1,506
Views
11
CrossRef citations to date
0
Altmetric
Review Articles

Listeria monocytogenes: review of pathogenesis and virulence determinants-targeted immunological assays

, , , , &
Pages 647-666 | Received 27 Aug 2020, Accepted 29 Mar 2021, Published online: 24 Apr 2021

References

  • Akin D, Sturgis J, Ragheb K, Sherman D, Burkholder K, Robinson JP, Bhunia AK, Mohammed S, Bashir R. 2007. Bacteria-mediated delivery of nanoparticles and cargo into cells. Nat Nanotechnol. 2(7):441–449.
  • Asano K, Sashinami H, Osanai A, Asano Y, Nakane A. 2011. Autolysin amidase of Listeria monocytogenes promotes efficient colonization of mouse hepatocytes and enhances host immune response. Int J Med Microbiol. 301(6):480–487.
  • Auriemma C, Viscardi M, Tafuri S, Pavone LM, Capuano F, Rinaldi L, Della Morte R, Iovane G, Staiano N. 2010. Integrin receptors play a role in the internalin B-dependent entry of Listeria monocytogenes into host cells. Cell Mol Biol Lett. 15(3):496–506.
  • Bai X, Liu D, Xu L, Tenguria S, Drolia R, Gallina NLF, Cox AD, Koo O-K, Bhunia AK. 2021. Biofilm-isolated Listeria monocytogenes exhibits reduced systemic dissemination at the early (12–24 h) stage of infection in a mouse model. NPJ Biofilm Microbi. 7(1):18.
  • Banada PP, Bhunia AK. 2008. Antibodies and immunoassays for detection of bacterial pathogens. In: Zourob M, Elwary S, Turner A, editors. Principles of bacterial detection: biosensors, recognition receptors and microsystems. Manchester: Cambridge University; p. 567–602.
  • Banerjee R, Jaiswal A. 2018. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst. 143(9):1970–1996.
  • Beauchamp S, D'Auria S, Pennacchio A, Lacroix M. 2012. A new competitive fluorescence immunoassay for detection of Listeria monocytogenes. Anal Methods. 4(12):4187–4192.
  • Becattini S, Littmann ER, Carter RA, Kim SG, Morjaria SM, Ling L, Gyaltshen Y, Fontana E, Taur Y, Leiner IM, et al. 2017. Commensal microbes provide first line defense against Listeria monocytogenes infection. J Exp Med. 214(7):1973–1989.
  • Bhunia AK, Ball PH, Fuad AT, Kurz BW, Emerson JW, Johnson MG. 1991. Development and characterization of a monoclonal antibody specific for Listeria monocytogenes and Listeria innocua. Infect Immun. 59(9):3176–3184.
  • Bhunia AK, Johnson MG. 1992. Monoclonal antibody specific for Listeria monocytogenes associated with a 66-kilodalton cell surface antigen. Appl Environ Microbiol. 58(6):1924–1929.
  • Bhunia AK. 1997. Antibodies to Listeria monocytogenes. Crit Rev Microbiol. 23(2):77–107.
  • Bhunia AK. 2008. Biosensors and bio-based methods for the separation and detection of foodborne pathogens. Adv Food Nutr Res. 54:1–44.
  • Bhunia AK. 2014. One day to one hour: how quickly can foodborne pathogens be detected? Future Microbiol. 9(8):935–946.
  • Bhunia AK. 2018. Listeria monocytogenes. In: Bhunia AK, editor. Foodborne microbial pathogens: mechanisms and pathogenesis. New York (NY): Springer; p. 229–248.
  • Bierne H, Cossart P. 2002. InIB, a surface protein of Listeria monocytogenes that behaves as an invasin and a growth factor. J Cell Sci. 115(17):3357–3367.
  • Bierne H, Milohanic E, Kortebi M. 2018. To be cytosolic or vacuolar: the double life of Listeria monocytogenes. Front Cell Infect Microbiol. 8:136.
  • Blažková M, Koets M, Rauch P, van Amerongen A. 2009. Development of a nucleic acid lateral flow immunoassay for simultaneous detection of Listeria spp. and Listeriamonocytogenes in food. Eur Food Res Technol. 229(6):867–874.
  • Boivin T, Elmgren C, Brooks BW, Huang H, Pagotto F, Lin M. 2016. Expression of surface protein LapB by a wide spectrum of Listeria monocytogenes serotypes as demonstrated with anti-LapB monoclonal antibodies. Appl Environ Microbiol. 82(22):6768–6778.
  • Boonham N, Kreuze J, Winter S, van der Vlugt R, Bergervoet J, Tomlinson J, Mumford R. 2014. Methods in virus diagnostics: from ELISA to next generation sequencing. Virus Res. 186:20–31.
  • Bou Ghanem EN, Jones GS, Myers-Morales T, Patil PD, Hidayatullah AN, D'Orazio SE. 2012. InlA promotes dissemination of Listeria monocytogenes to the mesenteric lymph nodes during food borne infection of mice. PLoS Pathog. 8(11):e1003015.
  • Bruno JG, Phillips T, Montez T, Garcia A, Sivils JC, Mayo MW, Greis A. 2015. Development of a fluorescent enzyme-linked DNA aptamer-magnetic bead sandwich assay and portable fluorometer for sensitive and rapid Listeria detection. J Fluoresc. 25(1):173–183.
  • Bubert A, Kuhn M, Goebel W, Kohler S. 1992. Structural and functional properties of the p60 proteins from different Listeria species. J Bacteriol. 174(24):8166–8171.
  • Buchanan RL, Gorris LGM, Hayman MM, Jackson TC, Whiting RC. 2017. A review of Listeria monocytogenes: an update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control. 75:1–13.
  • Burkholder KM, Bhunia AK. 2010. Listeria monocytogenes uses Listeria adhesion protein (LAP) to promote bacterial transepithelial translocation, and induces expression of LAP receptor Hsp60. IAI. 78(12):5062–5073.
  • Burkholder KM, Kim K-P, Mishra K, Medina S, Hahm B-K, Kim H, Bhunia AK. 2009. Expression of LAP, a SecA2-dependent secretory protein, is induced under anaerobic environment. Microbes Infect. 11(10–11):859–867.
  • Cabanes D, Dehoux P, Dussurget O, Frangeul L, Cossart P. 2002. Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol. 10(5):238–245.
  • Cabanes D, Sousa S, Cebria A, Lecuit M, Garcia-del Portillo F, Cossart P. 2005. Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein. Embo J. 24(15):2827–2838.
  • Camejo A, Carvalho F, Reis O, Leitao E, Sousa S, Cabanes D. 2011. The arsenal of virulence factors deployed by Listeria monocytogenes to promote its cell infection cycle. Virulence. 2(5):379–394.
  • Carroll SA, Hain T, Technow U, Darji A, Pashalidis P, Joseph SW, Chakraborty T. 2003. Identification and characterization of a peptidoglycan hydrolase, MurA, of Listeria monocytogenes, a muramidase needed for cell separation. J Bacteriol. 185(23):6801–6808.
  • Cavaiuolo M, Paramithiotis S, Drosinos EH, Ferrante A. 2013. Development and optimization of an ELISA based method to detect Listeria monocytogenes and Escherichia coli O157 in fresh vegetables. Anal Methods. 5(18):4622–4627.
  • Chen J-Q, Healey S, Regan P, Laksanalamai P, Hu Z. 2017. PCR-based methodologies for detection and characterization of Listeria monocytogenes and Listeria ivanovii in foods and environmental sources. Food Sci Human Wellness. 6(2):39–59.
  • Chen R, Huang X, Xu H, Xiong Y, Li Y. 2015. Plasmonic enzyme-linked immunosorbent assay using nanospherical brushes as a catalase container for colorimetric detection of ultralow concentrations of Listeria monocytogenes. ACS Appl Mater Interfaces. 7(51):28632–28639.
  • Cheng C, Dong Z, Han X, Sun J, Wang H, Jiang L, Yang Y, Ma T, Chen Z, Yu J, et al. 2017. Listeria monocytogenes 10403S arginine repressor ArgR finely tunes arginine metabolism regulation under acidic conditions. Front Microbiol. 8:1–12.
  • Cheng MI, Chen C, Engström P, Portnoy DA, Mitchell G. 2018. Actin-based motility allows Listeria monocytogenes to avoid autophagy in the macrophage cytosol. Cell Microbiol. 20(9):e12854.
  • Cho IH, Bhunia A, Irudayaraj J. 2015. Rapid pathogen detection by lateral-flow immunochromatographic assay with gold nanoparticle-assisted enzyme signal amplification. Int J Food Microbiol. 206:60–66.
  • Cho I-H, Irudayaraj J. 2013. Lateral-flow enzyme immunoconcentration for rapid detection of Listeria monocytogenes. Anal Bioanal Chem. 405(10):3313–3319.
  • Coelho C, Brown L, Maryam M, Vij R, Smith DFQ, Burnet MC, Kyle JE, Heyman HM, Ramirez J, Prados-Rosales R, et al. 2019. Listeria monocytogenes virulence factors, including listeriolysin O, are secreted in biologically active extracellular vesicles. J Biol Chem. 294(4):1202–1217.
  • Cossart P, Helenius A. 2014. Endocytosis of viruses and bacteria. Cold Spring Harbor Perspect Biol. 6(8):a016972.
  • Cotter PD, Draper LA, Lawton EM, Daly KM, Groeger DS, Casey PG, Ross RP, Hill C. 2008. Listeriolysin S, a novel peptide haemolysin associated with a subset of lineage I Listeria monocytogenes. PLoS Pathog. 4(9):e1000144.
  • Coutu JV, Morissette C, Auria SD, Lacroix M. 2014. Development of a highly specific sandwich ELISA for the detection of Listeria monocytogenes, an important foodborne pathogen. Microbiol Res Int. 2:46–52.
  • Craig AM, Dotters-Katz S, Kuller JA, Thompson JL. 2019. Listeriosis in pregnancy: a review. Obstet Gynecol Survey. 74(6):362–368.
  • Daugherty S, Low MG. 1993. Cloning, expression, and mutagenesis of phosphatidylinositol-specific phospholipase C from Staphylococcus aureus: a potential staphylococcal virulence factor. Infect Immun. 61(12):5078–5089.
  • David DJ, Pagliuso A, Radoshevich L, Nahori MA, Cossart P. 2018. Lmo1656 is a secreted virulence factor of Listeria monocytogenes that interacts with the sorting nexin 6-BAR complex. J Biol Chem. 293(24):9265–9276.
  • Day JB, Hammack TS. 2019. Immuno-detection and differentiation of Listeria monocytogenes and Listeria ivanovii in stone fruits. J Appl Microbiol. 127(6):1848–1858.
  • Diercks GF, Pas HH, Jonkman MF. 2017. Immunofluorescence of autoimmune bullous diseases. Surg Pathol Clin. 10(2):505–512.
  • Dramsi S, Dehoux P, Lebrun M, Goossens PL, Cossart P. 1997. Identification of four new members of the internalin multigene family of Listeria monocytogenes EGD. Infect Immun. 65(5):1615–1625. DOI:10.1128/IAI.65.5.1615-1625.1997.
  • Drolia R, Amalaradjou MAR, Ryan V, Tenguria S, Liu D, Bai X, Xu L, Singh AK, Cox AD, Bernal-Crespo V, et al. 2020. Receptor-targeted engineered probiotics mitigate lethal Listeria infection. Nat Commun. 11(1):6344.
  • Drolia R, Bhunia AK. 2019. Crossing the intestinal barrier via Listeria adhesion protein and internalin A. Trends Microbiol. 27(5):408–425.
  • Drolia R, Tenguria S, Durkes AC, Turner JR, Bhunia AK. 2018. Listeria adhesion protein induces intestinal epithelial barrier dysfunction for bacterial translocation. Cell Host Microbe. 23(4):470–484.
  • Du XJ, Zang YX, Liu HB, Li P, Wang S. 2018. Recombinase polymerase amplification combined with lateral flow strip for Listeria monocytogenes detection in food. J Food Sci. 83(4):1041–1047.
  • Dussurget O, Cabanes D, Dehoux P, Lecuit M, Buchrieser C, Glaser P, Cossart P. 2002. Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol. 45(4):1095–1106.
  • Dussurget O, Pizarro-Cerda J, Cossart P. 2004. Molecular determinants of Listeria monocytogenes virulence. Annu Rev Microbiol. 58(1):587–610.
  • Etty MC, D'Auria S, Fraschini C, Salmieri S, Lacroix M. 2019. Effect of the optimized selective enrichment medium on the expression of the p60 protein used as Listeria monocytogenes antigen in specific sandwich ELISA. Res Microbiol. 170(4–5):182–191.
  • Etty MC, D'Auria S, Shankar S, Salmieri S, Coutu J, Baraketi A, Jamshidan M, Fraschini C, Lacroix M. 2020. New immobilization method of anti-PepD monoclonal antibodies for the detection of Listeria monocytogenes p60 protein – part A: optimization of a crosslinked film support based on chitosan and cellulose nanocrystals (CNC). Reactive Functional Polymers. 146:104313–104313.
  • Ferreira V, Wiedmann M, Teixeira P, Stasiewicz MJ. 2014. Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health. J Food Prot. 77(1):150–170.
  • Fisher M, Atiya-Nasagi Y, Simon I, Gordin M, Mechaly A, Yitzhaki S. 2009. A combined immunomagnetic separation and lateral flow method for a sensitive on-site detection of Bacillus anthracis spores-assessment in water and dairy products. Lett Appl Microbiol. 48(4):413–418.
  • Gahan C, Hill C. 2014. Listeria monocytogenes: survival and adaptation in the gastrointestinal tract. Front Cell Infect Microbiol. 4:9.
  • Gandhi M, Chikindas ML. 2007. Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol. 113(1):1–15.
  • Gasanov U, Hughes D, Hansbro PM. 2005. Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: a review. FEMS Microbiol Rev. 29(5):851–875.
  • Gelbíčová T, Pantůček R, Karpíšková R. 2016. Virulence factors and resistance to antimicrobials in Listeria monocytogenes serotype 1/2c isolated from food. J Appl Microbiol. 121(2):569–576.
  • Gene RW, Kumaran J, Aroche C, van Faassen H, Hall JC, MacKenzie CR, Arbabi-Ghahroudi M. 2015. High affinity anti-Internalin B VHH antibody fragments isolated from naturally and artificially immunized repertoires. J Immunol Methods. 416:29–39.
  • Geng T, Kim KP, Gomez R, Sherman DM, Bashir R, Ladisch MR, Bhunia AK. 2003. Expression of cellular antigens of Listeria monocytogenes that react with monoclonal antibodies C11E9 and EM-7G1 under acid-, salt- or temperature-induced stress environments. J Appl Microbiol. 95(4):762–772.
  • Geng T, Morgan MT, Bhunia AK. 2004. Detection of low levels of Listeria monocytogenes cells by using a fiber-optic immunosensor. Appl Environ Microbiol. 70(10):6138–6146.
  • Gessain G, Tsai Y-H, Travier L, Bonazzi M, Grayo S, Cossart P, Charlier C, Disson O, Lecuit M. 2015. PI3-kinase activation is critical for host barrier permissiveness to Listeria monocytogenes. J Exp Med. 212(2):165–183.
  • Ghosh P, Halvorsen EM, Ammendolia DA, Mor-Vaknin N, O’Riordan MX, Brumell JH, Markovitz DM, Higgins DE. 2018. Invasion of the brain by Listeria monocytogenes is mediated by InlF and host cell vimentin. mBio. 9(1):e00160-18.
  • Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H, Brandt P, Chakraborty T, et al. 2001. Comparative genomics of Listeria species. Science. 294(5543):849–852.
  • Gonzalez-Escobedo G, Gunn JS. 2013. Gallbladder epithelium as a niche for chronic salmonella carriage. Infect Immun. 81(8):2920–2930.
  • Grundling A, Gonzalez MD, Higgins DE. 2003. Requirement of the Listeria monocytogenes broad-range phospholipase PC-PLC during infection of human epithelial cells. J Bacteriol. 185(21):6295–6307.
  • Hahm BK, Bhunia AK. 2006. Effect of environmental stresses on antibody-based detection of Escherichia coli O157:H7, Salmonella enterica serotype Enteritidis and Listeria monocytogenes. J Appl Microbiol. 100(5):1017–1027.
  • Hahm BK, Kim H, Singh AK, Bhunia AK. 2015. Pathogen enrichment device (PED) enables one-step growth, enrichment and separation of pathogen from food matrices for detection using bioanalytical platforms. J Microbiol Methods. 117:64–73.
  • Hearty S, Leonard P, Quinn J, O'Kennedy R. 2006. Production, characterisation and potential application of a novel monoclonal antibody for rapid identification of virulent Listeria monocytogenes. J Microbiol Methods. 66(2):294–312.
  • Heo SA, Nannapaneni R, Story RP, Johnson MG. 2007. Characterization of new hybridoma clones producing monoclonal antibodies reactive against both live and heat-killed Listeria monocytogenes. J Food Sci. 72(1):M008-15.
  • Hoge J, Yan I, Jänner N, Schumacher V, Chalaris A, Steinmetz OM, Engel DR, Scheller J, Rose-John S, Mittrücker H-W. 2013. IL-6 controls the Innate immune response against Listeria monocytogenes via classical IL-6 signaling. J Immunol. 190(2):703–711.
  • Horn N, Bhunia AK. 2018. Food-associated stress primes foodborne pathogens for the gastrointestinal phase of infection. Front Microbiol. 9:1962.
  • Hsieh HV, Dantzler JL, Weigl BH. 2017. Analytical tools to improve optimization procedures for lateral flow assays. Diagnostics. 7(2):29.
  • Hurley D, Luque-Sastre L, Parker CT, Huynh S, Eshwar AK, Nguyen SV, Andrews N, Moura A, Fox EM, Jordan K, et al. 2019. Whole-genome sequencing-based characterization of 100 Listeria monocytogenes isolates collected from food processing environments over a four-year period. Appl Environ Sci. 4(4):1–14.
  • Ito K, Yamamoto T, Oyama Y, Tsuruma R, Saito E, Saito Y, Ozu T, Honjoh T, Adachi R, Sakai S, et al. 2016. Food allergen analysis for processed food using a novel extraction method to eliminate harmful reagents for both ELISA and lateral-flow tests. Anal Bioanal Chem. 408(22):5973–5984.
  • Jacinto MJ, Trabuco JRC, Vu BV, Garvey G, Khodadady M, Azevedo AM, Aires-Barros MR, Chang L, Kourentzi K, Litvinov D, Willson RC. 2018. Enhancement of lateral flow assay performance by electromagnetic relocation of reporter particles. PLoS One. 13(1):e0186782.
  • Jagadeesan B, Fleishman Littlejohn AE, Amalaradjou MAR, Singh AK, Mishra KK, La D, Kihara D, Bhunia AK. 2011. N-Terminal Gly224 - Gly411 domain in Listeria adhesion protein interacts with host receptor Hsp60. PLoS One. 6(6):e20694.
  • Jagadeesan B, Koo OK, Kim KP, Burkholder KM, Mishra KK, Aroonnual A, Bhunia AK. 2010. LAP, an alcohol acetaldehyde dehydrogenase enzyme in Listeria promotes bacterial adhesion to enterocyte-like Caco-2 cells only in pathogenic species. Microbiology. 156(9):2782–2795.
  • Jain B, Lambe U, Tewari A, Kadian SK, Prasad M. 2018. Development of a rapid test for detection of foot-and-mouth disease virus specific antibodies using gold nanoparticles. Virusdisease. 29(2):192–198.
  • Jaradat ZW, Bhunia AK. 2002. Glucose and nutrient concentrations affect the expression of a 104-kilodalton Listeria adhesion protein in Listeria monocytogenes. Appl Environ Microbiol. 68(10):4876–4883.
  • Jeyaletchumi P, Tunung R, Margaret SP, Son R, Farinazleen MG, Cheah YK. 2010. Detection of Listeria monocytogenes in foods. Int Food Res J. 17(1):1–11.
  • Jiang N, Ahmed R, Damayantharan M, Ünal B, Butt H, Yetisen AK. 2019. Lateral and vertical flow assays for point-of-care diagnostics. Adv Healthcare Mater. 8(14):1900244–1900219.
  • Johansson J, Freitag NE. 2019. Regulation of Listeria monocytogenes virulence. In: Fischetti VA, Novick RP, Ferretti JJ, Portnoy, DA, Braunstein M, Rood JI, editor. Gram‐positive pathogens. Hoboken (NJ): John Wiley & Sons, Inc.; p. 836–850.
  • Karamonová L, Blažková M, Fukal L, Rauch P, Greifová M, Horáková K, Tomáška M, Roubal P, Brett GM, Wyatt GM. 2003. Development of an ELISA specific for Listeria monocytogenes using a polyclonal antibody raised against a cell extract containing internalin B. Food Agri Immunol. 15(3–4):167–182.
  • Karatzas K-AG, Suur L, O'Byrne CP. 2012. Characterization of the intracellular glutamate decarboxylase system: analysis of its function, transcription, and role in the acid resistance of various strains of Listeria monocytogenes. Appl Environ Microbiol. 78(10):3571–3579.
  • Kim KP, Jagadeesan B, Burkholder KM, Jaradat ZW, Wampler JL, Lathrop AA, Morgan MT, Bhunia AK. 2006. Adhesion characteristics of Listeria adhesion protein (LAP)-expressing Escherichia coli to Caco-2 cells and of recombinant LAP to eukaryotic receptor Hsp60 as examined in a surface plasmon resonance sensor. FEMS Microbiol Lett. 256(2):324–332.
  • Kim KP, Singh AK, Bai X, Leprun L, Bhunia AK. 2015. Novel PCR assays complement laser biosensor-based method and facilitate Listeria species detection from food. Sensors. 15(9):22672–22691.
  • King MT, Huh I, Shenai A, Brooks TM, Brooks CL. 2018. Structural basis of V H H-mediated neutralization of the food-borne pathogen Listeria monocytogenes. J Biol Chem. 293(35):13626–13635.
  • Kitao T, Miyoshi-Akiyama T, Shimada K, Tanaka M, Narahara K, Saito N, Kirikae T. 2010. Development of an immunochromatographic assay for the rapid detection of AAC(6')-Iae-producing multidrug-resistant Pseudomonas aeruginosa. J Antimicrob Chemother. 65(7):1382–1386.
  • Koczula KM, Gallotta A. 2016. Lateral flow assays. Essays Biochem. 60(1):111–120.
  • Koo OK, Aroonnual A, Bhunia AK. 2011. Human heat-shock protein 60 receptor-coated paramagnetic beads show improved capture of Listeria monocytogenes in the presence of other Listeria in food. J Appl Microbiol. 111(1):93–104.
  • Koo OK, Liu Y, Shuaib S, Bhattacharya S, Ladisch MR, Bashir R, Bhunia AK. 2009. Targeted capture of pathogenic bacteria using a mammalian cell receptor coupled with dielectrophoresis on a biochip. Anal Chem. 81(8):3094–3101.
  • Kortebi M, Milohanic E, Mitchell G, Péchoux C, Prevost M-C, Cossart P, Bierne H. 2017. Listeria monocytogenes switches from dissemination to persistence by adopting a vacuolar lifestyle in epithelial cells. PLoS Pathog. 13(11):e1006734.
  • Kühn S, Enninga J. 2020. The actin comet guides the way: how Listeria actin subversion has impacted cell biology, infection biology and structural biology. Cell Microbiol. 22(4):e13190.
  • Lamont RF, Sobel J, Mazaki-Tovi S, Kusanovic JP, Vaisbuch E, Kim SK, Uldbjerg N, Romero R. 2011. Listeriosis in human pregnancy: a systematic review. J Perinatal Med. 39(3):227–236.
  • Lathrop AA, Bailey TW, Kwang-Pyo K, Bhunia AK. 2014. Pathogen-specific antigen target for production of antibodies produced by comparative genomics. Antibody Technol J. 4:13.
  • Lathrop AA, Banada PP, Bhunia AK. 2008. Differential expression of InlB and ActA in Listeria monocytogenes in selective and nonselective enrichment broths. J Appl Microbiol. 104(3):627–639.
  • Lathrop AA, Jaradat ZW, Haley T, Bhunia AK. 2003. Characterization and application of a Listeria monocytogenes reactive monoclonal antibody C11E9 in a resonant mirror biosensor. J Immunol Methods. 281(1–2):119–128.
  • Law JW-F, Ab Mutalib N-S, Chan K-G, Lee L-H. 2014. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol. 5:770–770.
  • Le Monnier A, Abachin E, Beretti JL, Berche P, Kayal S. 2011. Diagnosis of Listeria monocytogenes meningoencephalitis by real-time PCR for the hly gene. J Clin Microbiol. 49(11):3917–3923.
  • Lebreton A, Lakisic G, Job V, Fritsch L, Tham TN, Camejo A, Mattei PJ, Regnault B, Nahori MA, Cabanes D, et al. 2011. A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response. Science. 331(6022):1319–1321.
  • Leclercq A, Moura A, Vales G, Tessaud-Rita N, Aguilhon C, Lecuit M. 2019. Listeria thailandensis sp. nov. Int J Syst Evol Microbiol. 69(1):74–81.
  • Lee B-H, Cole S, Badel-Berchoux S, Guillier L, Felix B, Krezdorn N, Hébraud M, Bernardi T, Sultan I, Piveteau P. 2019. Biofilm formation of Listeria monocytogenes strains under food processing environments and pan-genome-wide association study. Front Microbiol. 10:2698.
  • Leonard P, Hearty S, Wyatt G, Quinn J, O'Kennedy R. 2005. Development of a surface plasmon resonance-based immunoassay for Listeria monocytogenes. J Food Prot. 68(4):728–735.
  • Leszczyńska J, MasŁowska J, Owczarek A, Kucharska U. 2013. Determination of aflatoxins in food products by the ELISA method. Czech J Food Sci. 19(No. 1):8–12.
  • Li F, Li F, Luo D, Lai W, Xiong Y, Xu H. 2018. Biotin-exposure-based immunomagnetic separation coupled with nucleic acid lateral flow biosensor for visibly detecting viable Listeria monocytogenes. Anal Chim Acta. 1017:48–56.
  • Li J, Jing L, Song Y, Zhang J, Chen Q, Wang B, Xia X, Han Q. 2018. Rapid detection of rongalite via a sandwich lateral flow strip assay using a pair of aptamers. Nanoscale Res Lett. 13(1):296.
  • Li Q, Zhang S, Cai Y, Yang Y, Hu F, Liu X, He X. 2017. Rapid detection of Listeria monocytogenes using fluorescence immunochromatographic assay combined with immunomagnetic separation technique. Int J Food Sci Technol. 52(7):1559–1566.
  • Lindén SK, Bierne H, Sabet C, Png CW, Florin TH, McGuckin MA, Cossart P. 2008. Listeria monocytogenes internalins bind to the human intestinal mucin MUC2. Arch Microbiol. 190(1):101–104.
  • Lingala SMD, Ghany M. 2015. The p60 and NamA autolysins from Listeria monocytogenes contribute to host colonization and induction of protective memory. Cell Microbiol. 17(2):147–163.
  • Liu A, Xiong Q, Shen L, Li W, Zeng Z, Li C, Liu S, Liu Y, Han G. 2017. A sandwich-type ELISA for the detection of Listeria monocytogenes using the well-oriented single chain Fv antibody fragment. Food Control. 79:156–161.
  • Liu H, Du X-J, Zang Y-X, Li P, Wang S. 2017. SERS-based lateral flow strip biosensor for simultaneous detection of Listeria monocytogenes and Salmonella enterica serotype enteritidis. J Agric Food Chem. 65(47):10290–10299.
  • Liu Y, Orsi RH, Gaballa A, Wiedmann M, Boor KJ, Guariglia-Oropeza V. 2019. Systematic review of the Listeria monocytogenes σB regulon supports a role in stress response, virulence and metabolism. Future Microbiol. 14(9):801–828.
  • Lungu B, Ricke SC, Johnson MG. 2009. Growth, survival, proliferation and pathogenesis of Listeria monocytogenes under low oxygen or anaerobic conditions: a review. Anaerobe. 15(1–2):7–17.
  • Luo X, Cai X. 2012. A combined use of autolysin p60 and listeriolysin O antigens induces high protective immune responses against Listeria monocytogenes infection. Curr Microbiol. 65(6):813–818.
  • Lv X, Huang Y, Liu D, Liu C, Shan S, Li G. Duan M, Lai W. 2019. Multicolor and ultrasensitive ELISA based on fluorescence hybrid chain reaction for simultaneous detection of pathogens. J Agric Food Chem. 67(33):9390–9398.
  • Malica L, Zhanga X, Brassarda D, Climea L, Daouda J, Luebbertb C, Barrereb V, Boutina A, Bidawidb S, Farberb J, et al. 2015. Polymer-based microfluidic chip for rapid and efficient immunomagnetic capture and release of Listeria monocytogenes. Lab Chip. 0:1–3.
  • Mao X, Xu H, Zeng Q, Zeng L, Liu G. 2009. Molecular beacon-functionalized gold nanoparticles as probes in dry-reagent strip biosensor for DNA analysis. Chem Commun. 81(21):3065–3067.
  • Markkula A, Lindström M, Korkeala H. 2011. Listeria monocytogenes serotypes 1/2c and 3c possess inlH. Foodborne Pathog Dis. 8(10):1125–1129.
  • Mendonca M, Conrad N, Conceicao F, Moreira A, da Silva W, Aleixo J, Bhunia A. 2012. Highly specific fiber optic immunosensor coupled with immunomagnetic separation for detection of low levels of Listeria monocytogenes and L. ivanovii. BMC Microbiol. 12(1):275.
  • Mendonça M, Moreira GMSG, Conceição FR, Hust M, Mendonça KS, Moreira ÂN, França RC, Silva WPD, Bhunia AK, Aleixo JAG. 2016. Fructose 1,6-bisphosphate aldolase, a novel immunogenic surface protein on Listeria species. PLoS One. 11(8):e0160544– 20.
  • Meyer C, Fredriksson-Ahomaa M, Sperner B, Märtlbauer E. 2011. Detection of Listeria monocytogenes in pork and beef using the VIDAS® LMO2 automated enzyme linked immunoassay method. Meat Sci. 88(3):594–596.
  • Nanduri V, Bhunia AK, Tu SI, Paoli GC, Brewster JD. 2007. SPR biosensor for the detection of L. monocytogenes using phage-displayed antibody. Biosens Bioelectron. 23(2):248–252.
  • Nanduri V, Kim G, Morgan MT, Ess D, Hahm BK, Kothapalli A, Valadez A, Geng T, Bhunia AK. 2006. Antibody immobilization on waveguides using a flow-through system shows improved Listeria monocytogenes detection in an automated fiber optic biosensor: RAPTOR (TM). Sensors. 6(8):808–822.
  • Nannapaneni R, Story R, Bhunia AK, Johnson MG. 1998. Unstable expression and thermal instability of a species-specific cell surface epitope associated with a 66-kilodalton antigen recognized by monoclonal antibody EM-7G1 within serotypes of Listeria monocytogenes grown in nonselective and selective broths. Appl Environ Microbiol. 64(8):3070–3074.
  • Nikitas G, Deschamps C, Disson O, Niault T, Cossart P, Lecuit M. 2011. Transcytosis of Listeria monocytogenes across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin. J Exp Med. 208(11):2263–2277.
  • Núñez-Montero K, Leclercq A, Moura A, Vales G, Peraza J, Pizarro-Cerdá J, Lecuit M. 2018. Listeria costaricensis sp. nov. Int J Sys Evol Microbiol. 68(3):844–850.
  • Ohk S-H, Bhunia AK. 2013. Multiplex fiber optic biosensor for detection of Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica from ready-to-eat meat samples. Food Microbiol. 33(2):166–171.
  • Ohk SH, Koo OK, Sen T, Yamamoto CM, Bhunia AK. 2010. Antibody-aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. J Appl Microbiol. 109(3):808–817.
  • Ooi ST, Lorber B. 2005. Gastroenteritis due to Listeria monocytogenes. Clin Infect Dis. 40(9):1327–1332.
  • Oravec M, Sasinkov V, Tomanova K, Gal L, Parciova S, Huck CW. 2018. In-situ surface-enhanced Raman scattering and FT-Raman spectroscopy of black prints. Vib Spectrosc. 94:16–21.
  • Ortega FE, Koslover EF, Theriot JA. 2019. Listeria monocytogenes cell-to-cell spread in epithelia is heterogeneous and dominated by rare pioneer bacteria. Elife. 8:1–26.
  • Ortega FE, Rengarajan M, Chavez N, Radhakrishnan P, Gloerich M, Bianchini J, Siemers K, Luckett WS, Lauer P, Nelson WJ, et al. 2017. Adhesion to the host cell surface is sufficient to mediate Listeria monocytogenes entry into epithelial cells. Mol Biol Cell. 28(22):2945–2957.
  • Osanai A, Li SJ, Asano K, Sashinami H, Hu DL, Nakane A. 2013. Fibronectin-binding protein, FbpA, is the adhesin responsible for pathogenesis of Listeria monocytogenes infection. Microbiol Immunol. 57(4):253–262.
  • Owais M, Kazmi S, Tufail S, Zubair S. 2014. An alternative chemical redox method for the production of bispecific antibodies: implication in rapid detection of food borne pathogens. PLoS One. 9(3):e91255– 13.
  • Pägelow D, Chhatbar C, Beineke A, Liu X, Nerlich A, Van Vorst K, Rohde M, Kalinke U, Förster R, Halle S, et al. 2018. The olfactory epithelium as a port of entry in neonatal neurolisteriosis. Nat Commun. 9(1):4269.DOI:10.1038/s41467-018-06668-2. PMC: 30323282.
  • Pandiripally VK, Westbrook DG, Sunki GR, Bhunia AK. 1999. Surface protein p104 is involved in adhesion of Listeria monocytogenes to human intestinal cell line, Caco-2. J Med Microbiol. 48(2):117–124.
  • Pang X, Wong C, Chung H-J, Yuk H-G. 2019. Biofilm formation of Listeria monocytogenes and its resistance to quaternary ammonium compounds in a simulated salmon processing environment. Food Control. 98:200–208.
  • Paoli GC, Brewster JD. 2007. A Listeria monocytogenes-specific phage-displayed antibody fragment recognizes a cell surface protein whose expression is regulated by physiological conditions. J Rapid Methods Auto Microbiol. 15(1):77–91.
  • Paoli GC, Chen C-Y, Brewster JD. 2004. Single-chain Fv antibody with specificity for Listeria monocytogenes. J Immunol Methods. 289(1–2):147–155.
  • Paoli GC, Kleina LG, Brewster JD. 2007. Development of Listeria monocytogenes-specific immunomagnetic beads using a single-chain antibody fragment. Foodborne Pathog Dis. 4(1):74–83.
  • Pattabiraman G, Palasiewicz K, Visvabharathy L, Freitag NE, Ucker DS. 2017. Apoptotic cells enhance pathogenesis of Listeria monocytogenes. Microb Pathog. 105:218–225.
  • Paudyal R, Barnes RH, Karatzas KAG. 2018. A novel approach in acidic disinfection through inhibition of acid resistance mechanisms; maleic acid-mediated inhibition of glutamate decarboxylase activity enhances acid sensitivity of Listeria monocytogenes. Food Microbiol. 69:96–104.
  • Phelps CC, Vadia S, Arnett E, Tan Y, Zhang X, Pathak-Sharma S, Gavrilin MA, Seveau S. 2018. Relative roles of listeriolysin O, InlA, and InlB in Listeria monocytogenes uptake by host cells. Infect Immun. 86(10):e00555-18.
  • Phraephaisarn C, Khumthong R, Takahashi H, Ohshima C, Kodama K, Techaruvichit P, Vesaratchavest M, Taharnklaew R, Keeratipibul S. 2017. A novel biomarker for detection of Listeria species in food processing factory. Food Control. 73:1032–1038.
  • Pickard JM, Zeng MY, Caruso R, Núñez G. 2017. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 279(1):70–89.
  • Pouillot R, Klontz KC, Chen Y, Burall LS, Macarisin D, Doyle M, Bally KM, Strain E, Datta AR, Hammack TS, et al. 2016. Infectious dose of Listeria monocytogenes in outbreak linked to ice cream, United States, 2015. Emerg Infect Dis. 22(12):2113–2119.
  • Poussin MA, Goldfine H. 2005. Involvement of Listeria monocytogenes phosphatidylinositol-specific phospholipase C and host protein kinase C in permeabilization of the macrophage phagosome. Infect Immun. 73(7):4410–4413.
  • Prommajan K, Palaga T, Rengpipat S. 2016. Detection of Listeria monocytogenes in foods using monoclonal antibody by dot-ELISA and multiplex-PCR. Int Food Res J. 23(6):2702–2709.
  • Pron B, Boumaila C, Jaubert F, Sarnacki S, Monnet J, Berche P, Gaillard J. 1998. Comprehensive study of the intestinal stage of listeriosis in a rat ligated ileal loop system. Infect Immun. 66(2):747–755.
  • Quereda JJ, Dussurget O, Nahori M-A, Ghozlane A, Volant S, Dillies M-A, Regnault B, Kennedy S, Mondot S, Villoing B, et al. 2016. Bacteriocin from epidemic Listeria strains alters the host intestinal microbiota to favor infection. Proc Natl Acad Sci USA. 113(20):5706–5711.
  • Quereda JJ, Rodríguez-Gómez IM, Meza-Torres J, Gómez-Laguna J, Nahori MA, Dussurget O, Carrasco L, Cossart P, Pizarro-Cerdá J. 2019. Reassessing the role of internalin B in Listeria monocytogenes virulence using the epidemic strain F2365. Clin Microbiol Infect. 25(2):252.e1–e4.
  • Radoshevich L, Cossart P. 2018. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol. 16(1):32–46.
  • Rajabian T, Gavicherla B, Heisig M, Müller-Altrock S, Goebel W, Gray-Owen SD, Ireton K. 2009. The bacterial virulence factor InlC perturbs apical cell junctions and promotes cell-to-cell spread of Listeria. Nat Cell Biol. 11(10):1212–1218.
  • Rekha VB, Malik SVS, Chaudhari SP, Barbuddhe SB. 2006. Listeriolysin O-based diagnosis of Listeria monocytogenes infection in experimentally and naturally infected goats. Small Ruminant Res. 66(1–3):70–75.
  • Ribet D, Cossart P. 2015. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 17(3):173–183.
  • Roberts BN, Chakravarty D, Gardner JC, Ricke SC, Donaldson JR. 2020. Listeria monocytogenes response to anaerobic environments. Pathogens. 9(3):210.
  • Rodríguez-Lorenzo L, Garrido-Maestu A, Bhunia AK, Espiña B, Prado M, Diéguez L, Abalde-Cela S. 2019. Gold Nanostars for the detection of foodborne pathogens via surface-enhanced Raman scattering combined with microfluidics. ACS Appl Nano Mater. 2(10):6081–6086.
  • Ronholm J, van Faassen H, MacKenzie R, Zhang Z, Cao X, Lin M. 2013. Monoclonal antibodies recognizing the surface autolysin IspC of Listeria monocytogenes serotype 4b: epitope localization, kinetic characterization, and cross-reaction studies. PLoS One. 8(2):e55098.
  • Ryan S, Begley M, Gahan CGM, Hill C. 2009. Molecular characterization of the arginine deiminase system in Listeria monocytogenes: regulation and role in acid tolerance. Environ Microbiol. 11(2):432–445.
  • Sajid M, Kawde AN, Daud M. 2015. Designs, formats and applications of lateral flow assay: a literature review. J Saudi Chem Soc. 19(6):689–705.
  • Santiago NI, Zipf A, Bhunia AK. 1999. Influence of temperature and growth phase on expression of a 104-kilodalton Listeria adhesion protein in Listeria monocytogenes. Appl Environ Microbiol. 65(6):2765–2769.
  • Schlech WF. 2019. Epidemiology and clinical manifestations of Listeria monocytogenes infection. In: Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA. Braunstein M, Rood JI, editors. Gram-positive pathogens. Hoboken (NJ): John Wiley & Sons, Inc.; p. 793–802.
  • Sharma H, Mutharasan R. 2013. Rapid and sensitive immunodetection of Listeria monocytogenes in milk using a novel piezoelectric cantilever sensor. Biosens Bioelectron. 45(1):158–162.
  • Shen Y, Naujokas M, Park M, Ireton K. 2000. InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase . Cell. 103(3):501–510.
  • Shi C, Hohl TM, Ingrid L, Equinda MJ, Fan X, Pamer EG. 2011. Ly6G + neutrophils are dispensable for defense against systemic Listeria monocytogenes infection. J Immunol. 187(10):5293–5298.
  • Shi L, Wu F, Wen Y, Zhao F, Xiang J, Ma L. 2015. A novel method to detect Listeria monocytogenes via superparamagnetic lateral flow immunoassay. Anal Bioanal Chem. 407(2):529–535.
  • Shoukat S, Malik SVS, Rawool DB, Kumar A, Kumar S, Shrivastava S, Das DP, Das S, Barbuddhe SB. 2013. Comparison of indirect based ELISA by employing purified LLO and its synthetic peptides and cultural method for diagnosis of ovine listeriosis. Small Ruminant Res. 113(1):301–306.
  • Sim J, Hood D, Finnie L, Wilson M, Graham C, Brett M, Hudson JA. 2002. Series of incidents of Listeria monocytogenes non-invasive febrile gastroenteritis involving ready-to-eat meats. Lett Appl Microbiol. 35(5):409–413.
  • Singh AK, Bhunia AK. 2018. Optical Biosensors in Foodborne Pathogen Detection. 443. https://www.taylorfrancis.com/chapters/edit/10.1201/9780429429934-21/optical-biosensors-foodborne-pathogen-detection-atul-singh-arun-bhunia
  • Singh J, Sharma S, Nara S. 2015. Evaluation of gold nanoparticle based lateral flow assays for diagnosis of enterobacteriaceae members in food and water. Food Chem. 170:470–483.
  • Smith AM, Tau NP, Smouse SL, Allam M, Ismail A, Ramalwa NR, Disenyeng B, Ngomane M, Thomas J. 2019. Outbreak of Listeria monocytogenes in South Africa, 2017–2018: laboratory activities and experiences associated with whole-genome sequencing analysis of isolates. Foodborne Pathog Dis. 16(7):524–530.
  • Smolsky J, Kaur S, Hayashi C, Batra SK, Krasnoslobodtsev AV. 2017. Immunoassay technologies for detection of disease biomarkers. Biosensors. 7(4):7– 21.
  • Sobyanin K, Sysolyatina E, Krivozubov M, Chalenko Y, Karyagina A, Ermolaeva S, Calendar R. 2017. Naturally occurring InlB variants that support intragastric Listeria monocytogenes infection in mice. FEMS Microbiol Lett. 364(3):fnx011.
  • Stambach NR, Carr SA, Cox CR, Voorhees KJ. 2015. Rapid detection of Listeria by bacteriophage amplification and SERS-lateral flow immunochromatography. Viruses. 7(12):6631–6641.
  • Suryawanshi RD, Malik SVS, Jayarao B, Chaudhari SP, Savage E, Vergis J, Kurkure NV, Barbuddhe SB, Rawool DB. 2017. Comparative diagnostic efficacy of recombinant LLO and PI-PLC-based ELISAs for detection of listeriosis in animals. J Microbiol Methods. 137:40–45.
  • Swaminathan B, Gerner-Smidt P. 2007. The epidemiology of human listeriosis. Microbes Infect. 9(10):1236–1243.
  • Tasara T, Stephan R. 2006. Cold stress tolerance of Listeria monocytogenes: a review of molecular adaptive mechanisms and food safety implications. J Food Prot. 69(6):1473–1484.
  • Theriot JA, Mitchison TJ, Tilney LG, Portnoy DA. 1992. The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature. 357(6375):257–260.
  • Tilney L, Portnoy D. 1989. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol. 109(4 Pt 1):1597–1608.
  • Travier L, Guadagnini S, Gouin E, Dufour A, Chenal-Francisque V, Cossart P, Olivo-Marin J-C, Ghigo J-M, Disson O, Lecuit M. 2013. ActA promotes Listeria monocytogenes aggregation, intestinal colonization and carriage. PLoS Pathog. 9(1):e1003131.
  • Travier L, Lecuit M. 2014. Listeria monocytogenes ActA: a new function for a 'classic' virulence factor. Curr Opin Microbiol. 17(1):53–60.
  • Tu Z, Chen Q, Li Y, Xiong Y, Xu Y, Hu N, Tao Y. 2016. Identification and characterization of species-specific nanobodies for the detection of Listeria monocytogenes in milk. Anal Biochem. 493:1–7.
  • Tully E, Higson SP, O'Kennedy R. 2008. The development of a 'labeless' immunosensor for the detection of Listeria monocytogenes cell surface protein, Internalin B. Biosens Bioelectron. 23(6):906–912.
  • Uusitalo S, Kögler M, Välimaa AL, Popov A, Ryabchikov Y, Kontturi V, Siitonen S, Petäjä J, Virtanen T, Laitinen R, et al. 2016. Detection of Listeria innocua on roll-to-roll produced SERS substrates with gold nanoparticles. RSC Adv. 6(67):62981–62989.
  • Välimaa AL, Tilsala-Timisjärvi A, Virtanen E. 2015. Rapid detection and identification methods for Listeria monocytogenes in the food chain – A review. Food Control. 55:103–114.
  • Wang G, Zhao H, Zheng B, Li D, Yuan Y, Han Q, Tian Z, Zhang J. 2019. TLR2 promotes monocyte/macrophage recruitment Into the liver and microabscess formation to limit the spread of Listeria monocytogenes. Front Immunol. 10(June):1–12.
  • Wang J, Ray AJ, Hammons SR, Oliver HF. 2015. Persistent and transient Listeria monocytogenes strains from retail deli environments vary in their ability to adhere and form biofilms and rarely have inlA premature stop codons. Foodborne Pathog Dis. 12(2):151–158.
  • Wang W, Liu L, Song S, Xu L, Kuang H, Zhu J, Xu C. 2017. Identification and quantification of eight Listeria monocytogenes serotypes from Listeria spp. using a gold nanoparticle-based lateral flow assay. Microchim Acta. 184(3):715–724.
  • Wang Y, Salazar JK. 2016. Culture-independent rapid detection methods for bacterial pathogens and toxins in food matrices. Compr Rev Food Sci Food Saf. 15(1):183–205.
  • Wang W, Liu L, Song S, Xu L, Zhu J, Kuang H. 2017. Gold nanoparticle-based paper sensor for multiple detection of 12 Listeria spp. by P60-mediated monoclonal antibody. Food Ag Immunol. 28(2):274–287.
  • Weller D, Andrus A, Wiedmann M, den Bakker HC. 2015. Listeria booriae sp. nov. and Listeria newyorkensis sp. nov., from food processing environments in the USA. Int J Syst Evol Microbiol. 65(Pt 1):286–292.
  • Wieckowska-Szakiel M, Bubert A, Rozalski M, Krajewska U, Rudnicka W, Rozalska B. 2002. Colony-blot assay with anti-p60 antibodies as a method for quick identification of Listeria in food. Int J Food Microbiol. 72(1–2):63–71.
  • Wolfe B. 2017. Acute fetal demise with first trimester maternal infection resulting from Listeria monocytogenes in a nonhuman primate model. mBio. 8(1):e01938-16.
  • Wu Z. 2019. Simultaneous detection of Listeria monocytogenes and Salmonella Typhimurium by a SERS-based lateral flow immunochromatographic assay. Food Anal Methods. 12(5):1086–1091.
  • Xu L, Bai X, Bhunia AK. 2021. Current state of biosensors development and their application in foodborne pathogen detection. J Food Prot. DOI:10.4315/JFP-20-464.
  • Yeung PS, Zagorski N, Marquis H. 2005. The metalloprotease of Listeria monocytogenes controls cell wall translocation of the broad-range phospholipase C. J Bacteriol. 187(8):2601–2608.
  • Yu K-Y, Noh Y, Chung M, Park H-J, Lee N, Youn M, Jung BY, Youn B-S. 2004. Use of monoclonal antibodies that recognize p60 for identification of Listeria monocytogenes. Clin Diagn Lab Immunol. 11(3):446–451.
  • Zhang CXY, Brooks BW, Huang H, Pagotto F, Lin M. 2016. Identification of surface protein biomarkers of Listeria monocytogenes via bioinformatics and antibody-based protein detection tools. Appl Environ Microbiol. 82(17):5465–5476.
  • Zhang T, Abel S, Abel Zur Wiesch P, Sasabe J, Davis BM, Higgins DE, Waldor MK. 2017. Deciphering the landscape of host barriers to Listeria monocytogenes infection. Proc Natl Acad Sci U S A. 114(24):6334–6339.
  • Zhang X, Tsuji S, Kitaoka H, Kobayashi H, Tamai M, Honjoh KI, Miyamoto T. 2017. Simultaneous detection of Escherichia coli O157:H7, Salmonella Enteritidis, and Listeria monocytogenes at a very low level using simultaneous enrichment broth and multichannel SPR biosensor. J Food Sci. 82(10):2357–2363.
  • Zhao Y, Zhu A, Tang J, Tang C, Chen J. 2017. Identification and measurement of staphylococcal enterotoxin M from Staphylococcus aureus isolate associated with staphylococcal food poisoning. Lett Appl Microbiol. 65(1):27–34.
  • Zheng L, Li M, Li F, Zhang M. 2018. Paper-based chemiluminescence enzyme-linked immunosorbent assay enhanced by biotin-streptavidin system for high-sensitivity C-reactive protein detection. Anal Biochem. 559:86–90.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.