang WS, Beckmann ND, Price ND, et al. 2018. Multiscale analysis of independent Alzheimer's cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron. 99(1):64–82e67.
  • Rehklau K, Hoffmann L, Gurniak CB, Ott M, Witke W, Scorrano L, Culmsee C, Rust MB. 2017. Cofilin1-dependent actin dynamics control DRP1-mediated mitochondrial fission. Cell Death Dis. 8(10):e3063.
  • Rush T, Martinez-Hernandez J, Dollmeyer M, Frandemiche ML, Borel E, Boisseau S, Jacquier-Sarlin M, Buisson A. 2018. Synaptotoxicity in Alzheimer's disease involved a dysregulation of actin cytoskeleton dynamics through cofilin 1 phosphorylation. J Neurosci. 38(48):10349–10361.
  • Rust MB, Gurniak CB, Renner M, Vara H, Morando L, Görlich A, Sassoè-Pognetto M, Banchaabouchi MA, Giustetto M, Triller A, et al. 2010. Learning, AMPA receptor mobility and synaptic plasticity depend on n-cofilin-mediated actin dynamics. Embo J. 29(11):1889–1902.
  • Safieh M, Korczyn AD, Michaelson DM. 2019. ApoE4: an emerging therapeutic target for Alzheimer's disease. BMC Med. 17(1):64.
  • Santana S, Recuero M, Bullido MJ, Valdivieso F, Aldudo J. 2012. Herpes simplex virus type I induces the accumulation of intracellular β-amyloid in autophagic compartments and the inhibition of the non-amyloidogenic pathway in human neuroblastoma cells. Neurobiol Aging. 33(2):e419e433.
  • Scheff SW, Price DA, Schmitt FA, Mufson EJ. 2006. Hippocampal synaptic loss in early Alzheimer's disease and mild cognitive impairment. Neurobiol Aging. 27(10):1372–1384.
  • Shah Z, Alhadidi Q. 2018. Abstract TP105: knocking down cofilin expression prevents hemorrhagic stroke induced microglial activation and inflammation. Stroke. 49(Suppl_1):ATP105–ATP105.
  • Shaw AE, Bamburg JR. 2017. Peptide regulation of cofilin activity in the CNS: A novel therapeutic approach for treatment of multiple neurological disorders. Pharmacol Ther. 175:17–27.
  • Simhadri PK, Malwade R, Vanka R, Nakka VP, Kuppusamy G, Babu PP. 2017. Dysregulation of LIMK-1/cofilin-1 pathway: A possible basis for alteration of neuronal morphology in experimental cerebral malaria. Ann Neurol. 82(3):429–443.
  • Sivadasan R, Hornburg D, Drepper C, Frank N, Jablonka S, Hansel A, Lojewski X, Sterneckert J, Hermann A, Shaw PJ, et al. 2016. C9ORF72 interaction with cofilin modulates actin dynamics in motor neurons. Nat Neurosci. 19(12):1610–1618.
  • Soscia S, Kirby J, Washicosky K, Tucker S, Ingelsson M, Hyman B, Burton M, Goldstein L, Duong S, Tanzi R, et al. 2010. The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One. 5(3):e9505.
  • Spitzer P, Condic M, Herrmann M, Oberstein TJ, Scharin-Mehlmann M, Gilbert DF, Friedrich O, Gromer T, Kornhuber J, Lang R, et al. 2016. Amyloidogenic amyloid-β-peptide variants induce microbial agglutination and exert antimicrobial activity. Sci Rep. 6:32228.
  • Steinberg S, Stefansson H, Jonsson T, Johannsdottir H, Ingason A, Helgason H, Sulem P, Magnusson OT, Gudjonsson SA, Unnsteinsdottir U, et al.; DemGene 2015. Loss-of-function variants in ABCA7 confer risk of Alzheimer's disease. Nat Genet. 47(5):445–447.
  • Swanger SA, Mattheyses AL, Gentry EG, Herskowitz JH. 2015. ROCK1 and ROCK2 inhibition alters dendritic spine morphology in hippocampal neurons. Cell Logist. 5(4):e1133266.
  • Tanzi RE. 2012. The genetics of Alzheimer disease. Cold Spring Harbor Perspectives in Medicine. 2(10):a006296–a006296.
  • Tedeschi A, Dupraz S, Curcio M, Laskowski CJ, Schaffran B, Flynn KC, Santos TE, Stern S, Hilton BJ, Larson MJE, et al. 2019. ADF/cofilin-mediated actin turnover promotes axon regeneration in the adult CNS. Neuron. 103(6):1073–1085.e6.
  • Tsai MC, Cheng WL, Sheu JJ, Huang CC, Shia BC, Kao LT, Lin HC. 2017. Increased risk of dementia following herpes zoster ophthalmicus. PLoS One. 12(11):e0188490.
  • Tzeng NS, Chung CH, Lin FH, Chiang CP, Yeh CB, Huang SY, Lu RB, Chang HA, Kao YC, Yeh HW, et al. 2018. Anti-herpetic medications and reduced risk of dementia in patients with herpes simplex virus infections—a nationwide population-based cohort study in Taiwan. Neurotherapeutics. 15(2):417–413.
  • Vermunt L, Sikkes SaM, Van Den Hout A, Handels R, Bos I, Van Der Flier WM, Kern S, Ousset P-J, Maruff P, Skoog I, et al. 2019. Duration of preclinical, prodromal, and dementia stages of Alzheimer's disease in relation to age, sex, and APOE genotype. Alzheimer's Dement. 15:888–898.
  • Walsh KP, Minamide LS, Kane SJ, Shaw AE, Brown DR, Pulford B, Zabel MD, Lambeth JD, Kuhn TB, Bamburg JR. 2014. Amyloid-β and proinflammatory cytokines utilize a prion protein-dependent pathway to activate NADPH oxidase and induce cofilin-actin rods in hippocampal neurons. PLoS One. 9(4):e95995
  • Wang W-X, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT. 2008. The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci. 28(5):1213–1223.
  • Wang Y, Jia J, Wang Y, Li F, Song X, Qin S, Wang Z, Kitazato K, Wang Y. 2019. Roles of HSV-1 infection-induced microglial immune responses in CNS diseases: friends or foes?. Crit Rev Microbiol. 45:581–594.
  • Wang Y, Jin F, Wang R, Li F, Wu Y, Kitazato K, Wang Y. 2017. HSP90: a promising broad-spectrum antiviral drug target. Arch Virol. 162(11):3269–3282.
  • Wang Y, Wang Z, Wang Y, Li F, Jia J, Song X, Qin S, Wang R, Jin F, Kitazato K, et al. 2018. The gut-microglia connection: implications for central nervous system diseases. Front Immunol. 9:2325.
  • Whiteman IT, Gervasio OL, Cullen KM, Guillemin GJ, Jeong EV, Witting PK, Antao ST, Minamide LS, Bamburg JR, Goldsbury C. 2009. Activated actin-depolymerizing factor/cofilin sequesters phosphorylated microtubule-associated protein during the assembly of alzheimer-like neuritic cytoskeletal striations. J Neurosci. 29(41):12994–13005.
  • Woo JA, Boggess T, Uhlar C, Wang X, Khan H, Cappos G, Joly-Amado A, De Narvaez E, Majid S, Minamide LS, et al. 2015a. RanBP9 at the intersection between cofilin and Aβ pathologies: rescue of neurodegenerative changes by RanBP9 reduction. Cell Death Dis. 6:1676.
  • Woo JA, Liu T, Fang CC, Cazzaro S, Kee T, Lepochat P, Yrigoin K, Penn C, Zhao X, Wang X, et al. 2019. Activated cofilin exacerbates tau pathology by impairing tau-mediated microtubule dynamics. Commun Biol. 2:112.
  • Woo JA, Zhao X, Khan H, Penn C, Wang X, Joly-Amado A, Weeber E, Morgan D, Kang DE. 2015b. Slingshot-Cofilin activation mediates mitochondrial and synaptic dysfunction via Abeta ligation to beta1-integrin conformers. Cell Death Differ. 22(6):921–934.
  • Wozniak MA, Frost AL, Itzhaki RF. 2009. Alzheimer's disease-specific tau phosphorylation is induced by herpes simplex virus type 1. J Alzheimers Dis. 16(2):341–350.
  • Wozniak MA, Itzhaki RF, Shipley SJ, Dobson CB. 2007a. Herpes simplex virus infection causes cellular beta-amyloid accumulation and secretase upregulation. Neurosci Lett. 429(2-3):95–100.
  • Wozniak MA, Itzhaki RF, Shipley SJ, Dobson CB. 2007b. Herpes simplex virus infection causes cellular beta-amyloid accumulation and secretase upregulation . Neurosci Lett. 429(2-3):95–100.
  • Wozniak MA, Mee AP, Itzhaki RF. 2009. Herpes simplex virus type 1 DNA is located within Alzheimer's disease amyloid plaques. J Pathol. 217(1):131–138.
  • Wozniak MA, Shipley SJ, Combrinck M, Wilcock GK, Itzhaki RF. 2005. Productive herpes simplex virus in brain of elderly normal subjects and Alzheimer's disease patients. J Med Virol. 75(2):300–306.
  • Xiang Y, Zheng K, Zhong M, Chen J, Wang X, Wang Q, Wang S, Ren Z, Fan J, Wang Y. 2014. Ubiquitin-proteasome-dependent slingshot 1 downregulation in neuronal cells inactivates cofilin to facilitate HSV-1 replication. Virology. 449:88–95.
  • Xiang Y, Zheng K, Ju H, Wang S, Pei Y, Ding W, Chen Z, Wang Q, Qiu X, Zhong M, et al. 2012. Cofilin 1-mediated biphasic F-actin dynamics of neuronal cells affect herpes simplex virus 1 infection and replication. J Virol. 86(16):8440–8451.
  • Yao J, Hennessey T, Flynt A, Lai E, Beal MF, Lin MT. 2010. MicroRNA-related cofilin abnormality in Alzheimer's disease. PLoS One. 5(12):e15546.
  • Zhao L, Ma QL, Calon F, Harris-White ME, Yang F, Lim GP, Morihara T, Ubeda OJ, Ambegaokar S, Hansen JE, et al. 2006. Role of p21-activated kinase pathway defects in the cognitive deficits of Alzheimer disease. Nat Neurosci. 9(2):234–242.
  • Zheng K, Kitazato K, Wang Y, He Z. 2016. Pathogenic microbes manipulate cofilin activity to subvert actin cytoskeleton. Crit Rev Microbiol. 42(5):677–695.
  • Zheng K, Xiang Y, Wang Q, Jin F, Chen M, Ma K, Ren Z, Wang Y. 2014a. Calcium-signal facilitates herpes simplex virus type 1 nuclear transport through slingshot 1 and calpain-1 activation. Virus Res. 188:32–37.
  • Zheng K, Xiang YF, Wang X, Wang QL, Zhong MG, Wang SX, Wang XY, Fan JL, Kitazato K, Wang YF. 2014b. Epidermal growth factor receptor-PI3K signaling controls cofilin activity to facilitate herpes simplex virus 1 entry into neuronal cells. Mbio. 5(1):e00958–e00913.
  • Zhou Q, Homma KJ, Poo MM. 2004. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron. 44(5):749–757.
  • Zhou Z, Meng Y, Asrar S, Todorovski Z, Jia Z. 2009. A critical role of Rho-kinase ROCK2 in the regulation of spine and synaptic function. Neuropharmacology. 56(1):81–89.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.