1,194
Views
17
CrossRef citations to date
0
Altmetric
Review Articles

Resistance to peptidoglycan-degrading enzymes

ORCID Icon, ORCID Icon, ORCID Icon, , &
Pages 703-726 | Received 05 Jun 2020, Accepted 10 Sep 2020, Published online: 26 Sep 2020

References

  • Abdelkader K, Gerstmans H, Saafan A, Dishisha T, Briers Y. 2019. The preclinical and clinical progress of bacteriophages and their lytic enzymes: the parts are easier than the whole. Viruses. 11(2):96.
  • Akesson M, Dufour M, Sloan GL, Simmonds RS. 2007. Targeting of streptococci by zoocin A. FEMS Microbiol Lett. 270(1):155–161.
  • Alcorlo M, Martínez-Caballero S, Molina R, Hermoso JA. 2017. Carbohydrate recognition and lysis by bacterial peptidoglycan hydrolases. Curr Opin Struct Biol. 44:87–100.
  • Arai R, Fukui S, Kobayashi N, Sekiguchi J. 2012. Solution structure of IseA, an inhibitor protein of DL-endopeptidases from Bacillus subtilis, reveals a novel fold with a characteristic inhibitory loop. J Biol Chem. 287(53):44736–44748.
  • Bao Y, Zhang H, Huang X, Ma J, Logue CM, Nolan LK, Li G. 2018. O-specific polysaccharide confers lysozyme resistance to extraintestinal pathogenic Escherichia coli. Virulence. 9(1):666–680.
  • Bardelang P, Vankemmelbeke M, Zhang Y, Jarvis H, Antoniadou E, Rochette S, Thomas NR, Penfold CN, James R. 2009. Design of a polypeptide FRET substrate that facilitates study of the antimicrobial protease lysostaphin. Biochem J. 418(3):615–624.
  • Becker SC, Dong S, Baker JR, Foster-Frey J, Pritchard DG, Donovan DM. 2009. LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells. FEMS Microbiol Lett. 294(1):52–60.
  • Becker SC, Roach DR, Chauhan VS, Shen Y, Foster-Frey J, Powell AM, Bauchan G, Lease RA, Mohammadi H, Harty WJ, et al. 2016. Triple-acting lytic enzyme treatment of drug-resistant and intracellular Staphylococcus aureus. Sci Rep. 6:25063
  • Benachour A, Ladjouzi R, Le Jeune A, Hébert L, Thorpe S, Courtin P, Chapot-Chartier M-P, Prajsnar TK, Foster SJ, Mesnage S, et al. 2012. The lysozyme-induced peptidoglycan N-acetylglucosamine deacetylase PgdA (EF1843) is required for Enterococcus faecalis virulence. J Bacteriol. 194(22):6066–6073.
  • Benz J, Sendlmeier C, Barends TRM, Meinhart A. 2012. Structural insights into the effector - immunity system Tse1/Tsi1 from Pseudomonas aeruginosa. PLoS One. 7(7):e40453.
  • Bera A, Biswas R, Herbert S, Götz F. 2006. The presence of peptidoglycan O-acetyltransferase in various staphylococcal species correlates with lysozyme resistance and pathogenicity. Infect Immun. 74(8):4598–4604.
  • Bernard E, Rolain T, Courtin P, Guillot A, Langella P, Hols P, Chapot-Chartier MP. 2011. Characterization of O-acetylation of N-acetylglucosamine: a novel structural variation of bacterial peptidoglycan. J Biol Chem. 286(27):23950–23958.
  • Beukes M, Bierbaum G, Sahl HG, Hastings JW. 2000. Purification and partial characterization of a murein hydrolase, millericin B, produced by Streptococcus milleri NMSCC 061. Appl Environ Microbiol. 66(1):23–28.
  • Beukes M, Hastings JW. 2001. Self-protection against cell wall hydrolysis in Streptococcus milleri NMSCC 061 and analysis of the millericin B Operon. Appl Environ Microbiol. 67(9):3888–3896.
  • Biswas R, Martinez RE, Göhring N, Schlag M, Josten M, Xia G, Hegler F, Gekeler C, Gleske A-K, Götz F, et al. 2012. Proton-binding capacity of Staphylococcus aureus wall teichoic acid and its role in controlling autolysin activity. PLoS One. 7(7):e41415.
  • Bochtler M, Odintsov SG, Marcyjaniak M, Sabala I. 2004. Similar active sites in lysostaphins and D-Ala-D-Ala metallopeptidases. Protein Sci. 13(4):854–861.
  • Bonis M, Williams A, Guadagnini S, Werts C, Boneca IG. 2012. The effect of bulgecin A on peptidoglycan metabolism and physiology of Helicobacter pylori. Microb Drug Resist. 18(3):230–239.
  • Bonnet J, Durmort C, Jacq M, Mortier-Barrière I, Campo N, VanNieuwenhze MS, Brun YV, Arthaud C, Gallet B, Moriscot C, et al. 2017. Peptidoglycan O-acetylation is functionally related to cell wall biosynthesis and cell division in Streptococcus pneumoniae. Mol Microbiol. 106(5):832–846.
  • Briers Y, Lavigne R. 2015. Breaking barriers: expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria. Future Microbiol. 10(3):377–390.
  • Briers Y, Volckaert G, Cornelissen A, Lagaert S, Michiels CW, Hertveldt K, Lavigne R. 2007. Muralytic activity and modular structure of the endolysins of Pseudomonas Aeruginosa bacteriophages phiKZ and EL. Mol Microbiol. 65(5):1334–1344.
  • Briers Y, Walmagh M, Grymonprez B, Biebl M, Pirnay J-P, Defraine V, Michiels J, Cenens W, Aertsen A, Miller S, et al. 2014. Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 58(7):3774–3784.
  • Broendum SS, Buckle AM, McGowan S. 2018. Catalytic diversity and cell wall binding repeats in the phage-encoded endolysins. Mol Microbiol. 110(6):879–896.
  • Brown S, Santa Maria JP, Walker S. 2013. Wall Teichoic acids of gram-positive bacteria. Annu Rev Microbiol. 67:313–336.
  • Brumfitt W. 1959. The mechanism of development of resistance to lysozyme by some gram-positive bacteria and its results. Br J Exp Pathol. 40:441–451.
  • Bustamante N, Iglesias-Bexiga M, Bernardo-García N, Silva-Martín N, García G, Campanero-Rhodes MA, García E, Usón I, Buey RM, García P, et al. 2017. Deciphering how Cpl-7 cell wall-binding repeats recognize the bacterial peptidoglycan. Sci Rep. 7(1):16494.
  • Callewaert L, Herreweghe JM, Van Vanderkelen L, Leysen S, Voet A, Michiels CW. 2012. Guards of the great wall: bacterial lysozyme inhibitors. Trends Microbiol. 20(10):501–510.
  • Callewaert L, Masschalck B, Deckers D, Nakimbugwe D, Atanassova M, Aertsen A, Michiels CW. 2005. Purification of ivy, a lysozyme inhibitor from Escherichia Coli, and characterisation of its specificity for various lysozymes. Enzyme Microb Technol. 37(2):205–211.
  • Callewaert L, Vanoirbeek KGA, Lurquin I, Michiels CW, Aertsen A. 2009. The Rcs two-component system regulates expression of lysozyme inhibitors and is induced by exposure to lysozyme. J Bacteriol. 191(6):1979–1981.
  • Chan BK, Abedon ST. 2015. Bacteriophages and their enzymes in biofilm control. Curr Pharm Des. 21(1):85–99.
  • Cheng Q, Nelson D, Zhu S, Fischetti VA. 2005. Removal of group B streptococci colonizing the vagina and oropharynx of mice with a bacteriophage lytic enzyme. Antimicrob Agents Chemother. 49(1):111–117.
  • Climo MW, Ehlert K, Archer GL. 2001. Mechanism and suppression of lysostaphin resistance in oxacillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 45(5):1431–1437.
  • Coulthurst S. 2019. The Type VI secretion system: a versatile bacterial weapon. Microbiology (Reading)). 165(5):503–515.
  • Davis KM, Akinbi HT, Standish AJ, Weiser JN. 2008. Resistance to mucosal lysozyme compensates for the fitness deficit of peptidoglycan modifications by Streptococcus pneumoniae. PLoS Pathog. 4(12):e1000241.
  • Davis KM, Weiser JN. 2011. Modifications to the peptidoglycan backbone help bacteria to establish infection. Infect Immun. 79(2):562–570.
  • Defraine V, Schuermans J, Grymonprez B, Govers SK, Aertsen A, Fauvart M, Michiels J, Lavigne R, Briers Y. 2016. Efficacy of artilysin Art-175 against resistant and persistent acinetobacter baumannii. Antimicrob Agents Chemother. 60(6):3480–3488.
  • DeHart HP, Heath HE, Heath LS, LeBlanc PA, Sloan GL. 1995. The lysostaphin endopeptidase resistance gene (epr) specifies modification of peptidoglycan cross bridges in Staphylococcus simulans and Staphylococcus aureus. Appl Environ Microbiol. 61(4):1475–1479.
  • Díez-Martínez R, de Paz HD, de Paz H, Bustamante N, García E, Menéndez M, García P. 2013. Improving the lethal effect of Cpl-7, a pneumococcal phage lysozyme with broad bactericidal activity, by inverting the net charge of its cell wall-binding module. Antimicrob Agents Chemother. 57(11):5355–5365.
  • Dik DA, Madukoma CS, Tomoshige S, Kim C, Lastochkin E, Boggess WC, Fisher JF, Shrout JD, Mobashery S. 2019. Slt, MltD, and MltG of Pseudomonas aeruginosa as targets of bulgecin A in potentiation of β-lactam antibiotics. ACS Chem Biol. 14(2):296–303.
  • Donovan DM, Dong S, Garrett W, Rousseau GM, Moineau S, Pritchard DG. 2006. Peptidoglycan hydrolase fusions maintain their parental specificities. Appl Environ Microbiol. 72(4):2988–2996.
  • Ehlert K, Tschierske M, Mori C, Schröder W, Berger-Bächi B. 2000. Site-specific serine incorporation by Lif and Epr into positions 3 and 5 of the staphylococcal peptidoglycan interpeptide bridge. J Bacteriol. 182(9):2635–2638.
  • Emirian A, Fromentin S, Eckert C, Chau F, Dubost L, Delepierre M, Gutmann L, Arthur M, Mesnage S. 2009. Impact of peptidoglycan O-acetylation on autolytic activities of the Enterococcus faecalis N-acetylglucosaminidase AtlA and N-acetylmuramidase AtlB. FEBS Lett. 583(18):3033–3038.
  • Espaillat A, Forsmo O, El Biari K, Björk R, Lemaitre B, Trygg J, Cañada FJ, de Pedro MA, Cava F. 2016. Chemometric analysis of bacterial peptidoglycan reveals atypical modifications that empower the cell wall against predatory enzymes and fly innate immunity. J Am Chem Soc. 138(29):9193–9204.
  • Fernández L, González S, Campelo AB, Martínez B, Rodríguez A, García P. 2017. Downregulation of autolysin-encoding genes by phage-derived lytic proteins inhibits biofilm formation in Staphylococcus aureus. Antimicrob Agents Chemother. 61(5):1–13.
  • Figueiredo TA, Ludovice AM, Sobral RG. 2014. Contribution of peptidoglycan amidation to beta-lactam and lysozyme resistance in different genetic lineages of Staphylococcus aureus. Microb Drug Resist. 20(3):238–249.
  • Figueiredo TA, Sobral RG, Ludovice AM, de Almeida JMF, Bui NK, Vollmer W, de Lencastre H, Tomasz A. 2012. Identification of genetic determinants and enzymes involved with the amidation of glutamic acid residues in the peptidoglycan of Staphylococcus aureus. PLoS Pathog. 8(1):e1002508.
  • Fischer W, Rösel P, Koch HU. 1981. Effect of alanine ester substitution and other structural features of lipoteichoic acids on their inhibitory activity against autolysins of Staphylococcus aureus. J Bacteriol. 146(2):467–475.
  • Fischetti VA. 2005. Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol. 13(10):491–496.
  • Frankel MB, Schneewind O. 2012. Determinants of murein hydrolase targeting to cross-wall of Staphylococcus aureus peptidoglycan. J Biol Chem. 287(13):10460–10471.
  • Frankel MB, Wojcik BM, Dedent AC, Missiakas DM, Schneewind O. 2010. ABI domain-containing proteins contribute to surface protein display and cell division in Staphylococcus aureus. Mol Microbiol. 78(1):238–252.
  • Gargis SR, Gargis AS, Heath HE, Heath LS, LeBlanc PA, Senn MM, Berger-Bächi B, Simmonds RS, Sloan GL. 2009a. Zif, the zoocin A immunity factor, is a FemABX-like immunity protein with a novel mode of action. Appl Environ Microbiol. 75(19):6205–6210.
  • Gargis SR, Heath HE, Heath LS, Leblanc PA, Simmonds RS, Abbott BD, Timkovich R, Sloan GL. 2009b. Use of 4-sulfophenyl isothiocyanate labeling and mass spectrometry to determine the site of action of the streptococcolytic peptidoglycan hydrolase zoocin A. Appl Environ Microbiol. 75(1):72–77.
  • Gargis SR, Heath HE, LeBlanc PA, Dekker L, Simmonds RS, Sloan GL. 2010. Inhibition of the activity of both domains of lysostaphin through peptidoglycan modification by the lysostaphin immunity protein. Appl Environ Microbiol. 76(20):6944–6946.
  • Gerstmans H, Criel B, Briers Y. 2018. Synthetic biology of modular endolysins. Biotechnol Adv. 36(3):624–640.
  • Gerstmans H, Rodriguez-Rubio L, Lavigne R, Briers Y. 2016. From endolysins to Artilysin®s: novel enzyme-based approaches to kill drug-resistant bacteria . Biochem Soc Trans. 44(1):123–128.
  • Gilmer DB, Schmitz JE, Euler CW, Fischetti VA. 2013. Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 57(6):2743–2750.
  • Gilmer DB, Schmitz JE, Thandar M, Euler CW, Fischetti VA. 2017. The phage lysin PlySs2 decolonizes Streptococcus Suis from murine intranasal mucosa. PLoS ONE. 12(1):e0169180.
  • Giudice MG, Del Romani AM, Ugalde JE, Czibener C. 2019. PhiA, a peptidoglycan hydrolase inhibitor of brucella involved in the virulence process. Infect Immun. 87(8):1–10.
  • Gondil VS, Harjai K, Chhibber S. 2020. Endolysins as emerging alternative therapeutic agents to counter drug-resistant infections. Int J Antimicrob Agents. 55(2):105844.
  • Gonzalez-Delgado LS, Walters-Morgan H, Salamaga B, Robertson AJ, Hounslow AM, Jagielska E, Sabała I, Williamson MP, Lovering AL, Mesnage S. 2020. Two-site recognition of Staphylococcus aureus peptidoglycan by lysostaphin SH3b. Nat Chem Biol. 16(1):24–30.
  • Gründling A, Missiakas DM, Schneewind O. 2006. Staphylococcus aureus mutants with increased lysostaphin resistance. J Bacteriol. 188(17):6286–6297.
  • Guariglia-Oropeza V, Helmann JD. 2011. Bacillus subtilis σ(V) confers lysozyme resistance by activation of two cell wall modification pathways, peptidoglycan O-acetylation and D-alanylation of teichoic acids. J Bacteriol. 193(22):6223–6232.
  • Hastie JL, Williams KB, Bohr LL, Houtman JC, Gakhar L, Ellermeier CD. 2016. The anti-sigma factor RsiV is a bacterial receptor for lysozyme: co-crystal structure determination and demonstration that binding of lysozyme to RsiV is required for σV activation. PLoS Genet. 12(9):e1006287.
  • Hébert L, Courtin P, Torelli R, Sanguinetti M, Chapot-Chartier MP, Auffray Y, Benachour A. 2007. Enterococcus faecalis constitutes an unusual bacterial model in lysozyme resistance. Infect Immun. 75(11):5390–5398.
  • Heidrich C, Ursinus A, Berger J, Schwarz H, Höltje JV. 2002. Effects of multiple deletions of murein hydrolases on viability, septum cleavage, and sensitivity to large toxic molecules in Escherichia coli. J Bacteriol. 184(22):6093–6099.
  • Hilderman RH, Riggs HG. 1973. Edman degradation on in vitro biosynthesized peptidoglycans from Staphylococcus epidermidis. J Bacteriol. 115(2):476–479.
  • Ho TD, Ellermeier CD. 2019. Activation of the extracytoplasmic function σ factor σV by lysozyme. Mol Microbiol. 112(2):410–419.
  • Horsman ME, Marous DR, Li R, Oliver RA, Byun B, Emrich SJ, Boggess B, Townsend CA, Mobashery S. 2017. Whole-genome shotgun sequencing of two β-proteobacterial species in search of the bulgecin biosynthetic cluster. ACS Chem Biol. 12(10):2552–2557.
  • Humbert MV, Awanye AM, Lian L-Y, Derrick JP, Christodoulides M. 2017. Structure of the neisseria Adhesin Complex Protein (ACP) and its role as a novel lysozyme inhibitor. PLoS Pathog. 13(6):e1006448.
  • Imada A, Kintaka K, Nakao M, Shinagawa S. 1982. Bulgecin, a bacterial metabolite which in concert with beta-lactam antibiotics causes bulge formation . J Antibiot. 35(10):1400–1403.
  • Jagielska E, Chojnacka O, Sabala I. 2016. LytM fusion with SH3b-Like domain expands its activity to physiological conditions. Microb Drug Resist. 22:mdr.2016.0053.
  • Jendrzejewska N, Karwowska E. 2018. The influence of antibiotics on wastewater treatment processes and the development of antibiotic-resistant bacteria. Water Sci Technol. 77(9–10):2320–2326.
  • Juhas M. 2015. Horizontal gene transfer in human pathogens. Crit Rev Microbiol. 41(1):101–108.
  • Jun SY, Jung GM, Son JS, Yoon SJ, Choi YJ, Kang SH. 2011. Comparison of the antibacterial properties of phage endolysins SAL-1 and LysK. Antimicrob Agents Chemother. 55(4):1764–1767.
  • Karlsen S, Hough E. 1996. Structure of a complex between bulgecin, a bacterial metabolite, and lysozyme from the rainbow trout. Acta Crystallogr D Biol Crystallogr. 52(Pt 1):115–123.
  • Karlsen S, Hough E, Rao ZH, Isaacs NW. 1996. Structure of a bulgecin-inhibited g-type lysozyme from the egg white of the Australian black swan. A comparison of the binding of bulgecin to three muramidases. Acta Crystallogr D Biol Crystallogr. 52(Pt 1):105–114.
  • Knaack D, Idelevich EA, Schleimer N, Molinaro S, Kriegeskorte A, Peters G, Becker K. 2019. Bactericidal activity of bacteriophage endolysin HY-133 against Staphylococcus Aureus in comparison to other antibiotics as determined by minimum bactericidal concentrations and time-kill analysis. Diagn Microbiol Infect Dis. 93(4):362–368.
  • Kobayashi K, Putu Sudiarta I, Kodama T, Fukushima T, Ara K, Ozaki K, Sekiguchi J. 2012. Identification and characterization of a novel polysaccharide deacetylase C (PdaC) from Bacillus subtilis. J Biol Chem. 287(13):9765–9776.
  • Kokai-Kun JF. 2012. Lysostaphin: a silver bullet for staph. In: Antimicrobial drug discovery: emerging strategies. Wallingford: CABI; p. 147–165.
  • Kummerer K. 2003. Significance of antibiotics in the environment. J Antimicrob Chemother. 52(1):5–7.
  • Kusuma C, Jadanova A, Chanturiya T, Kokai-Kun JF. 2007. Lysostaphin-resistant variants of Staphylococcus aureus demonstrate reduced fitness in vitro and in vivo. Antimicrob Agents Chemother. 51(2):475–482.
  • Kusuma CM, Kokai-Kun JF. 2005. Comparison of four methods for determining lysostaphin susceptibility of various strains of Staphylococcus aureus. Antimicrob Agents Chemother. 49(8):3256–3263.
  • Laaberki MH, Pfeffer J, Clarke AJ, Dworkin J. 2011. O-acetylation of peptidoglycan is required for proper cell separation and S-layer anchoring in Bacillus anthracis. J Biol Chem. 286(7):5278–5288.
  • Lai MJ, Lin NT, Hu A, Soo PC, Chen LK, Chen LH, Chang KC. 2011. Antibacterial activity of Acinetobacter baumannii phage ΦaB2 endolysin (LysAB2) against both Gram-positive and Gram-negative bacteria. Appl Microbiol Biotechnol. 90(2):529–539.
  • Latka A, Maciejewska B, Majkowska-Skrobek G, Briers Y, Drulis-Kawa Z. 2017. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl Microbiol Biotechnol. 101(8):3103–3119.
  • Li K, Yuan X-X, Sun HM, Zhao LS, Tang R, Chen Z-H, Qin QL, Chen XL, Zhang YZ, Su HN. 2018. Atomic force microscopy of side wall and septa peptidoglycan from Bacillus subtilis reveals an architectural remodeling during growth. Front Microbiol. 9:1–6.
  • Lien YW, Lai EM. 2017. Type VI secretion effectors: methodologies and biology. Front Cell Infect Microbiol. 7:1–11.
  • Loeffler JM, Djurkovic S, Fischetti VA. 2003. Phage lytic enzyme Cpl-1 as a novel antimicrobial for pneumococcal bacteremia. Infect Immun. 71(11):6199–6204.
  • Loeffler JM, Nelson D, Fischetti VA. 2001. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science. 294(5549):2170–2172.
  • Loessner MJ, Kramer K, Ebel F, Scherer S. 2002. C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Mol Microbiol. 44(2):335–349.
  • Lood R, Molina H, Fischetti VA. 2017. Determining bacteriophage endopeptidase activity using either fluorophore-quencher labeled peptides combined with liquid chromatography-mass spectrometry (LC-MS) or Förster resonance energy transfer (FRET) assays. PLoS One. 12(3):e0173919.
  • Love MJ, Abeysekera GS, Muscroft-Taylor AC, Billington C, Dobson RCJ. 2020. On the catalytic mechanism of bacteriophage endolysins: opportunities for engineering. Biochim Biophys Acta Proteins Proteom. 1868(1):140302.
  • Lu D, Shang G, Zhang H, Yu Q, Cong X, Yuan J, He F, Zhu C, Zhao Y, Yin K, et al. 2014. Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism. Mol Microbiol. 92(5):1092–1112.
  • Lu JZ, Fujiwara T, Komatsuzawa H, Sugai M, Sakon J. 2006. Cell wall-targeting domain of glycylglycine endopeptidase distinguishes among peptidoglycan cross-bridges. J Biol Chem. 281(1):549–558.
  • Lukacik P, Barnard TJ, Keller PW, Chaturvedi KS, Seddiki N, Fairman JW, Noinaj N, Kirby TL, Henderson JP, Steven AC, et al. 2012. Structural engineering of a phage lysin that targets gram-negative pathogens. Proc Natl Acad Sci USA. 109(25):9857–9862.
  • Mayer MJ, Garefalaki V, Spoerl R, Narbad A, Meijers R. 2011. Structure-based modification of a Clostridium difficile-targeting endolysin affects activity and host range. J Bacteriol. 193(19):5477–5486.
  • Melo LDR, Brandão A, Akturk E, Santos SB, Azeredo J. 2018. Characterization of a new Staphylococcus aureus Kayvirus harboring a lysin active against biofilms. Viruses. 10(4):182.
  • Meyrand M, Boughammoura A, Courtin P, Mézange C, Guillot A, Chapot-Chartier MP. 2007. Peptidoglycan N-acetylglucosamine deacetylation decreases autolysis in Lactococcus lactis. Microbiology. 153(Pt 10):3275–3285.
  • Michael CA, Dominey-Howes D, Labbate M. 2014. The antimicrobial resistance crisis: causes, consequences, and management. Front Public Heal. 2:1–8.
  • Mitkowski P, Jagielska E, Nowak E, Bujnicki JM, Stefaniak F, Niedziałek D, Bochtler M, Sabała I. 2019. Structural bases of peptidoglycan recognition by lysostaphin SH3b domain. Sci Rep. 9(1):5965.
  • Monchois V, Abergel C, Sturgis J, Jeudy S, Claverie JM. 2001. Escherichia coli ykfE ORFan gene encodes a potent inhibitor of C-type lysozyme. J Biol Chem. 276(21):18437–18441.
  • Monteiro JM, Covas G, Rausch D, Filipe SR, Schneider T, Sahl HG, Pinho MG. 2019. The pentaglycine bridges of Staphylococcus aureus peptidoglycan are essential for cell integrity. Sci Rep. 9(1):1–10.
  • Moynihan PJ, Clarke AJ. 2011. O-Acetylated peptidoglycan: controlling the activity of bacterial autolysins and lytic enzymes of innate immune systems. Int J Biochem Cell Biol. 43(12):1655–1659.
  • Nakimbugwe D, Masschalck B, Deckers D, Callewaert L, Aertsen A, Michiels CW. 2006. Cell wall substrate specificity of six different lysozymes and lysozyme inhibitory activity of bacterial extracts. FEMS Microbiol Lett. 259(1):41–46.
  • Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong S, Donovan DM. 2012. Endolysins as antimicrobials. In Advances in virus research. San Diego (CA): Elsevier Academic Press Inc; p. 299–365.
  • Nilsen T, Nes IF, Holo H. 2003. Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl Environ Microbiol. 69(5):2975–2984.
  • O’Flaherty S, Coffey A, Meaney W, Fitzgerald GF, Ross RP. 2005. The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant staphylococci, including methicillin-resistant Staphylococcus aureus. J Bacteriol. 187(20):7161–7164.
  • Oechslin F, Daraspe J, Giddey M, Moreillon P, Resch G. 2013. In vitro characterization of PlySK1249, a novel phage lysin, and assessment of its antibacterial activity in a mouse model of Streptococcus agalactiae bacteremia. Antimicrob Agents Chemother. 57(12):6276–6283.
  • Oliveira H, São-José C, Azeredo J. 2018. Phage-derived peptidoglycan degrading enzymes: challenges and future prospects for in vivo therapy. Viruses. 10(6):292.
  • Oliveira H, Thiagarajan V, Walmagh M, Sillankorva S, Lavigne R, Neves-Petersen MT, Kluskens LD, Azeredo J. 2014. A thermostable salmonella phage endolysin, Lys68, with broad bactericidal properties against gram-negative pathogens in presence of weak acids. PLoS One. 9(10):e108376.
  • Orito Y, Morita M, Hori K, Unno H, Tanji Y. 2004. Bacillus amyloliquefaciens phage endolysin can enhance permeability of Pseudomonas aeruginosa outer membrane and induce cell lysis. Appl Microbiol Biotechnol. 65(1):105–109.
  • Pasquina-Lemonche L, Burns J, Turner RD, Kumar S, Tank R, Mullin N, Wilson JS, Chakrabarti B, Bullough PA, Foster SJ, et al. 2020. The architecture of the gram-positive bacterial cell wall. Nature. 582(7811):294–297.
  • Pastagia M, Euler C, Chahales P, Fuentes-Duculan J, Krueger JG, Fischetti VA. 2011. A novel chimeric lysin shows superiority to mupirocin for skin decolonization of methicillin-resistant and -sensitive Staphylococcus aureus strains. Antimicrob Agents Chemother. 55(2):738–744.
  • Pastagia M, Schuch R, Fischetti V. a, Huang DB. 2013. Lysins: the arrival of pathogen-directed anti-infectives. J Med Microbiol. 62(Pt 10):1506–1516.
  • Patzer SI, Albrecht R, Braun V, Zeth K. 2012. Structural and mechanistic studies of pesticin, a bacterial homolog of phage lysozymes. J Biol Chem. 287(28):23381–23396.
  • Paul VD, Rajagopalan SS, Sundarrajan S, George SE, Asrani JY, Pillai R, Chikkamadaiah R, Durgaiah M, Sriram B, Padmanabhan S. 2011. A novel bacteriophage Tail-Associated Muralytic Enzyme (TAME) from Phage K and its development into a potent antistaphylococcal protein. BMC Microbiol. 11:226.
  • Peschel A, Vuong C, Otto M, Gotz F. 2000. The D-alanine residues of Staphylococcus aureus teichoic acids alter the susceptibility to vancomycin and the activity of autolytic enzymes. Antimicrob Agents Chemother. 44(10):2845–2847.
  • Pfeffer JM, Strating H, Weadge JT, Clarke AJ. 2006. Peptidoglycan O acetylation and autolysin profile of Enterococcus faecalis in the viable but nonculturable state. J Bacteriol. 188(3):902–908.
  • Pilsl H, Killmann H, Hantke K, Braun V. 1996. Periplasmic location of the pesticin immunity protein suggests inactivation of pesticin in the periplasm. J Bacteriol. 178(8):2431–2435.
  • Plotka M, Sancho-Vaello E, Dorawa S, Kaczorowska AK, Kozlowski LP, Kaczorowski T, Zeth K. 2019. Structure and function of the Ts2631 endolysin of Thermus scotoductus phage vB_Tsc2631 with unique N-terminal extension used for peptidoglycan binding. Sci Rep. 9(1):1–14.
  • Porfírio S, Carlson RW, Azadi P. 2019. Elucidating peptidoglycan structure: an analytical toolset. Trends Microbiol. 27(7):607–622.
  • Poupel O, Proux C, Jagla B, Msadek T, Dubrac S. 2018. SpdC, a novel virulence factor, controls histidine kinase activity in Staphylococcus aureus. PLoS Pathog. 14(3):e1006917.
  • Pritchard DG, Dong S, Baker JR, Engler JA. 2004. The bifunctional peptidoglycan lysin of Streptococcus agalactiae bacteriophage B30. Microbiology (Reading). 150(Pt 7):2079–2087.
  • Rae CS, Geissler A, Adamson PC, Portnoy DA. 2011. Mutations of the Listeria monocytogenes peptidoglycan N-Deacetylase and O-acetylase result in enhanced lysozyme sensitivity, bacteriolysis, and hyperinduction of innate immune pathways. Infect Immun. 79(9):3596–3606.
  • Ragland SA, Criss AK. 2017. From bacterial killing to immune modulation: recent insights into the functions of lysozyme. PLoS Pathog. 13(9):e1006512.
  • Ragland SA, Humbert MV, Christodoulides M, Criss AK. 2018. Neisseria gonorrhoeae employs two protein inhibitors to evade killing by human lysozyme. PLoS Pathog. 14(7):e1007080.
  • Ragland SA, Schaub RE, Hackett KT, Dillard JP, Criss AK. 2017. Two lytic transglycosylases in Neisseria gonorrhoeae impart resistance to killing by lysozyme and human neutrophils. Cell Microbiol. 19:1–14.
  • Rodríguez-Rubio L, Martínez B, Rodríguez A, Donovan DM, Götz F, García P. 2013. The phage lytic proteins from the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 display multiple active catalytic domains and do not trigger staphylococcal resistance. PLoS One. 8(5):e64671.
  • Rodríguez-Cerrato V, García P, del Prado G, García E, Gracia M, Huelves L, Ponte C, López R, Soriano F. 2007. In vitro interactions of LytA, the major pneumococcal autolysin, with two bacteriophage lytic enzymes (Cpl-1 and Pal), cefotaxime and moxifloxacin against antibiotic-susceptible and -resistant Streptococcus Pneumoniae strains. J Antimicrob Chemother. 60(5):1159–1162.
  • Russell AB, Hood RD, Bui NK, Leroux M, Vollmer W, Mougous JD. 2011. Type VI secretion delivers bacteriolytic effectors to target cells. Nature. 475(7356):343–349.
  • Sabala I, Jagielska E, Bardelang PT, Czapinska H, Dahms SO, Sharpe JA, James R, Than ME, Thomas NR, Bochtler M. 2014. Crystal structure of the antimicrobial peptidase lysostaphin from Staphylococcus simulans. Febs J. 281(18):4112–4122.
  • São-José C. 2018. Engineering of phage-derived lytic enzymes: improving their potential as antimicrobials. Antibiotics. 7(2):29.
  • Saravanan SR, Paul VD, George S, Sundarrajan S, Kumar N, Hebbur M, Kumar N, Veena A, Maheshwari U, Appaiah CB, et al. 2013. Properties and mutation studies of a bacteriophage-derived chimeric recombinant staphylolytic protein P128: comparison to recombinant lysostaphin. Bacteriophage. 3(3):e26564.
  • Schindler CA, Schuhardt VT. 1964. Lysostaphin: a new bacteriolytic agent for the staphylococcus. Proc Natl Acad Sci USA. 51:414–421.
  • Schlag M, Biswas R, Krismer B, Kohler T, Zoll S, Yu W, Schwarz H, Peschel A, Götz F. 2010. Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl. Mol Microbiol. 75(4):864–873.
  • Schmelcher M, Donovan DM, Loessner MJ. 2012. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 7(10):1147–1171.
  • Schneider T, Senn MM, Berger-Bächi B, Tossi A, Sahl HG, Wiedemann I. 2004. In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of Staphylococcus aureus. Mol Microbiol. 53(2):675–685.
  • Schreur PJ, van Weeghel C, Rebel JMJ, Smits MA, van Putten JPM, Smith HE. 2012. Lysozyme resistance in Streptococcus suis is highly variable and multifactorial. PLoS One. 7(4):e36281.
  • Schuch R, Lee HM, Schneider BC, Sauve KL, Law C, Khan BK, Rotolo JA, Horiuchi Y, Couto DE, Raz A, et al. 2014. Combination therapy with lysin CF-301 and antibiotic is superior to antibiotic alone for treating methicillin-resistant Staphylococcus aureus-induced murine bacteremia. J Infect Dis. 209(9):1469–1478.
  • Schuch R, Nelson D, Fischetti VA. 2002. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature. 418(6900):884–889.
  • Sethi D, Mahajan S, Singh C, Lama A, Hade MD, Gupta P, Dikshit KL. 2016. Lipoprotein LprI of Mycobacterium tuberculosis acts as a lysozyme inhibitor. J Biol Chem. 291(6):2938–2953.
  • Sharma U, Vipra A, Channabasappa S. 2018. Phage-derived lysins as potential agents for eradicating biofilms and persisters. Drug Discov Today. 0:1–10.
  • Shen Y, Köller T, Kreikemeyer B, Nelson DC. 2013. Rapid degradation of Streptococcus pyogenes biofilms by PlyC, a bacteriophage-encoded endolysin. J Antimicrob Chemother. 68(8):1818–1824.
  • Simmonds RS, Naidoo J, Jones CL, Tagg JR. 1995. The streptococcal bacteriocin-like inhibitory substance, zoocin A, reduces the proportion of Streptococcus mutans in an artificial plaque. Microb Ecol Health Dis. 8:281–292.
  • Simmonds RS, Pearson L, Kennedy RC, Tagg JR. 1996. Mode of action of a lysostaphin-like bacteriolytic agent produced by Streptococcus zooepidemicus 4881. Appl Environ Microbiol. 62(12):4536–4541.
  • Srikannathasan V, English G, Bui NK, Trunk K, O'Rourke PEF, Rao VA, Vollmer W, Coulthurst SJ, Hunter WN. 2013. Structural basis for type VI secreted peptidoglycan DL-endopeptidase function, specificity and neutralization in Serratia marcescens. Acta Crystallogr D Biol Crystallogr. 69(Pt 12):2468–2482.
  • Strandén AM, Ehlert K, Labischinski H, Berger-Bächi B. 1997. Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus. J Bacteriol. 179(1):9–16.
  • Sugai M, Fujiwara T, Ohta K, Komatsuzawa H, Ohara M, Suginaka H. 1997. Epr, which encodes glycylglycine endopeptidase resistance, is homologous to FemAB and affects serine content of peptidoglycan cross bridges in Staphylococcus capitis and Staphylococcus aureus. J Bacteriol. 179(13):4311–4318.
  • Sundarrajan S, Raghupatil J, Vipra A, Narasimhaswamy N, Saravanan S, Appaiah C, Poonacha N, Desai S, Nair S, Bhatt RN, et al. 2014. Bacteriophage-derived CHAP domain protein, P128, kills Staphylococcus cells by cleaving interpeptide cross-bridge of peptidoglycan. Microbiology (Reading). 160(Pt 10):2157–2169.
  • Sychantha D, Brott AS, Jones CS, Clarke AJ. 2018. Mechanistic pathways for peptidoglycan O-acetylation and De-O-acetylation. Front Microbiol. 9:1–17.
  • Thumm G, Götz F. 1997. Studies on prolysostaphin processing and characterization of the lysostaphin immunity factor (Lif) of Staphylococcus simulans biovar staphylolyticus. Mol Microbiol. 23(6):1251–1265.
  • Thunnissen AMWH, Rozeboom HJ, Kalk KH, Dijkstra BW. 1995. Structure of the 70-kDa soluble lytic transglycosylase complexed with bulgecin A. Implications for the enzymatic mechanism. Biochemistry. 34(39):12729–12737.
  • Tossavainen H, Raulinaitis V, Kauppinen L, Pentikäinen U, Maaheimo H, Permi P. 2018. Structural and functional insights into lysostaphin–substrate interaction. Front Mol Biosci. 5:1–14.
  • Vollmer W. 2008. Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol Rev. 32(2):287–306.
  • Vollmer W, Pilsl H, Hantke K, Höltje JV, Braun V. 1997. Pesticin displays muramidase activity. J Bacteriol. 179(5):1580–1583.
  • Wang C, Hu Y. h, Sun B. q, Li J, Sun L. 2013. Edwardsiella tarda Ivy, a lysozyme inhibitor that blocks the lytic effect of lysozyme and facilitates host infection in a manner that is dependent on the conserved cysteine residue. Infect Immun. 81(10):3527–3533.
  • Weadge JT, Pfeffer JM, Clarke AJ. 2005. Identification of a new family of enzymes with potential O-acetylpeptidoglycan esterase activity in both Gram-positive and Gram-negative bacteria. BMC Microbiol. 5(1):49–15.
  • Weidenmaier C, Peschel A. 2008. Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol. 6(4):276–287.
  • Whitney JC, Chou S, Russell AB, Biboy J, Gardiner TE, Ferrin MA, Brittnacher M, Vollmer W, Mougous JD. 2013. Identification, structure, and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair. J Biol Chem. 288(37):26616–26624.
  • Williams A, Wheeler R, Thiriau C, Haouz A, Taha M, Boneca I. 2017. Bulgecin A: the key to a broad‐spectrum inhibitor that targets lytic transglycosylases. Antibiotics. 6(1):8.
  • Wittekind M, Schuch R. 2016. Cell wall hydrolases and antibiotics: exploiting synergy to create efficacious new antimicrobial treatments. Curr Opin Microbiol. 33:18–24.
  • Wu X, Paskaleva EE, Mehta KK, Dordick JS, Kane RS. 2016. Wall teichoic acids are involved in the medium-induced loss of function of the autolysin CD11 against. Sci Rep. 6:35616–35611.
  • Yadav AK, Espaillat A, Cava F. 2018. Bacterial strategies to preserve cell wall integrity against environmental threats. Front Microbiol. 9:1–9.
  • Yamamoto H, Hashimoto M, Higashitsuji Y, Harada H, Hariyama N, Takahashi L, Iwashita T, Ooiwa S, Sekiguchi J. 2008a. Post-translational control of vegetative cell separation enzymes through a direct interaction with specific inhibitor IseA in Bacillus subtilis. Mol Microbiol. 70(1):168–182.
  • Yamamoto H, Miyake Y, Hisaoka M, Kurosawa SI, Sekiguchi J. 2008b. The major and minor wall teichoic acids prevent the sidewall localization of vegetative DL-endopeptidase LytF in Bacillus subtilis. Mol Microbiol. 70(2):297–310.
  • Yang H, Linden SB, Wang J, Yu J, Nelson DC, Wei H. 2015. A chimeolysin with extended-spectrum streptococcal host range found by an induced lysis-based rapid screening method. Sci Rep. 5:17257.
  • Yang H, Yu J, Hongping, W. 2014. Engineered bacteriophage lysins as novel anti-infectives. Front Microbiol. 5:1–6.
  • Yoong P, Schuch R, Nelson D, Fischetti VA. 2004. Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium. J Bacteriol. 186(14):4808–4812.
  • Zhang T, Li B. 2011. Occurrence, transformation, and fate of antibiotics in municipal wastewater treatment plants. Crit Rev Environ Sci Technol. 41(11):951–998.
  • Zielke RA, Van AL, Baarda BI, Herrera MF, Acosta CJ, Jerse AE, Sikora AE. 2018. SliC is a surface-displayed lipoprotein that is required for the anti-lysozyme strategy during Neisseria gonorrhoeae infection. PLoS Pathog. 14(7):e1007081.
  • Zygmunt WA, Browder HP, Tavormina PA. 1967. Lytic action of lysostaphin on susceptible and resistant strains of Staphylococcus aureus. Can J Microbiol. 13(7):845–853.
  • Zygmunt WA, Browder HP, Tavormina PA. 1968. Susceptibility of coagulase-negative staphylococci to lysostaphin and other antibiotics. Appl Microbiol. 16(8):1168–1173.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.