635
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Metabolic flexibility and extensive adaptability governing multiple drug resistance and enhanced virulence in Candida albicans

, , , ORCID Icon & ORCID Icon
Pages 1-20 | Received 08 Sep 2020, Accepted 21 May 2021, Published online: 02 Jul 2021

References

  • Abe F, Tateyma M, Shibuya H, Azumi N, Ommura Y. 1985. Experimental candidiasis in iron overload. Mycopathologia. 89(1):59–63.
  • Alim D, Sircaik S, Panwar SL. 2018. The significance of lipids to biofilm formation in Candida albicans: an emerging perspective. JOF. 4(4):140.
  • Almeida RS, Wilson D, Hube B. 2009. Candida albicans iron acquisition within the host. FEMS Yeast Res. 9(7):1000–1012.
  • Alonso-Monge R, Navarro-Garcia F, Molero G, Diez-Orejas R, Gustin M, Pla J, Sanchez M, Nombela C. 1999. Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J Bacteriol. 181(10):3058–3068.
  • Alvarez FJ, Konopka JB. 2007. Identification of an N-acetylglucosamine transporter that mediates hyphal induction in Candida albicans. Mol Biol Cell. 18(3):965–975.
  • Askew C, Sellam A, Epp E, Hogues H, Mullick A, Nantel A, Whiteway M. 2009. Transcriptional regulation of carbohydrate metabolism in the human pathogen Candida albicans. PLOS Pathog. 5(10):e1000612.
  • Barelle CJ, Priest CL, MacCallum DM, Gow NA, Odds FC, Brown AJ. 2006. Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell Microbiol. 8(6):961–971.
  • Barman A, Gohain D, Bora U, Tamuli R. 2018. Phospholipases play multiple cellular roles including growth, stress tolerance, sexual development, and virulence in fungi. Microbiol Res. 209:55–69.
  • Bastidas RJ, Heitman J. 2009. Trimorphic stepping stones pave the way to fungal virulence. Proc Natl Acad Sci U S A. 106(2):351–352.
  • Bates S, Hughes HB, Munro CA, Thomas WP, MacCallum DM, Bertram G, Atrih A, Ferguson MA, Brown AJ, Odds FC, et al. 2006. Outer chain N-glycans are required for cell wall integrity and virulence of Candida albicans. J Biol Chem. 281(1):90–98.
  • Bates S, José M, MacCallum DM, Brown AJ, Gow NA, Odds FC. 2007. Candida albicans Iff11, a secreted protein required for cell wall structure and virulence. Infect Immun. 75(6):2922–2928.
  • Bernhardt J, Herman D, Sheridan M, Calderone R. 2001. Adherence and invasion studies of Candida albicans strains, using in vitro models of esophageal candidiasis. J Infect Dis. 184(9):1170–1175.
  • Biswas S, Van Dijck P, Datta A. 2007. Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev. 71(2):348–376.
  • Bonhomme J, Chauvel M, Goyard S, Roux P, Rossignol T, d'Enfert C. 2011. Contribution of the glycolytic flux and hypoxia adaptation to efficient biofilm formation by Candida albicans. Mol Microbiol. 80(4):995–1013.
  • Borg M, Rüchel R. 1990. Demonstration of fungal proteinase during phagocytosis of Candida albicans and Candida tropicalis. J Med Vet Mycol. 28(1):3–14.
  • Brand A, Shanks S, Duncan VM, Yang M, Mackenzie K, Gow NA. 2007. Hyphal orientation of Candida albicans is regulated by a calcium-dependent mechanism. Curr Biol. 17(4):347–352.
  • Brand A, Lee K, Veses V, Gow NA. 2009. Calcium homeostasis is required for contact-dependent helical and sinusoidal tip growth in Candida albicans hyphae. Mol Microbiol. 71(5):1155–1164.
  • Brown AJ, Brown GD, Netea MG, Gow NA. 2014. Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends Microbiol. 22(11):614–622.
  • Brown GD, Denning DW, Levitz SM. 2012. Tackling human fungal infections. Science. 336(6082):647–647.
  • Brown V, Sabina J, Johnston M. 2009. Specialized sugar sensing in diverse fungi. Curr Biol. 19(5):436–441.
  • Brown V, Sexton JA, Johnston M. 2006. A glucose sensor in Candida albicans. Eukaryot Cell. 5(10):1726–1737.
  • Burgain A, Pic É, Markey L, Tebbji F, Kumamoto CA, Sellam A. 2019. A novel genetic circuitry governing hypoxic metabolic flexibility, commensalism and virulence in the fungal pathogen Candida albicans. PLOS Pathog. 15(12):e1007823.
  • Calderone RA, Fonzi WA. 2001. Virulence factors of Candida albicans. Trends Microbiol. 9(7):327–335.
  • Cao C, Wu M, Bing J, Tao L, Ding X, Liu X, Huang G. 2017. Global regulatory roles of the cAMP/PKA pathway revealed by phenotypic, transcriptomic and phosphoproteomic analyses in a null mutant of the PKA catalytic subunit in Candida albicans. Mol Microbiol. 105(1):46–64.
  • Chen H, Zhou X, Ren B, Cheng L. 2020. The regulation of hyphae growth in Candida albicans. Virulence. 11(1):337–348.,
  • Chong P, Chin V, Wong W, Madhavan P, Yong V, Looi C. 2018. Transcriptomic and genomic approaches for unravelling Candida albicans biofilm formation and drug resistance—an update. Genes. 9(11):540.
  • Correia I, Alonso-Monge R, Pla J. 2016. The Hog1 MAP Kinase Promotes the Recovery from Cell Cycle Arrest Induced by Hydrogen Peroxide in Candida albicans. Front Microbiol. 7:2133.
  • Cottier F, Mühlschlegel FA. 2009. Sensing the environment: response of Candida albicans to the X factor. FEMS Microbiol Lett. 295(1):1–9.
  • Dalle F, Wächtler B, L'Ollivier C, Holland G, Bannert N, Wilson D, Labruère C, Bonnin A, Hube B. 2010. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol. 12(2):248–271.
  • Davey ME, O’Toole G A. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 64(4):847–867.
  • Davis-Hanna A, Piispanen AE, Stateva LI, Hogan DA. 2008. Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. Mol Microbiol. 67(1):47–62.
  • de Dios CH, Román E, Alonso Monge R, Pla J. 2010. The role of MAPK signal transduction pathways in the response to oxidative stress in the fungal pathogen Candida albicans: implications in virulence. Curr Protein Pept Sci. 11(8):693–703.
  • de Groot PW, Bader O, de Boer AD, Weig M, Chauhan N. 2013. Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryot Cell. 12(4):470–481.
  • Deorukhkar SC, Saini S, Mathew S. 2014. Virulence Factors Contributing to Pathogenicity of Candida tropicalis and Its Antifungal Susceptibility Profile. Int J Microbiol. 2014. 456878.
  • Ding X, Cao C, Zheng Q, Huang G. 2016. The Regulatory Subunit of Protein Kinase A (Bcy1) in Candida albicans Plays Critical Roles in Filamentation and White-Opaque Switching but Is Not Essential for. Cell Growth. Front Microbiol. 7:2127.
  • Du H, Ennis CL, Hernday AD, Nobile CJ, Huang G. 2020. N-Acetylglucosamine (GlcNAc) sensing, utilization, and functions in Candida albicans. JOF. 6(3):129.
  • Duggan S, Leonhardt I, Hünniger K, Kurzai O. 2015. Host response to Candida albicans bloodstream infection and sepsis. Virulence. 6(4):316–326.
  • Dumitru R, Hornby JM, Nickerson KW. 2004. Defined anaerobic growth medium for studying Candida albicans basic biology and resistance to eight antifungal drugs. Antimicrob Agents Chemother. 48(7):2350–2354.
  • Dwivedi P, Thompson A, Xie Z, Kashleva H, Ganguly S, Mitchell AP, Dongari-Bagtzoglou A. 2011. Role of Bcr1-activated genes Hwp1 and Hyr1 in Candida albicans oral mucosal biofilms and neutrophil evasion. PLoS One. 6(1):e16218.
  • Ene IV, Bennett RJ. 2009. Hwp1 and related adhesins contribute to both mating and biofilm formation in Candida albicans. Eukaryot Cell. 8(12):1909–1913.
  • Ene IV, Adya AK, Wehmeier S, Brand AC, MacCallum DM, Gow NA, Brown AJ. 2012. Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cell Microbiol. 14(9):1319–1335.
  • Enjalbert B, Smith DA, Cornell MJ, Alam I, Nicholls S, Brown AJ, Quinn J. 2006. Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol Biol Cell. 17(2):1018–1032.
  • Enjalbert B, Whiteway M. 2005. Release from quorum-sensing molecules triggers hyphal formation during Candida albicans resumption of growth. Eukaryot Cell. 4(7):1203–1210.
  • Fan J, Chaturvedi V, Shen SH. 2002. Identification and phylogenetic analysis of a glucose transporter gene family from the human pathogenic yeast Candida albicans. J Mol Evol. 55(3):336–346.
  • Fanning S, Mitchell AP. 2012. Fungal biofilms. PLoS Pathog. 8(4):e1002585.
  • Felk A, Kretschmar M, Albrecht A, Schaller M, Beinhauer S, Nichterlein T, Sanglard D, Korting HC, Schäfer W, Hube B. 2002. Candida albicans hyphal formation and the expression of the Efg1-regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs. Infect Immun. 70(7):3689–3700.
  • Finkel JS, Mitchell AP. 2011. Genetic control of Candida albicans biofilm development. Nat Rev Microbiol. 9(2):109–118.
  • Fonzi WA. 2002. Role of pH response in Candida albicans virulence. Mycoses. 45 Suppl 1:16–21.
  • Frank AT, Ramsook CB, Otoo HN, Tan C, Soybelman G, Rauceo JM, Gaur NK, Klotz SA, Lipke PN. 2010. Structure and function of glycosylated tandem repeats from Candida albicans Als adhesins. Eukaryot Cell. 9(3):405–414.
  • Fu Y, Ibrahim AS, Sheppard DC, Chen YC, French SW, Cutler JE, Filler SG, Edwards Jr JE. 2002. Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol. 44(1):61–72.
  • Fu Y, Luo G, Spellberg BJ, Edwards Jr JE, Ibrahim AS. 2008. Gene overexpression/suppression analysis of candidate virulence factors of Candida albicans. Eukaryot Cell. 7(3):483–492.
  • Fuller KK, Rhodes JC. 2012. Protein kinase A and fungal virulence: a sinister side to a conserved nutrient sensing pathway. Virulence. 3(2):109–121.
  • Galán-Díez M, Arana DM, Serrano-Gómez D, Kremer L, Casasnovas JM, Ortega M, Cuesta-Domínguez Á, Corbí AL, Pla J, Fernández-Ruiz E. 2010. Candida albicans beta-glucan exposure is controlled by the fungal CEK1-mediated mitogen-activated protein kinase pathway that modulates immune responses triggered through dectin-1. Infect Immun. 78(4):1426–1436.
  • García-Sánchez S, Aubert S, Iraqui I, Janbon G, Ghigo JM, d'Enfert C. 2004. Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell. 3(2):536–545.
  • Ghannoum MA. 2000. Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev. 13(1):122–143.
  • Gow NA, Van De Veerdonk FL, Brown AJ, Netea MG. 2011. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol. 10(2):112–122.
  • Groll AH, Walsh TJ. 2001. Uncommon opportunistic fungi: new nosocomial threats. Clin Microbiol Infect. 7 Suppl 2:8–24.
  • Gulati M, Nobile CJ. 2016. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect. 18(5):310–321.
  • Halbertsma FJ, Vaneker M, Pickkers P, Snijdelaar D, van Egmond J, Scheffer G, van der Hoeven H. 2008. Hypercapnic acidosis attenuates the pulmonary innate immune response in ventilated healthy mice. Crit Care Med. 36(8):2403–2406.
  • Hall RA, De Sordi L, MacCallum DM, Topal H, Eaton R, Bloor JW, Robinson GK, Levin LR, Buck J, Wang Y, et al. 2010. CO(2) acts as a signalling molecule in populations of the fungal pathogen Candida albicans. PLoS Pathog. 6(11):e1001193.
  • Helmerhorst EJ, Murphy MP, Troxler RF, Oppenheim FG. 2002. Characterization of the mitochondrial respiratory pathways in Candida albicans. Biochim Biophys Acta. 1556(1):73–80.
  • Hoover CI, Jantapour MJ, Newport G, Agabian N, Fisher SJ. 1998. Cloning and regulated expression of the Candida albicans phospholipase B (PLB1) gene. FEMS Microbiol Lett. 167(2):163–169.
  • Hoyer LL, Cota E. 2016. Candida albicans Agglutinin-Like Sequence (Als) Family Vignettes: a Review of Als Protein Structure and Function. Front Microbiol. 7:280.
  • Hoyer LL, Green CB, Oh SH, Zhao X. 2008. Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family–a sticky pursuit. Med Mycol. 46(1):1–15.
  • Hube B, Monod M, Schofield DA, Brown AJ, Gow NA. 1994. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol. 14(1):87–99.
  • Hube B, Sanglard D, Odds FC, Hess D, Monod M, Schäfer W, Brown AJ, Gow NA. 1997. Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun. 65(9):3529–3538.
  • Hube B, Stehr F, Bossenz M, Mazur A, Kretschmar M, Schäfer W. 2000. Secreted lipases of Candida albicans: cloning, characterisation and expression analysis of a new gene family with at least ten members. Arch Microbiol. 174(5):362–374.
  • Hube B, Hess D, Baker CA, Schaller M, Schäfer W, Dolan JW. 2001. The role and relevance of phospholipase D1 during growth and dimorphism of Candida albicans. Microbiology (Reading). 147(Pt 4):879–889.
  • Hudson DA, Sciascia QL, Sanders RJ, Norris GE, Edwards PJ, Sullivan PA, Farley PC. 2004. Identification of the dialysable serum inducer of germ-tube formation in Candida albicans. Microbiology. 150(Pt 9):3041–3049.
  • Kamthan M, Kamthan A, Ruhela D, Maiti P, Bhavesh NS, Datta A. 2013. Upregulation of galactose metabolic pathway by N-acetylglucosamine induced endogenous synthesis of galactose in Candida albicans. Fungal Genet Biol. 54:15–24.
  • Klengel T, Liang WJ, Chaloupka J, Ruoff C, Schröppel K, Naglik JR, Eckert SE, Mogensen EG, Haynes K, Tuite MF, et al. 2005. Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr Biol. 15(22):2021–2026.
  • Kolter R, Greenberg EP. 2006. Microbial sciences: the superficial life of microbes. Nature. 441(7091):300–302.
  • Kornitzer D. 2019. Regulation of Candida albicans Hyphal Morphogenesis by Endogenous Signals. J Fungi. 5(1):21.
  • Kumamoto CA. 2008. Molecular mechanisms of mechanosensing and their roles in fungal contact sensing. Nat Rev Microbiol. 6(9):667–673.
  • Kumamoto CA, Vinces MD. 2005. Alternative Candida albicans lifestyles: growth on surfaces. Annu Rev Microbiol. 59:113–133.
  • Kuznets G, Vigonsky E, Weissman Z, Lalli D, Gildor T, Kauffman SJ, Turano P, Becker J, Lewinson O, Kornitzer D. 2014. A relay network of extracellular heme-binding proteins drives C. albicans iron acquisition from hemoglobin. PLoS Pathog. 10(10):e1004407.
  • LaFayette SL, Collins C, Zaas AK, Schell WA, Betancourt-Quiroz M, Gunatilaka AL, Perfect JR, Cowen LE. 2010. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90. PLoS Pathog. 6(8):e1001069.
  • Lan CY, Newport G, Murillo LA, Jones T, Scherer S, Davis RW, Agabian N. 2002. Metabolic specialization associated with phenotypic switching in Candidaalbicans. Proc Natl Acad Sci U S A. 99(23):14907–14912.
  • Li F, Palecek SP. 2003. EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryot Cell. 2(6):1266–1273.
  • Li F, Svarovsky MJ, Karlsson AJ, Wagner JP, Marchillo K, Oshel P, Andes D, Palecek SP 2007. Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryot Cell. 6(6):931–939.
  • Li R, Puri S, Tati S, Cullen PJ, Edgerton M. 2015. Candida albicans Cek1 mitogen-activated protein kinase signaling enhances fungicidal activity of salivary histatin 5. Antimicrob Agents Chemother. 59(6):3460–3468.
  • Lohse MB, Gulati M, Johnson AD, Nobile CJ. 2018. Development and regulation of single-and multi-species Candida albicans biofilms. Nat Rev Microbiol. 16(1):19–31.
  • Lu Y, Su C, Wang A, Liu H. 2011. Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance. PLoS Biol. 9(7):e1001105.
  • Luo G, Ibrahim AS, Spellberg B, Nobile CJ, Mitchell AP, Fu Y. 2010. Candida albicans Hyr1p confers resistance to neutrophil killing and is a potential vaccine target. J Infect Dis. 201(11):1718–1728.
  • Maidan MM, Thevelein JM, Van Dijck P. 2005. Carbon source induced yeast-to-hypha transition in Candida albicans is dependent on the presence of amino acids and on the G-protein-coupled receptor Gpr1. Biochem Soc Trans. 33(Pt 1):291–293.
  • Mancera E, Porman AM, Cuomo CA, Bennett RJ, Johnson AD. 2015. Finding a Missing Gene: EFG1 Regulates Morphogenesis in Candida tropicalis. G3 (Bethesda). 5(5):849–856.
  • Martchenko M, Levitin A, Hogues H, Nantel A, Whiteway M. 2007. Transcriptional rewiring of fungal galactose-metabolism circuitry. Curr Biol. 17(12):1007–1013.
  • Mayer FL, Wilson D, Hube B. 2013. Candida albicans pathogenicity mechanisms. Virulence. 4(2):119–128.
  • Min K, Naseem S, Konopka JB. 2019. N-Acetylglucosamine Regulates Morphogenesis and Virulence Pathways in Fungi. J Fungi. 6(1):8.
  • Miramón P, Lorenz MC. 2017. A feast for Candida: Metabolic plasticity confers an edge for virulence. PLoS Pathog. 13(2):e1006144.
  • Miwa T, Takagi Y, Shinozaki M, Yun CW, Schell WA, Perfect JR, Kumagai H, Tamaki H. 2004. Gpr1, a putative G-protein-coupled receptor, regulates morphogenesis and hypha formation in the pathogenic fungus Candida albicans. Eukaryot Cell. 3(4):919–931.
  • Mock RC, Pollack JH, Hashimoto T. 1990. Carbon dioxide induces endotrophic germ tube formation in Candida albicans. Can J Microbiol. 36(4):249–253.
  • Monod M, Hube B, Hess D, Sanglard D. 1998. Differential regulation of SAP8 and SAP9, which encode two new members of the secreted aspartic proteinase family in Candida albicans. Microbiology. 144(10):2731–2737.
  • Monod M, Togni G, Hube B, Sanglard D. 1994. Multiplicity of genes encoding secreted aspartic proteinases in Candida species. Mol Microbiol. 13(2):357–368.
  • Mora C, Tittensor DP, Adl S, Simpson AG, Worm B. 2011. How many species are there on Earth and in the ocean? PLoS Biol. 9(8):e1001127.
  • Moreno-Ruiz E, Ortu G, de Groot PW, Cottier F, Loussert C, Prevost MC, de Koster C, Klis FM, Goyard S, d'Enfert C. 2009. The GPI-modified proteins Pga59 and Pga62 of Candida albicans are required for cell wall integrity. Microbiology. 155(Pt 6):2004–2020.
  • Mukherjee PK, Mohamed S, Chandra J, Kuhn D, Liu S, Antar OS, Munyon R, Mitchell AP, Andes D, Chance MR, et al. 2006. Alcohol dehydrogenase restricts the ability of the pathogen Candida albicans to form a biofilm on catheter surfaces through an ethanol-based mechanism. IAI. 74(7):3804–3816.
  • Naglik J, Albrecht A, Bader O, Hube B. 2004. Candida albicans proteinases and host/pathogen interactions. Cell Microbiol. 6(10):915–926.
  • Naglik JR, Challacombe SJ, Hube B. 2003. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev. 67(3):400–428.
  • Naglik JR, Rodgers CA, Shirlaw PJ, Dobbie JL, Fernandes-Naglik LL, Greenspan D, Agabian N, Challacombe SJ. 2003. Differential expression of Candida albicans secreted aspartyl proteinase and phospholipase B genes in humans correlates with active oral and vaginal infections. J Infect Dis. 188(3):469–479.
  • Nicholls S, MacCallum DM, Kaffarnik FA, Selway L, Peck SC, Brown AJ. 2011. Activation of the heat shock transcription factor Hsf1 is essential for the full virulence of the fungal pathogen Candida albicans. Fungal Genet Biol. 48(3):297–305.
  • Nikawa H, Nishimura H, Hamada T, Makihira S, Samaranayake LP. 1998. Relationship between thigmotropism and Candida biofilm formation in vitro. Mycopathologia. 144(3):125–129.
  • Nobile CJ, Andes DR, Nett JE, Smith Jr FJ, Yue F, Phan QT, Edwards Jr JE, Filler SG, Mitchell AP 2006. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2(7):e63.
  • Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, Tuch BB, Andes DR, Johnson AD. 2012. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell. 148(1–2):126–138.
  • Nobile CJ, Johnson AD. 2015. Candida albicans Biofilms and Human Disease. Annu Rev Microbiol. 69:71–92.
  • Nobile CJ, Mitchell AP. 2006. Genetics and genomics of Candida albicans biofilm formation. Cell Microbiol. 8(9):1382–1391.
  • Noble SM. 2013. Candida albicans specializations for iron homeostasis: from commensalism to virulence. Curr Opin Microbiol. 16(6):708–715.
  • Noble SM, French S, Kohn LA, Chen V, Johnson AD. 2010. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat Genet. 42(7):590–598.
  • Noble SM, Gianetti BA, Witchley JN. 2017. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat Rev Microbiol. 15(2):96–108.
  • Owen DH, Katz DF. 1999. A vaginal fluid simulant. Contraception. 59(2):91–95.
  • Park M, Do E, Jung WH. 2013. Lipolytic enzymes involved in the virulence of human pathogenic fungi. Mycobiology. 41(2):67–72.
  • Pemmaraju SC, Pruthi PA, Prasad R, Pruthi V. 2016. Modulation of Candida albicans Biofilm by Different Carbon Sources. Mycopathologia. 181(5–6):341–352.
  • Pendrak ML, Krutzsch HC, Roberts DD. 2000. Structural requirements for hemoglobin to induce fibronectin receptor expression in Candida albicans. Biochemistry. 39(51):16110–16118.
  • Pendrak ML, Chao MP, Yan SS, Roberts DD. 2004. Heme oxygenase in Candida albicans is regulated by hemoglobin and is necessary for metabolism of exogenous heme and hemoglobin to alpha-biliverdin. J Biol Chem. 279(5):3426–3433.
  • Pérez JC, Kumamoto CA, Johnson AD. 2013. Candida albicans commensalism and pathogenicity are intertwined traits directed by a tightly knit transcriptional regulatory circuit. PLoS Biol. 11(3):e1001510.
  • Pfaller MA, Diekema DJ. 2007. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 20(1):133–163.
  • Piekarska K, Mol E, van den Berg M, Hardy G, van den Burg J, van Roermund C, MacCallum D, Odds F, Distel B. 2006. Peroxisomal fatty acid beta-oxidation is not essential for virulence of Candida albicans. Eukaryot Cell. 5(11):1847–1856.
  • Ramage G, Saville SP, Wickes BL, López-Ribot JL. 2002. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. AEM. 68(11):5459–5463.
  • Ramanan N, Wang Y. 2000. A high-affinity iron permease essential for Candida albicans virulence. Science. 288(5468):1062–1064.
  • Rodaki A, Bohovych IM, Enjalbert B, Young T, Odds FC, Gow NA, Brown AJ. 2009. Glucose promotes stress resistance in the fungal pathogen Candida albicans. Mol Biol Cell. 20(22):4845–4855.
  • Roman E, Arana DM, Nombela C, Alonso-Monge R, Pla J. 2007. MAP kinase pathways as regulators of fungal virulence. Trends Microbiol. 15(4):181–190.
  • Roy U, Kornitzer D. 2019. Heme-iron acquisition in fungi. Curr Opin Microbiol. 52:77–83.
  • Sabina J, Brown V. 2009. Glucose sensing network in Candida albicans: a sweet spot for fungal morphogenesis. Eukaryot Cell. 8(9):1314–1320.
  • Sahni N, et al. 2009. Genes selectively up-regulated by pheromone in white cells are involved in biofilm formation in Candida albicans. PLoS Pathog. 5(10):e1000601.
  • Sahni N, Yi S, Daniels KJ, Srikantha T, Pujol C, Soll DR. 2018. Carbon sources attribute to pathogenicity in Candida albicans. In: Candida albicans. London (UK): IntechOpen.
  • Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Giannini MM. 2013. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol. 62(Pt 1):10–24.
  • Sato T, Watanabe T, Mikami T, Matsumoto T. 2004. Farnesol, a morphogenetic autoregulatory substance in the dimorphic fungus Candida albicans, inhibits hyphae growth through suppression of a mitogen-activated protein kinase cascade. Biol Pharm Bull. 27(5):751–752.
  • Schaller M, Schäfer W, Korting HC, Hube B. 1998. Differential expression of secreted aspartyl proteinases in a model of human oral candidosis and in patient samples from the oral cavity. Mol Microbiol. 29(2):605–615.
  • Schaller M, Bein M, Korting HC, Baur S, Hamm G, Monod M, Beinhauer S, Hube B. 2003. The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. IAI. 71(6):3227–3234.
  • Schaller M, Borelli C, Korting HC, Hube B. 2005. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses. 48(6):365–377.
  • Shah AH, Singh A, Dhamgaye S, Chauhan N, Vandeputte P, Suneetha KJ, Kaur R, Mukherjee PK, Chandra J, Ghannoum MA, et al. 2014. Novel role of a family of major facilitator transporters in biofilm development and virulence of Candida albicans. Biochem J. 460(2):223–235.
  • Shareck J, Nantel A, Belhumeur P. 2011. Conjugated linoleic acid inhibits hyphal growth in Candida albicans by modulating Ras1p cellular levels and downregulating TEC1 expression. Eukaryot Cell. 10(4):565–577.
  • Sherrington SL, Sorsby E, Mahtey N, Kumwenda P, Lenardon MD, Brown I, Ballou ER, MacCallum DM, Hall RA. 2017. Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition. PLoS Pathog. 13(5):e1006403.
  • Sheth CC, Johnson E, Baker ME, Haynes K, Mühlschlegel FA. 2005. Phenotypic identification of Candida albicans by growth on chocolate agar. Med Mycol. 43(8):735–738.
  • Slutsky B, Buffo J, Soll DR. 1985. High-frequency switching of colony morphology in Candida albicans. Science. 230(4726):666–669.
  • Staab JF, Bradway SD, Fidel PL, Sundstrom P. 1999. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science. 283(5407):1535–1538.
  • Sudbery PE. 2011. Growth of Candida albicans hyphae. Nat Rev Microbiol. 9(10):737–748.
  • Sudbery P, Gow N, Berman J. 2004. The distinct morphogenic states of Candida albicans. Trends Microbiol. 12(7):317–324.
  • Sutak R, Lesuisse E, Tachezy J, Richardson DR. 2008. Crusade for iron: iron uptake in unicellular eukaryotes and its significance for virulence. Trends Microbiol. 16(6):261–268.
  • Taff HT, Nett JE, Zarnowski R, Ross KM, Sanchez H, Cain MT, Hamaker J, Mitchell AP, Andes DR. 2012. A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog. 8(8):e1002848.
  • Tavanti A, Pardini G, Campa D, Davini P, Lupetti A, Senesi S. 2004. Differential expression of secretory aspartyl proteinase genes (SAP1-10) in oral Candida albicans isolates with distinct karyotypes. J Clin Microbiol. 42(10):4726–4734.
  • Taylor BN, Staib P, Binder A, Biesemeier A, Sehnal M, Röllinghoff M, Morschhäuser J, Schröppel K. 2005. Profile of Candida albicans-secreted aspartic proteinase elicited during vaginal infection. Infect Immun. 73(3):1828–1835.
  • Tucey TM, Verma J, Harrison PF, Snelgrove SL, Lo TL, Scherer AK, Barugahare AA, Powell DR. 2018. Glucose Homeostasis Is Important for Immune Cell Viability during Candida Challenge and Host Survival of Systemic Fungal Infection. Cell Metab. 27(5):988–1006.
  • Umeyama T, Kaneko A, Watanabe H, Hirai A, Uehara Y, Niimi M, Azuma M. 2006. Deletion of the CaBIG1 gene reduces β-1, 6-glucan synthesis, filamentation, adhesion, and virulence in Candida albicans. Infect Immun. 74(4):2373–2381.
  • Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Köhler JR, Kadosh D, Lopez-Ribot JL. 2010. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog. 6(3):e1000828.
  • Van Ende M, Wijnants S, Van Dijck P. 2019. Sugar Sensing and Signaling in Candida albicans and Candida glabrata. Front Microbiol. 10:99.
  • Vediyappan G, Rossignol T, d’Enfert C. 2010. Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans. Antimicrob Agents Chemother. 54(5):2096–2111.
  • Verstrepen KJ, Klis FM. 2006. Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol. 60(1):5–15.
  • Vieira N, Casal M, Johansson B, MacCallum DM, Brown AJ, Paiva S. 2010. Functional specialization and differential regulation of short-chain carboxylic acid transporters in the pathogen Candida albicans. Mol Microbiol. 75(6):1337–1354.
  • Vylkova S, Carman AJ, Danhof HA, Collette JR, Zhou H, Lorenz MC. 2011. The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH. MBio. 2(3):e00055–11
  • Vylkova S, Lorenz MC. 2014. Modulation of phagosomal pH by Candida albicans promotes hyphal morphogenesis and requires Stp2p, a regulator of amino acid transport. PLoS Pathog. 10(3):e1003995.
  • Welch KD, Van Eden ME, Aust SD. 2001. Modification of ferritin during iron loading. Free Radic Biol Med. 31(8):999–1006.
  • Wendland J, Schaub Y, Walther A. 2009. N-acetylglucosamine utilization by Saccharomyces cerevisiae based on expression of Candida albicans NAG genes. Appl Environ Microbiol. 75(18):5840–5845.
  • Westman J, Moran G, Mogavero S, Hube B, Grinstein S. 2018. Candida albicans Hyphal Expansion Causes Phagosomal Membrane Damage and Luminal Alkalinization. mBio. 9(5):e01226–18.
  • White TC, Agabian N. 1995. Candida albicans secreted aspartyl proteinases: isoenzyme pattern is determined by cell type, and levels are determined by environmental factors. J Bacteriol. 177(18):5215–5221.
  • Whiteway M, Bachewich C. 2007. Morphogenesis in Candida albicans. Annu Rev Microbiol. 61:529–553.
  • Wilson D, Tutulan‐Cunita A, Jung W, Hauser NC, Hernandez R, Williamson T, Piekarska K, Rupp S, Young T, Stateva L. 2007. Deletion of the high-affinity cAMP phosphodiesterase encoded by PDE2 affects stress responses and virulence in Candida albicans. Mol Microbiol. 65(4):841–856.
  • Wilson D, Thewes S, Zakikhany K, Fradin C, Albrecht A, Almeida R, Brunke S, Grosse K, Martin R, Mayer F, et al. 2009. Identifying infection-associated genes of Candida albicans in the postgenomic era. FEMS Yeast Res. 9(5):688–700.
  • Xie Z, Thompson A, Sobue T, Kashleva H, Xu H, Vasilakos J, Dongari-Bagtzoglou A. 2012. Candida albicans biofilms do not trigger reactive oxygen species and evade neutrophil killing. J Infect Dis. 206(12):1936–1945.
  • Xu XL, Lee RT, Fang HM, Wang YM, Li R, Zou H, Zhu Y, Wang Y. 2008. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe. 4(1):28–39.
  • Ying S, Chunyang L. 2012. Correlation between phospholipase of Candida albicans and resistance to fluconazole. Mycoses. 55(1):50.
  • Zhao X, Oh SH, Cheng G, Green CB, Nuessen JA, Yeater K, Leng RP, Brown AJ, Hoyer LL. 2004. ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology. 150(Pt 7):2415–2428.
  • Zhao X, Oh SH, Yeater KM, Hoyer LL. 2005. Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology. 151(Pt 5):1619–1630.
  • Zhao X, Oh SH, Hoyer LL. 2007. Unequal contribution of ALS9 alleles to adhesion between Candida albicans and human vascular endothelial cells. Microbiology. 153(Pt 7):2342–2350.
  • Zhu W, Filler SG. 2010. Interactions of Candida albicans with epithelial cells. Cell Microbiol. 12(3):273–282.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.