6,684
Views
12
CrossRef citations to date
0
Altmetric
Review Articles

Microbial symbionts of insects as a source of new antimicrobials: a review

ORCID Icon, , &
Pages 562-579 | Received 02 Sep 2020, Accepted 16 Mar 2021, Published online: 25 May 2021

References

  • Abriouel H, Franz CMAP, Ben Omar N, Gálvez A. 2011. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev. 35(1):201–232.
  • Akbar N, Siddiqui R, Iqbal M, Sagathevan K, Khan NA. 2018. Gut bacteria of cockroaches are a potential source of antibacterial compound(s). Lett Appl Microbiol. 66(5):416–426.
  • Andersen SO. 2009. Chapter 94 - Exoskeleton. In: Resh VH and Cardé RT, editors. Encyclopedia of insects. 2nd ed. San Diego (CA): Academic Press; p. 339–342.
  • Antoraz S, Santamaría RI, Díaz M, Sanz D, Rodríguez H. 2015. Toward a new focus in antibiotic and drug discovery from the Streptomyces arsenal. Front Microbiol. 6:461–461.
  • Arango RA, Carlson CM, Currie CR, McDonald BR, Book AJ, Green F, Lebow NK, Raffa KF. 2016. Antimicrobial activity of Actinobacteria isolated from the guts of Subterranean Termites. Environ Entomol. 45(6):1415–1423.
  • Asakawa Y, Hashimoto T, Ngoc Quang D, Nukada M. 2005. Isolation, synthesis and biological activity of grifolic acid derivatives from the inedible mushroom Albatrellus dispansus. Heterocycles. 65(10):2431–2439.
  • Balouiri M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 6(2):71–79.
  • Barke J, Seipke RF, Grüschow S, Heavens D, Drou N, Bibb MJ, Goss RJM, Yu DW, Hutchings MI. 2010. A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol. 8:109–109.
  • Beemelmanns C, Guo H, Rischer M, Poulsen M. 2016. Natural products from microbes associated with insects. Beilstein J Org Chem. 12:314–327.
  • Berasategui A, Shukla S, Salem H, Kaltenpoth M. 2016. Potential applications of insect symbionts in biotechnology. Appl Microbiol Biotechnol. 100(4):1567–1577.
  • Biard JF, Roussakis C, Kornprobst JM, Gouiffes-Barbin D, Verbist JF, Cotelle P, Foster MP, Ireland CM, Debitus C. 1994. Bistramides A, B, C, D, and K: a new class of bioactive cyclic polyethers from Lissoclinum bistratum. J Nat Prod. 57(10):1336–1345.
  • Blodgett JAV, Oh D-C, Cao S, Currie CR, Kolter R, Clardy J. 2010. Common biosynthetic origins for polycyclic tetramate macrolactams from phylogenetically diverse bacteria. Proc Natl Acad Sci USA. 107(26):11692–11697.
  • Boucias DG, Zhou Y, Huang S, Keyhani NO. 2018. Microbiota in insect fungal pathology. Appl Microbiol Biotechnol. 102(14):5873–5888.
  • Burke GR, Normark BB, Favret C, Moran NA. 2009. Evolution and diversity of facultative symbionts from the aphid subfamily Lachninae. Appl Environ Microbiol. 75(16):5328–5335.
  • Cafaro MJ, Poulsen M, Little AEF, Price SL, Gerardo NM, Wong B, Stuart AE, Larget B, Abbot P, Currie CR, et al. 2011. Specificity in the symbiotic association between fungus-growing ants and protective Pseudonocardia bacteria. Proceedings of the Royal Society. Proc Biol Sci. 278(1713):1814–1822.
  • Carr G, Derbyshire ER, Caldera E, Currie CR, Clardy J. 2012. Antibiotic and antimalarial quinones from fungus-growing ant-associated Pseudonocardia sp. J Nat Prod. 75(10):1806–1809.
  • Chalasani AG, Dhanarajan G, Nema S, Sen R, Roy U. 2015. An antimicrobial metabolite from Bacillus sp.: significant activity against pathogenic bacteria including multidrug-resistant clinical strains. Front Microbiol. 6:1335–1335.
  • Challinor VL, Bode HB. 2015. Bioactive natural products from novel microbial sources. Ann N Y Acad Sci. 1354(1):82–97.
  • Chevrette MG, Carlson CM, Ortega HE, Thomas C, Ananiev GE, Barns KJ, Book AJ, Cagnazzo J, Carlos C, Flanigan W, et al. 2019. The antimicrobial potential of Streptomyces from insect microbiomes. Nat Commun. 10(1):516.
  • Chouvenc T, Efstathion CA, Elliott ML, Su NY. 2013. Extended disease resistance emerging from the faecal nest of a subterranean termite. Proc Biol Sci. 280(1770):20131885.
  • Correa Y, Cabanillas B, Jullian V, Álvarez D, Castillo D, Dufloer C, Bustamante B, Roncal E, Neyra E, Sheen P, et al. 2019. Bioactive compounds from Chrysosporium multifidum. a fungus isolated from Hermetia illucens gut microbiota. bioRxiv. 14:669515.
  • Cos P, Vlietinck AJ, Berghe DV, Maes L. 2006. Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’. J Ethnopharmacol. 106(3):290–302.
  • Currie CR, Scott JA, Summerbell RC, Malloch D. 1999. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature. 398(6729):701–704.
  • Demain AL. 2014. Importance of microbial natural products and the need to revitalize their discovery. J Ind Microbiol Biotechnol. 41(2):185–201.
  • Donadio S, Maffioli S, Monciardini P, Sosio M, Jabes D. 2010. Antibiotic discovery in the twenty-first century: current trends and future perspectives. J Antibiot (Tokyo). 63(8):423–430.
  • Du Y, Wang Y, Huang T, Tao M, Deng Z, Lin S. 2014. Identification and characterization of the biosynthetic gene cluster of polyoxypeptin A, a potent apoptosis inducer. BMC Microbiol. 14:30–30.
  • Engel P, Moran NA. 2013. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev. 37(5):699–735.
  • Felnagle EA, Jackson EE, Chan YA, Podevels AM, Berti AD, McMahon MD, Thomas MG. 2008. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol Pharm. 5(2):191–211.
  • Ferrari J, Vavre F. 2011. Bacterial symbionts in insects or the story of communities affecting communities. Philos Trans R Soc Lond B Biol Sci. 366(1569):1389–1400.
  • Figueroa M, Graf TN, Ayers S, Adcock AF, Kroll DJ, Yang J, Swanson SM, Munoz-Acuna U, Carcache de Blanco EJ, Agrawal R, et al. 2012. Cytotoxic epipolythiodioxopiperazine alkaloids from filamentous fungi of the Bionectriaceae. J Antibiot (Tokyo). 65(11):559–564.
  • Flórez LV, Biedermann PHW, Engl T, Kaltenpoth M. 2015. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep. 32(7):904–936.
  • Flórez LV, Scherlach K, Miller IJ, Rodrigues A, Kwan JC, Hertweck C, Kaltenpoth M. 2018. An antifungal polyketide associated with horizontally acquired genes supports symbiont-mediated defense in Lagria villosa beetles. Nat Commun. 9(1):2478.
  • Franz CMAP, van Belkum MJ, Holzapfel WH, Abriouel H, Gálvez A. 2007. Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev. 31(3):293–310.
  • Ganley JG, Carr G, Ioerger TR, Sacchettini JC, Clardy J, Derbyshire ER. 2018. Discovery of antimicrobial lipodepsipeptides produced by a Serratia sp. within mosquito microbiomes. Chembiochem. 19(15):1590–1594.
  • Gardiner DM, Waring P, Howlett BJ. 2005. The epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution, mode of action, functions and biosynthesis. Microbiology (Reading). 151(Pt 4):1021–1032.
  • Gomes ES, Schuch V, de Macedo Lemos EG. 2013. Biotechnology of polyketides: new breath of life for the novel antibiotic genetic pathways discovery through metagenomics. Braz J Microbiol. 44(4):1007–1034.
  • Gräfe U, Schlegel R, Ritzau M, Ihn W, Dornberger K, Stengel C, Fleck WF, Gutsche W, Härtl A, Paulus EF, et al. 1995. Aurantimycins, new depsipeptide antibiotics from Streptomyces aurantiacus IMET 43917. Production, isolation, structure elucidation, and biological activity. J Antibiot (Tokyo). 48(2):119–125.
  • Guo CJ, Yeh HH, Chiang YM, Sanchez JF, Chang SL, Bruno KS, Wang CCC. 2013. Biosynthetic pathway for the epipolythiodioxopiperazine acetylaranotin in Aspergillus terreus revealed by genome-based deletion analysis. J Am Chem Soc. 135(19):7205–7213.
  • Hanchi H, Mottawea W, Sebei K, Hammami R. 2018. The genus Enterococcus: between probiotic potential and safety concerns-an update. Front Microbiol. 9:1791.
  • Heise P, Liu Y, Degenkolb T, Vogel H, Schäberle TF, Vilcinskas A. 2019. Antibiotic-producing beneficial bacteria in the gut of the burying beetle Nicrophorus vespilloides. Front Microbiol. 10:1178–1178.
  • Herrmann J, Lukežič T, Kling A, Baumann S, Hüttel S, Petković H, Müller R. 2016. Strategies for the discovery and development of new antibiotics from natural products: three case studies. Curr Top Microbiol Immunol. 398:339–363.
  • Hoang KL, Morran LT, Gerardo NM. 2019. Can a symbiont (also) be food? Front Microbiol. 10:2539.
  • Hughes D, Karlén A. 2014. Discovery and preclinical development of new antibiotics. Ups J Med Sci. 119(2):162–169.
  • Johnston M, McBride M, Dahiya D, Owusu-Apenten R, Nigam PS. 2018. Antibacterial activity of Manuka honey and its components: an overview. AIMS Microbiol. 4(4):655–664.
  • Kaltenpoth M. 2009. Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol. 17(12):529–535.
  • Kaltenpoth M, Engl T. 2014. Defensive microbial symbionts in Hymenoptera. Funct Ecol. 28(2):315–327.
  • Kawaguchi M, Nonaka K, Masuma R, Tomoda H. 2013. New method for isolating antibiotic-producing fungi. J Antibiot (Tokyo). 66(1):17–21.
  • Kevin Ii DA, Meujo DA, Hamann MT. 2009. Polyether ionophores: broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites. Expert Opin Drug Discov. 4(2):109–146.
  • Kikuchi Y. 2009. Endosymbiotic bacteria in insects: their diversity and culturability. Microbes Environ. 24(3):195–204.
  • Kikuchi Y, Hosokawa T, Nikoh N, Meng XY, Kamagata Y, Fukatsu T. 2009. Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs. BMC Biol. 7(1):2.
  • Kim KH, Ramadhar TR, Beemelmanns C, Cao S, Poulsen M, Currie CR, Clardy J. 2014. Natalamycin A, an ansamycin from a termite-associated Streptomyces sp. Chem Sci. 5(11):4333–4338.
  • Kroiss J, Kaltenpoth M, Schneider B, Schwinger M-G, Hertweck C, Maddula RK, Strohm E, Svatos A. 2010. Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat Chem Biol. 6(4):261–263.
  • Lee H, Churey JJ, Worobo RW. 2008a. Antimicrobial activity of bacterial isolates from different floral sources of honey. Int J Food Microbiol. 126(1–2):240–244.
  • Lee H, Churey JJ, Worobo RW. 2008b. Purification and structural characterization of bacillomycin F produced by a bacterial honey isolate active against Byssochlamys fulva H25. J Appl Microbiol. 105(3):663–673.
  • Lewies A, Du Plessis LH, Wentzel JF. 2019. Antimicrobial peptides: the achilles’ heel of antibiotic resistance? Probiotics Antimicrob Proteins. 11(2):370–381.
  • Liaw CC, Chen PC, Shih CJ, Tseng SP, Lai YM, Hsu CH, Dorrestein PC, Yang YL. 2015. Vitroprocines, new antibiotics against Acinetobacter baumannii, discovered from marine Vibrio sp. QWI-06 using mass-spectrometry-based metabolomics approach. Sci Rep. 5:12856.
  • Lo WS, Huang YY, Kuo CH. 2016. Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiol Rev. 40(6):855–874.
  • Madden AA, Grassetti A, Soriano JAN, Starks PT. 2013. Actinomycetes with antimicrobial activity isolated from paper wasp (Hymenoptera: Vespidae: Polistinae) nests. Environ Entomol. 42(4):703–710.
  • Mahlapuu M, Håkansson J, Ringstad L, Björn C. 2016. Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol. 6:194–194.
  • Mai AGM. 2018. Serratia a novel source of secondary metabolites. Adv Biotechnol Microbiol. 11(3):5.
  • Mandal SM, Sharma S, Pinnaka AK, Kumari A, Korpole S. 2013. Isolation and characterization of diverse antimicrobial lipopeptides produced by Citrobacter and Enterobacter. BMC Microbiol. 13(1):152.
  • Masson F, Lemaitre B. 2020. Growing ungrowable bacteria: overview and perspectives on. Microbiol Mol Biol Rev. 84(4):e00089–20.
  • Matarrita-Carranza B, Moreira-Soto RD, Murillo-Cruz C, Mora M, Currie CR, Pinto-Tomas AA. 2017. Evidence for widespread associations between neotropical hymenopteran insects and Actinobacteria. Front Microbiol. 8:2016.
  • Mehdiabadi NJ, Mueller UG, Brady SG, Himler AG, Schultz TR. 2012. Symbiont fidelity and the origin of species in fungus-growing ants. Nat Commun. 3(1):840.
  • Miyashita A, Hirai Y, Sekimizu K, Kaito C. 2015. Antibiotic-producing bacteria from stag beetle mycangia. Drug Discov Ther. 9(1):33–37.
  • Moloney MG. 2016. Natural products as a source for novel antibiotics. Trends Pharmacol Sci. 37(8):689–701.
  • Moraes APR, Videira SS, Bittencourt VREP, Bittencourt AJ. 2014. Antifungal activity of Stenotrophomonas maltophilia in Stomoxys calcitrans larvae. Rev Bras Parasitol Vet. 23(2):194–199.
  • Moya A, Peretó J, Gil R, Latorre A. 2008. Learning how to live together: genomic insights into prokaryote-animal symbioses. Nat Rev Genet. 9(3):218–229.
  • Nirma C, Eparvier V, Stien D. 2013. Antifungal agents from Pseudallescheria boydii SNB-CN73 isolated from a Nasutitermes sp. termite. J Nat Prod. 76(5):988–991.
  • Nirma C, Eparvier V, Stien D. 2015. Antibacterial ilicicolinic acids C and D and ilicicolinal from Neonectria discophora SNB-CN63 isolated from a termite nest. J Nat Prod. 78(1):159–162.
  • Oh DC, Poulsen M, Currie CR, Clardy J. 2009. Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nat Chem Biol. 5(6):391–393.
  • Oh DC, Poulsen M, Currie CR, Clardy J. 2011. Sceliphrolactam, a polyene macrocyclic lactam from a wasp-associated Streptomyces sp. Org Lett. 13(4):752–755.
  • Oh DC, Scott JJ, Currie CR, Clardy J. 2009. Mycangimycin, a polyene peroxide from a mutualist Streptomyces sp. Org Lett. 11(3):633–636.
  • Okabe K. 2013. Ecological characteristics of insects that affect symbiotic relationships with mites. Entomol Sci. 16(4):363–378.
  • Olofsson TC, Butler È, Markowicz P, Lindholm C, Larsson L, Vásquez A. 2016. Lactic acid bacterial symbionts in honeybees - an unknown key to honey’s antimicrobial and therapeutic activities. Int Wound J. 13(5):668–679.
  • Olofsson TC, Vásquez A. 2008. Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Curr Microbiol. 57(4):356–363.
  • Paniagua Voirol LR, Frago E, Kaltenpoth M, Hilker M, Fatouros NE. 2018. Bacterial symbionts in Lepidoptera: their diversity, transmission, and impact on the host. Front Microbiol. 9:556.
  • Patridge E, Gareiss P, Kinch MS, Hoyer D. 2016. An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov Today. 21(2):204–207.
  • Pickard JM, Zeng MY, Caruso R, Núñez G. 2017. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 279(1):70–89.
  • Piel J. 2011. Approaches to capturing and designing biologically active small molecules produced by uncultured microbes. Annu Rev Microbiol. 65:431–453. DOI:10.1146/annurev-micro-090110-102805.
  • Pinu FR, Villas-Boas SG, Aggio R. 2017. Analysis of intracellular metabolites from microorganisms: quenching and extraction protocols. Metabolites. 7(4):53.
  • Pirri G, Giuliani A, Nicoletto S, Pizzuto L, Rinaldi A. 2009. Lipopeptides as anti-infectives: a practical perspective. Cent Eur J Biol. 4(3):258–273.
  • Poulsen M, Oh D-C, Clardy J, Currie CR. 2011. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery. PLoS One. 6(2):e16763.
  • Promnuan Y, Kudo T, Chantawannakul P. 2009. Actinomycetes isolated from beehives in Thailand. World J Microbiol Biotechnol. 25(9):1685–1689.
  • Qin Z, Munnoch JT, Devine R, Holmes NA, Seipke RF, Wilkinson KA, Wilkinson B, Hutchings MI. 2017. Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-ants. Chem Sci. 8(4):3218–3227.
  • Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M. 2010. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev. 34(6):1037–1062.
  • Rajagopal R. 2009. Beneficial interactions between insects and gut bacteria. Indian J Microbiol. 49(2):114–119.
  • Ratcliffe NA, Mello CB, Garcia ES, Butt TM, Azambuja P. 2011. Insect natural products and processes: new treatments for human disease. Insect Biochem Mol Biol. 41(10):747–769.
  • Rudrapal M, Chetia D. 2016. Endoperoxide antimalarials: development, structural diversity and pharmacodynamic aspects with reference to 1,2,4-trioxane-based structural scaffold. Drug Des Devel Ther. 10:3575–3590.
  • Scott JJ, Oh DC, Yuceer MC, Klepzig KD, Clardy J, Currie CR. 2008. Bacterial protection of beetle-fungus mutualism. Science. 322(5898):63.
  • Seabrooks L, Hu L. 2017. Insects: an underrepresented resource for the discovery of biologically active natural products. Acta Pharm Sin B. 7(4):409–426.
  • Shanchez-Contreras M, Vlisidou I. 2008. The diversity of insect-bacteria interactions and its applications for disease control. Biotechnol Genet Eng Rev. 25:203–243.
  • Shao Y, Chen B, Sun C, Ishida K, Hertweck C, Boland W. 2017. Symbiont-derived antimicrobials contribute to the control of the lepidopteran gut microbiota. Cell Chem Biol. 24(1):66–75.
  • Sheehan G, Garvey A, Croke M, Kavanagh K. 2018. Innate humoral immune defences in mammals and insects: the same, with differences? Virulence. 9(1):1625–1639.
  • Sherman RA. 2009. Maggot therapy takes us back to the future of wound care: new and improved maggot therapy for the 21st century. J Diabetes Sci Technol. 3(2):336–344.
  • Singh V, Haque S, Niwas R, Srivastava A, Pasupuleti M, Tripathi CKM. 2016. Strategies for fermentation medium optimization: an in-depth review. Front Microbiol. 7:2087.
  • Sit CS, Ruzzini AC, Van Arnam EB, Ramadhar TR, Currie CR, Clardy J. 2015. Variable genetic architectures produce virtually identical molecules in bacterial symbionts of fungus-growing ants. Proc Natl Acad Sci USA. 112(43):13150–13154.
  • Skellam EJ, Stewart AK, Strangman WK, Wright JLC. 2013. Identification of micromonolactam, a new polyene macrocyclic lactam from two marine Micromonospora strains using chemical and molecular methods: clarification of the biosynthetic pathway from a glutamate starter unit. J Antibiot. 66(7):431–441.
  • Statsuk AV, Bai R, Baryza JL, Verma VA, Hamel E, Wender PA, Kozmin SA. 2005. Actin is the primary cellular receptor of bistramide A. Nat Chem Biol. 1(7):383–388.
  • Stork NE. 2018. How many species of insects and other terrestrial arthropods are there on earth? Annu Rev Entomol. 63(1):31–45.
  • Su Q, Zhou X, Zhang Y. 2013. Symbiont-mediated functions in insect hosts. Commun Integr Biol. 6(3):e23804.
  • Takeuchi T, Hatano M, Umekita M, Hayashi C, Wada SI, Nagayoshi M, Sawa R, Kubota Y, Kawada M, Igarashi M, et al. 2017. ATP depletion assay led to the isolation of new 36-membered polyol macrolides deplelides A and B from Streptomyces sp. MM581-NF15. Org Lett. 19(16):4207–4210.
  • Toledo A, López S, Aulicino M, de Remes-Lenicov AM, Balatti P. 2015. Antagonism of entomopathogenic fungi by Bacillus spp. associated with the Integument of Cicadellids and Delphacids. Int Microbiol. 18:91–97.
  • Um S, Fraimout A, Sapountzis P, Oh DC, Poulsen M. 2013. The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi. Sci Rep. 3:3250.
  • Van Arnam EB, Currie CR, Clardy J. 2018. Defense contracts: molecular protection in insect-microbe symbioses. Chem Soc Rev. 47(5):1638–1651.
  • Van Arnam EB, Ruzzini AC, Sit CS, Horn H, Pinto-Tomás AA, Currie CR, Clardy J. 2016. Selvamicin, an atypical antifungal polyene from two alternative genomic contexts. Proc Natl Acad Sci USA. 113(46):12940–12945.
  • Vivero RJ, Mesa GB, Robledo SM, Herrera CXM, Cadavid-Restrepo G. 2019. Enzymatic, antimicrobial, and leishmanicidal bioactivity of gram-negative bacteria strains from the midgut of Lutzomyia evansi, an insect vector of leishmaniasis in Colombia. Biotechnol Rep. 24:e00379.
  • Wang L, Feng Y, Tian J, Xiang M, Sun J, Ding J, Yin WB, Stadler M, Che Y, Liu X. 2015. Farming of a defensive fungal mutualist by an attelabid weevil. ISME J. 9(8):1793–1801.
  • Wang Y, Mueller UG, Clardy J. 1999. Antifungal diketopiperazines from symbiotic fungus of fungus-growing ant Cyphomyrmex minutus. J Chem Ecol. 25(4):935–941.
  • Wang Z, Shi Y, Qiu Z, Che Y, Lo N. 2017. Reconstructing the phylogeny of Blattodea: robust support for interfamilial relationships and major clades. Sci Rep. 7(1):3903.
  • Watve MG, Tickoo R, Jog MM, Bhole BD. 2001. How many antibiotics are produced by the genus Streptomyces? Arch Microbiol. 176(5):386–390.
  • World Health Organization. 2018. WHO report on surveillance of antibiotic consumption. Geneva, Switzerland: World Health Organization; p. 7.
  • World Health Organization. 2019a. 2019 Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline. Geneva, Switzerland: World Health Organization; p. 48.
  • World Health Organization. 2019b. No time to wait: securing the future from drug-resistant infections. Geneva, Switzerland: World Health Organization; p. 28.
  • Wu Q, Jiang N, Bo Han W, Ning Mei Y, Ming Ge H, Kai Guo Z, Seik Weng N, Xiang Tan R. 2014. Antibacterial epipolythiodioxopiperazine and unprecedented sesquiterpene from Pseudallescheria boydii, a beetle (coleoptera)-associated fungus. Org Biomol Chem. 12(46):9405–9412.
  • Wu Q, Patočka J, Kuča K. 2018. Insect antimicrobial peptides, a mini review. Toxins. 10(11):461.
  • Xie S, Lan Y, Sun C, Shao Y. 2019. Insect microbial symbionts as a novel source for biotechnology. World J Microbiol Biotechnol. 35(2):25.
  • Yang SC, Lin CH, Sung CT, Fang JY. 2014. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol. 5:241–241.
  • Yun JH, Roh SW, Whon TW, Jung MJ, Kim MS, Park DS, Yoon C, Nam YD, Kim YJ, Choi JH, et al. 2014. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol. 80(17):5254–5264.
  • Zotchev S. 2003. Polyene macrolide antibiotics and their applications in human therapy. Curr Med Chem. 10(3):211–223.