631
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Acinetobacter defence mechanisms against biological aggressors and their use as alternative therapeutic applications

, &
Pages 21-41 | Received 22 Mar 2021, Accepted 28 May 2021, Published online: 21 Jul 2021

References

  • Alcoforado Diniz J, Liu YC, Coulthurst SJ. 2015. Molecular weaponry: diverse effectors delivered by the type VI secretion system. Cell Microbiol. 17(12):1742–1751.
  • Alemayehu D, Casey PG, Mcauliffe O, Guinane CM, Martin JG, Shanahan F, Coffey A, Ross RP, Hill C. 2012. Bacteriophages φMR299-2 and φNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells. MBio. 3(2):e00029–e00032
  • Alkasir R, Ma Y, Liu F, Li J, Lv N, Xue Y, Hu Y, Zhu B. 2018. Characterization and transcriptome analysis of acinetobacter baumannii persister cells. Microb Drug Resist. 24(10):1466–1474.
  • Andrews HJ. 1986. Acinetobacter bacteriocin typing. J Hosp Infect. 7(2):169–175.
  • Antunes LCS, Imperi F, Towner KJ, Visca P. 2011. Genome-assisted identification of putative iron-utilization genes in Acinetobacter baumannii and their distribution among a genotypically diverse collection of clinical isolates. Res Microbiol. 162(3): 279–284.
  • Antunes LCS, Visca P, Towner KJ. 2014. Acinetobacter baumannii: Evolution of a global pathogen. Pathog Dis. 71(3):292–301.
  • Anwar A, Azhar A, Thikra A, Rasha M, and, Fadhil S. 2015. Screening of virulence factors in Acintobacter baumannii isolated from clinical samples. Int J Curr Res Acad Rev. 3(6):128–134.
  • Aoki SK, Pamma R, Hernday AD, Bickham JE, Braaten BA, Low DA. 2005. Microbiology: Contact-dependent inhibition of growth in Escherichia coli. Science. 309(5738):1245–1248.
  • Armalytė J, Jurėnas D, Krasauskas R, Čepauskas A, Sužiedėlienė E. 2018. The higBA toxin-antitoxin module from the opportunistic pathogen Acinetobacter baumannii - Regulation, activity, and evolution. Front Microbiol. 9:732.
  • Bagińska N, Pichlak A, Górski A, Jończyk-Matysiak E. 2019. Jończyk-Matysiak, E. Specific and Selective Bacteriophages in the Fight against Multidrug-resistant Acinetobacter baumannii. Virol Sin. 34(4):347–357.
  • Basler M, Ho BT, Mekalanos JJ. 2013. Tit-for-tat: Type VI secretion system counterattack during bacterial cell-cell interactions. Cell. 152(4):884–894.
  • Beceiro A, Tomás M, Bou G. 2013. Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world? Clin Microbiol Rev. 26(2):185–230.
  • Benz J, Meinhart A. 2014. Antibacterial effector/immunity systems: It’s just the tip of the iceberg. Curr Opin Microbiol. 17:1–10.
  • Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, Fischetti VA, Marraffini LA. 2014. Exploiting CRISPR-cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol. 32:1146–1150.
  • Bitton L, Klaiman D, Kaufmann G. 2015. Phage T4-induced DNA breaks activate a tRNA repair-defying anticodon nuclease. Mol Microbiol. 97(5):898–910.
  • Briers Y, Walmagh M, Van Puyenbroeck V, Cornelissen A, Cenens W, Aertsen A, Oliveira H, Azeredo J, Verween G, Pirnay JP, et al. 2014. Engineered endolysin-based “Artilysins” to combat multidrug-resistant gram-negative pathogens. MBio. 5(4):e01379.
  • Brovedan M, Marchiaro PM, Morán-Barrio J, Cameranesi M, Cera G, Rinaudo M, Viale AM, Limansky AS. 2015. Complete sequence of a bla(NDM-1)-harboring plasmid in an acinetobacter bereziniae clinical strain isolated in Argentina. Antimicrob Agents Chemother. 59(10):6667–6669.
  • Brovedan M, Marchiaro PM, Morán-Barrio J, Revale S, Cameranesi M, Brambilla L, Viale AM, Limansky AS. 2016. Draft genome sequence of acinetobacter bereziniae HPC229, a carbapenem-resistant clinical strain from Argentina Harboring bla NDM-1. Genome Announc. 4(2):e00117.
  • Brovedan M, Repizo GD, Marchiaro P, Viale AM, Limansky A. 2019. Characterization of the diverse plasmid pool harbored by the blaNDM-1-containing Acinetobacter bereziniae HPC229 clinical strain. PLoS One. 14(11):e0220584.
  • Brovedan MA, Cameranesi MM, Limansky AS, Morán-Barrio J, Marchiaro P, Repizo GD. 2020. What do we know about plasmids carried by members of the Acinetobacter genus? World J Microbiol Biotechnol. 36(8):109.
  • Bulterys PL, Toesca IJ, Norris MH, Maloy JP, Fitz-Gibbon ST, France B, Toffig B, Morselli M, Somprasong N, Pellegrini M, et al. 2019. An in situ high-throughput screen identifies inhibitors of intracellular Burkholderia pseudomallei with therapeutic efficacy. Proc Natl Acad Sci USA. 116(37):18597–18606.
  • Cameranesi MM, Paganini J, Limansky AS, Moran-Barrio J, Salcedo SP, Viale AM, Repizo GD. 2020. Acquisition of plasmids conferring carbapenem and aminoglycoside resistance and loss of surface-exposed macromolecule structures as strategies for the adaptation of Acinetobacter baumannii CC104O/CC15p strains to the clinical setting. Microb Genomics. 6(9):mgen000360.
  • Carruthers MD, Nicholson PA, Tracy EN, Munson RS. 2013. Acinetobacter baumannii utilizes a type vi secretion system for bacterial competition. PLoS One. 8(12):e59388.
  • Cerezales M, Xanthopoulou K, Wille J, Krut O, Seifert H, Gallego L, Higgins PG. 2020. Mobile genetic elements harboring antibiotic resistance determinants in Acinetobacter baumannii isolates from Bolivia. Front Microbiol. 11:919.
  • Chapartegui-González I, Lázaro-Díez M, Bravo Z, Navas J, Icardo JM, Ramos-Vivas J. 2018. Acinetobacter baumannii maintains its virulence after long-time starvation. PLoS One. 13(8):e0201961.
  • Chua J, Senft JL, Lockett SJ, Brett PJ, Burtnick MN, DeShazer D, Friedlander AM. 2017. pH alkalinization by chloroquine suppresses pathogenic Burkholderia type 6 secretion system 1 and multinucleated giant cells. Infect Immun. 85(1):e00586–16.
  • Cianfanelli FR, Monlezun L, Coulthurst SJ. 2016. Aim, load, fire: the type vi secretion system, a bacterial nanoweapon. Trends Microbiol. 24(1):51–62.
  • Cohen D, Melamed S, Millman A, Shulman G, Oppenheimer-Shaanan Y, Kacen A, Doron S, Amitai G, Sorek R. 2019. Cyclic GMP–AMP signalling protects bacteria against viral infection. Nature. 574(7780):691–695.
  • Cooper RM, Tsimring L, Hasty J. 2017. Inter-species population dynamics enhance microbial horizontal gene transfer and spread of antibiotic resistance. Elife. 6:e25950.
  • Costa TRD, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G. 2015. Secretion systems in Gram-negative bacteria: Structural and mechanistic insights. Nat Rev Microbiol. 13(6):343–359.
  • Crippen CS, Jr MJR, Sanchez S, Szymanski CM. 2020. Multidrug resistant acinetobacter isolates release resistance determinants through contact-dependent killing and bacteriophage lysis. Front Microbiol. 11:1918.
  • Darvish Alipour Astaneh S, Rasooli I, Mousavi Gargari SL. 2014. The role of filamentous hemagglutinin adhesin in adherence and biofilm formation in Acinetobacter baumannii ATCC19606T. Microb Pathog. 74:42–49.
  • Davidov E, Kaufmann G. 2008. RloC: A wobble nucleotide-excising and zinc-responsive bacterial tRNase. Mol Microbiol. 69(6):1560–1574.
  • De Gregorio E, Zarrilli R, Di Nocera PP. 2019. Contact-dependent growth inhibition systems in. Acinetobacter Sci Rep. 9(1):154.
  • De Maayer P, Venter SN, Kamber T, Duffy B, Coutinho TA, Smits THM. 2011. Comparative genomics of the type VI secretion systems of Pantoea and Erwinia species reveals the presence of putative effector islands that may be translocated by the VgrG and Hcp proteins. BMC Genomics. 12(1):576.
  • Defraine V, Schuermans J, Grymonprez B, Govers SK, Aertsen A, Fauvart M, Michiels J, Lavigne R, Briers Y. 2016. Efficacy of artilysin art-175 against resistant and persistent acinetobacter baumannii. Antimicrob Agents Chemother. 60(6):3480–3488.
  • Di Nocera PP, Rocco F, Giannouli M, Triassi M, Zarrilli R. 2011. Genome organization of epidemic Acinetobacter baumannii strains. BMC Microbiol. 11:224.
  • Diancourt L, Passet V, Nemec A, Dijkshoorn L, Brisse S. 2010. The population structure of Acinetobacter baumannii: Expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS One. 5(4):e10034.
  • Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, Amitai G, Sorek R. 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science. 359(6379):eaar4120.
  • Eijkelkamp BA, Stroeher UH, Hassan KA, Paulsen IT, Brown MH. 2014. Comparative analysis of surface-exposed virulence factors of Acinetobacter baumannii. BMC Genomics. 15:1020–1012.
  • Elhosseiny NM, Attia AS. 2018. Acinetobacter: An emerging pathogen with a versatile secretome review-article. Emerg. Microbes Infect. 7(1):1–15.
  • Evans BA, Amyes SGB. 2014. OXA β-lactamases. Clin Microbiol Rev. 27(2):241–263.
  • Farhadi T, Hashemian SMR, Farhadi Z. 2020. In silico designing of peptidomimetics enhancing endoribonucleolytic activities of Acinetobacter MazF toxin as the novel anti-bacterial candidates. Int J Pept Res Ther. 26:1061–1071.
  • Farrow JM, Wells G, Palethorpe S, Adams MD, Pesci EC. 2020. CsrA supports both environmental persistence and host-associated growth of Acinetobacter baumannii. Infect Immun. 88(12):e00259–20.
  • Fernández-García L, Blasco L, Lopez M, Bou G, García-Contreras R, Wood T, Tomas M. 2016. Toxin-antitoxin systems in clinical pathogens. Toxins (Basel). 8(7):227.
  • Fernández-García L, Fernandez-Cuenca F, Blasco L, López-Rojas R, Ambroa A, Lopez M, Pascual Á, Bou G, Tomás M. 2018. Relationship between tolerance and persistence mechanisms in acinetobacter baumannii strains with abkab toxin-antitoxin system. Antimicrob Agents Chemother. 62(5):e00250–18.
  • Fischetti VA. 2005. Bacteriophage lytic enzymes: Novel anti-infectives. Trends Microbiol. 13(10):491–496.
  • Fitzsimons TC, Lewis JM, Wright A, Kleifeld O, Schittenhelm RB, Powell D, Harper M, Boyce JD. 2018. Identification of novel Acinetobacter baumannii type VI secretion system antibacterial effector and immunity pairs. Infect Immun. 86(8): e00297–18.
  • Gaddy J, Arivett B, McConnel M, Lopez-Rojas R, Pachon J, Actis L. 2012. Role of Acinetobactin-mediated iron acquisition functions in the interaction of Acinetobacter baumannii strain ATCC 19606T with human lung epithelial cells, galleria mellonella caterpillars, and mice. Infect Immun. 80(3):1015–1024.
  • Galán JE, Waksman G. 2018. Protein-Injection Machines in Bacteria. Cell. 172(6):1306–1318.
  • Gao L, Altae-Tran H, Böhning F, Makarova KS, Segel M, Schmid-Burgk JL, Koob J, Wolf YI, Koonin EV, Zhang F. 2020. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science. 369(6507):1077–1084.
  • Garcia EC. 2018. Contact-dependent interbacterial toxins deliver a message. Curr Opin Microbiol. 42:40–46.
  • García-Quintanilla M, Pulido MR, López-Rojas R, Pachón J, McConnell MJ. 2013. Emerging therapies for multidrug resistant Acinetobacter baumannii. Trends Microbiol. 21(3):157–163.
  • Gebhardt MJ, Gallagher LA, Jacobson RK, Usacheva EA, Peterson LR, Zurawski DV, Shuman HA. 2015. Joint transcriptional control of virulence and resistance to antibiotic and environmental stress in acinetobacter baumannii. MBio. 6(6):e01660.
  • Geisinger E, Huo W, Hernandez-Bird J, Isberg RR. 2019. Acinetobacter baumannii : Envelope Determinants That Control Drug Resistance, Virulence, and Surface Variability. Annu Rev Microbiol. 73:481–506.
  • Ghafourian S, Good L, Sekawi Z, Hamat RA, Soheili S, Sadeghifard N, Neela V. 2014. The mazEF toxin-antitoxin system as a novel antibacterial target in Acinetobacter baumannii. Mem Inst Oswaldo Cruz. 109(4):502–505.
  • Gholizadeh P, Köse Ş, Dao S, Ganbarov K, Tanomand A, Dal T, Aghazadeh M, Ghotaslou R, Rezaee MA, Yousefi B, et al. 2020. How CRISPR-Cas system could be used to combat antimicrobial resistance. Infect. Drug Resist. 13:1111:1121
  • Goldfarb T, Sberro H, Weinstock E, Cohen O, Doron S, Charpak‐Amikam Y, Afik S, Ofir G, Sorek R. 2015. BREX is a novel phage resistance system widespread in microbial genomes. Embo J. 34(2):169–183.
  • Gondil VS, Harjai K, Chhibber S. 2020. Endolysins as emerging alternative therapeutic agents to counter drug-resistant infections. Int J Antimicrob Agents. 55(2):105844.
  • González LJ, Bahr G, Nakashige TG, Nolan EM, Bonomo RA, Vila A. 2016. J. Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase. Nat Chem Biol. 12(7): 516–522.
  • Gordeeva J, Morozova N, Sierro N, Isaev A, Sinkunas T, Tsvetkova K, Matlashov M, Truncaite L, Morgan RD, Ivanov NV, et al. 2019. BREX system of Escherichia coli distinguishes self from non-self by methylation of a specific DNA site. Nucleic Acids Res. 47(1): 253–265.
  • Guérin J, Bigot S, Schneider R, Buchanan SK, Jacob-Dubuisson F. 2017. Two-partner secretion: Combining efficiency and simplicity in the secretion of large proteins for bacteria-host and bacteria-bacteria interactions. Front Cell Infect Microbiol. 7:148.
  • Hachani A, Wood TE, Filloux A. 2016. Type VI secretion and anti-host effectors. Curr Opin Microbiol. 29:81–93.
  • Hao M, He Y, Zhang H, Liao XP, Liu YH, Sun J, Du H, Kreiswirth BN, Chen L. 2020. CRISPR-Cas9-mediated carbapenemase gene and plasmid curing in carbapenem-resistant enterobacteriaceae. Antimicrob Agents Chemother. 64(9): e00843.
  • Harding CM, Hennon SW, Feldman MF. 2018. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat Rev Microbiol. 16(2):91–102.
  • Harding CM, Kinsella RL, Palmer LD, Skaar EP, Feldman MF. 2016. Medically relevant Acinetobacter species require a type ii secretion system and specific membrane-associated chaperones for the export of multiple substrates and full virulence. PLoS Pathog. 12(1):e1005391.
  • Harding CM, Pulido MR, Di Venanzio G, Kinsella RL, Webb AI, Scott NE, Pachón J, Feldman MF. 2017. Pathogenic Acinetobacter species have a functional type i secretion system and contact-dependent inhibition systems. J Biol Chem. 292(22): 9075–9087.
  • Hauck Y, Soler C, Jault P, Mérens A, Gérome P, Nab C, Mac; Trueba F, Bargues L, Thien HV, Vergnaud G, et al. 2012. Diversity of Acinetobacter baumannii in Four French Military Hospitals, as Assessed by Multiple Locus Variable Number of Tandem Repeats Analysis. PLoS One. 7(9):e44597.
  • Hayes CS, Koskiniemi S, Ruhe ZC, Poole SJ, Low DA. 2014. Mechanisms and biological roles of contact-dependent growth inhibition systems. Cold Spring Harb Perspect Med. 4(2):a010025–a010025.
  • Hegge JW, Swarts DC, Van Der Oost J. 2018. Prokaryotic argonaute proteins: Novel genome-editing tools? Nat Rev Microbiol. 16(1): 5–11.
  • Helander IM, Mattila-Sandholm T. 2000. Fluorometric assessment of Gram-negative bacterial permeabilization. J Appl Microbiol. 88(2): 213–219.
  • Henry R, Vithanage N, Harrison P, Seemann T, Coutts S, Moffatt JH, Nation RL, Li J, Harper M, Adler B, et al. 2012. Colistin-resistant, lipopolysaccharide-deficient Acinetobacter baumannii responds to lipopolysaccharide loss through increased expression of genes involved in the synthesis and transport of lipoproteins, phospholipids, and poly-β-1,6-N-acetylglucosamine. Antimicrob Agents Chemother. 56(1):59–69.
  • Hoskisson PA, Sumby P, Smith MCM. 2015. The phage growth limitation system in Streptomyces coelicolor A(3)2 is a toxin/antitoxin system, comprising enzymes with DNA methyltransferase, protein kinase and ATPase activity. Virology. 477:100–109.
  • Jamet A, Nassif X. 2015. New players in the toxin field: Polymorphic toxin systems in bacteria. MBio. 6(3): e00285.
  • Jones CL, Clancy M, Honnold C, Singh S, Snesrud E, Onmus-Leone F, McGann P, Ong AC, Kwak Y, Waterman P, et al. 2015. Fatal outbreak of an emerging clone of extensively drug-resistant Acinetobacter baumannii with enhanced virulence. Clin Infect Dis. 61(2):145–154.
  • Ka D, Oh H, Park E, Kim JH, Bae E. 2020. Structural and functional evidence of bacterial antiphage protection by Thoeris defense system via NAD + degradation. Nat Commun 11: 2816.
  • Karah N, Samuelsen Ø, Zarrilli R, Sahl JW, Wai SN, Uhlin BE. 2015. CRISPR-cas subtype I-Fb in acinetobacter baumannii: Evolution and utilization for strain subtyping. PLoS One. 10(2):e0118205.
  • Kazi M, Annapure US. 2016. Bacteriophage biocontrol of foodborne pathogens. J Food Sci Technol. 53(3): 1355–1362.
  • Kim J, Lee JY, Lee H, Choi JY, Kim DH, Wi YM, Peck KR, Ko KS. 2017. Microbiological features and clinical impact of the type VI secretion system (T6SS) in Acinetobacter baumannii isolates causing bacteremia. Virulence. 8(7):1378–1389.
  • Kim S, Jin J-S, Lee D-W, Kim J. 2020. Antibacterial activities of and biofilm removal by ablysin, an endogenous lysozyme-like protein, originated from Acinetobacter baumannii 1656-2. J Glob Antimicrob Resist. 23:297–302.
  • Kim S, Lee DW, Jin JS, Kim J. 2020. Antimicrobial activity of LysSS, a novel phage endolysin, against Acinetobacter baumannii and Pseudomonas aeruginosa. J Glob Antimicrob Resist. 22: 32–39.
  • King LB, Pangburn MK, McDaniel LS. 2013. Serine protease PKF of Acinetobacter baumannii results in serum resistance and suppression of biofilm formation. J Infect Dis. 207(7): 1128–1134.
  • Kinsella RL, Lopez J, Palmer LD, Salinas ND, Skaar EP, Tolia NH, Feldman MF. 2017. Defining the interaction of the protease CpaA with its type II secretion chaperone CpaB and its contribution to virulence in Acinetobacter species. J Biol Chem. 292(48):19628–19638.
  • Kisil OV, Efimenko TA, Gabrielyan NI, Efremenkova OV. 2020. Development of antimicrobial therapy methods to overcome the antibiotic resistance of Acinetobacter baumannii. Acta Naturae. 12(3):34–45.
  • Klaiman D, Steinfels-Kohn E, Kaufmann G. 2014. A DNA break inducer activates the anticodon nuclease RloC and the adaptive immunity in Acinetobacter baylyi ADP1. Nucleic Acids Res. 42(1): 328–339.
  • Koenigs A, Stahl J, Averhoff B, Göttig S, Wichelhaus TA, Wallich R, Zipfel PF, Kraiczy P. 2016. CipA of Acinetobacter baumannii is a novel plasminogen binding and complement inhibitory protein. J Infect Dis. 213(9): 1388–1399.
  • Koonin EV, Makarova KS. 2017. Mobile genetic elements and evolution of crispr-cas systems: all the way there and back. Genome Biol Evol. 9(10): 2812–2825.
  • Korona R, Levin BR. 1993. Phage-mediated selection and the evolution and maintenance of restriction-Modification. Evolution. 47(2):556.
  • Krasauskas R, Skerniškytė J, Armalytė J, Sužiedėlienė E. 2019. The role of Acinetobacter baumannii response regulator BfmR in pellicle formation and competitiveness via contact-dependent inhibition system. BMC Microbiol. 19(1): 241.
  • Krasauskas R, Skerniškytė J, Martinkus J, Armalytė J, Sužiedėlienė E. 2020. Capsule protects Acinetobacter baumannii from inter-bacterial competition mediated by CdiA toxin. Front Microbiol. 11:1493.
  • Krishnan A, Burroughs AM, Iyer LM, Aravind L. 2020. Comprehensive classification of ABC ATPases and their functional radiation in nucleoprotein dynamics and biological conflict systems. Nucleic Acids Res. 48(8): 10045–10075.
  • Labrie SJ, Samson JE, Moineau S. 2010. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 8(5): 317–327.
  • Lee C-R, Lee JH, Park M, Park KS, Bae IK, Kim YB, Cha C-J, Jeong BC, Lee SH. 2017. Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front Cell Infect Microbiol. 7:55.
  • Leungtongkam U, Thummeepak R, Kitti T, Tasanapak K, Wongwigkarn J, Styles KM, Wellington EMH, Millard AD, Sagona AP, Sitthisak S. 2020. Genomic analysis reveals high virulence and antibiotic resistance amongst phage susceptible Acinetobacter baumannii. Sci Rep. 10(1):16154.
  • Lewis JM, Deveson Lucas D, Harper M, Boyce JD. 2019. Systematic identification and analysis of acinetobacter baumannii type vi secretion system effector and immunity components. Front Microbiol. 10:2440.
  • Li FJ, Starrs L, Burgio G. 2018. Tug of war between Acinetobacter baumannii and host immune responses. Pathog Dis. 76(9): ftz004.
  • Lien YW, Lai EM. 2017. Type VI secretion effectors: Methodologies and biology. Front Cell Infect Microbiol. 7:254.
  • Lin NT, Chiou PY, Chang KC, Chen LK, Lai MJ. 2010. Isolation and characterization of φAB2: A novel bacteriophage of Acinetobacter baumannii. Res Microbiol. 161(4): 308–314.
  • Liu Y, Leung SSY, Guo Y, Zhao L, Jiang N, Mi L, Li P, Wang C, Qin Y, Mi Z, et al. 2019. The capsule depolymerase Dpo48 rescues Galleria mellonella and mice from Acinetobacter baumannii systemic infections. Front Microbiol. 10: 942.
  • Lopatina A, Tal N, Sorek R. 2020. Abortive Infection: bacterial suicide as an antiviral immune strategy. Annu Rev Virol. 7(1):371–384.
  • Lopez J, Ly PM, Feldman MF. 2020. The tip of the VgrG spike is essential to functional type VI secretion system assembly in acinetobacter baumannii. MBio. 11(1): e02761.
  • Lowey B, Whiteley AT, Keszei AFA, Morehouse BR, Mathews IT, Antine SP, Cabrera VJ, Kashin D, Niemann P, Jain M, et al. 2020. CBASS Immunity Uses CARF-Related Effectors to Sense 3′–5′- and 2′–5′-Linked Cyclic Oligonucleotide Signals and Protect Bacteria from Phage Infection. Cell. 182(1):38–49.e17.
  • Makarova KS, Koonin EV. 2015. Annotation and classification of CRISPR-Cas systems. Methods Mol Biol. 1311: 47–75.
  • Makarova KS, Wolf YI, Iranzo J.; Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng D, Haft DH, Horvath P. 2020. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 18(2): 67–83.
  • Makarova KS, Wolf YI, Koonin EV. 2013. Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res. 41(8): 4360–4377.
  • Mangas EL, Rubio A, Álvarez-Marín R, Labrador-Herrera G, Pachón J, Pachón-Ibáñez ME, Divina F, Pérez-Pulido AJ. 2019. Pangenome of acinetobacter baumannii uncovers two groups of genomes, one of them with genes involved in CRISPR/Cas defence systems associated with the absence of plasmids and exclusive genes for biofilm formation. Microb Genomics. 5(11): e000309.
  • Marraffini LA. 2015. CRISPR-Cas immunity in prokaryotes. Nature. 526(7571):55–61.
  • Mateo-Estrada V, Graña-Miraglia L, López-Leal G, Castillo-Ramírez S, Delaye L. 2019. Phylogenomics reveals clear cases of misclassification and genus-wide phylogenetic markers for Acinetobacter. Genome Biol Evol. 11(9): 2531–2541.
  • Merker M, Tueffers L, Vallier M, Groth EE, Sonnenkalb L, Unterweger D, Baines JF, Niemann S, Schulenburg H. 2020. Evolutionary approaches to combat antibiotic resistance: opportunities and challenges for precision medicine. Front Immunol. 11:1938.
  • Merril CR, Scholl D, Adhya SL. 2003. The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov. 2(6): 489–497.
  • Millman A, Melamed S, Amitai G, Sorek R. 2020. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Nat Microbiol. 512: 1608–1615.
  • Monem S, Furmanek-Blaszk B, Łupkowska A, Kuczyńska-Wiśnik D, Stojowska-Swędrzyńska K, Laskowska E. 2020. Mechanisms protecting acinetobacter baumannii against multiple stresses triggered by the host immune response, antibiotics, and outside host environment. Int J Mol Sci. 21(15): 5498.
  • Morris FC, Dexter C, Kostoulias X, Uddin MI, Peleg AY. 2019. The Mechanisms of Disease Caused by Acinetobacter baumannii. Front Microbiol. 10:10.
  • Morse RP, Nikolakakis KC, Willett JLE, Gerrick E, Low DA, Hayes CS, Goulding CW. 2012. Structural basis of toxicity and immunity in contact-dependent growth inhibition (CDI) systems. Proc Natl Acad Sci USA. 109(52): 21480–21485.
  • Moubareck CA, Halat DH. 2020. Insights into Acinetobacter baumannii: A review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen. Antibiotics. 9(31): 119.
  • Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL, Joachimiak G, Ordoñez CL, Lory S, et al. 2006. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science. 312(5779):1526–1530. ).
  • Mruk I, Kobayashi I. 2014. To be or not to be: Regulation of restriction-modification systems and other toxin-antitoxin systems. Nucleic Acids Res. 42(1): 70–86.
  • Nelson D, Loomis L, Fischetti VA. 2001. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci USA. 98(7): 4107–4112.
  • Nemec A, Musílek M, Šedo O, T. De B, Maixnerová M, Reijden TJK, Zdráhal Z, Vaneechoutte M, Dijkshoorn L. 2010. Acinetobacter bereziniae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate Acinetobacter genomic species 10 and 11, respectively. Int J Syst Evol Microbiol. 60(Pt 4): 896–903.
  • Nie D, Hu Y, Chen Z, Li M, Hou Z, Luo X, Mao X, Xue X. 2020. Outer membrane protein A (OmpA) as a potential therapeutic target for Acinetobacter baumannii infection. J Biomed Sci. 27(1): 26.
  • Papagianni M. 2003. Ribosomally synthesized peptides with antimicrobial properties: Biosynthesis, structure, function, and applications. Biotechnol Adv. 4: 481–495.
  • Peleg AY, de Breij A, Adams MD, Cerqueira GM, Mocali S, Galardini M, Nibbering PH, Earl AM, Ward DV, Paterson DL, et al. 2012. The success of Acinetobacter species; genetic, metabolic and virulence attributes. PLoS One. 7(10):e46984.
  • Pérez A, Merino M, Rumbo-Feal S, Álvarez-Fraga L, Vallejo JA, Beceiro A, Ohneck EJ, Mateos J, Fernández-Puente P, Actis LA, et al. 2017. The FhaB/FhaC two-partner secretion system is involved in adhesion of acinetobacter baumannii AbH12o-A2 strain. Virulence. 8(6):959–974.
  • Pingoud A, Wilson GG, Wende W. 2014. Type II restriction endonucleases - A historical perspective and more. Nucleic Acids Res. 42(12):7489–7527.
  • Pires DP, Oliveira H, Melo LDR, Sillankorva S, Azeredo J. 2016. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol. 100(5): 2141–2145.
  • Regeimbal JM, Jacobs AC, Corey BW, Henry MS, Thompson MG, Pavlicek RL, Quinones J, Hannah RM, Ghebremedhin M, Crane NJ, et al. 2016. Personalized therapeutic cocktail of wild environmental phages rescues mice from acinetobacter baumannii wound infections. Antimicrob Agents Chemother. 60(10):5806–5816.
  • Repizo GD, Espariz M, Seravalle JL, Salcedo SP. 2019. Bioinformatic analysis of the type VI secretion system and its potential toxins in the Acinetobacter genus. 10: 2519.
  • Repizo GD, Espariz M, Seravalle JL, Salcedo SP. 2019. Bioinformatic analysis of the type VI secretion system and its potential toxins in the Acinetobacter genus. Front Microbiol. 10:2519.
  • Repizo GD, Gagné S, Foucault-Grunenwald ML, Borges V, Charpentier X, Limansky AS, Gomes JP, Viale AM, Salcedo SP. 2015. Differential role of the T6SS in acinetobacter baumannii virulence. PLoS One. 10(9):e0138265. doi1371/journal.pone.0138265.
  • Repizo GD, Viale AM, Borges V, Cameranesi MM, Taib N, Espariz M, Brochier-Armanet C, Gomes JP, Salcedo SP. 2017. The environmental Acinetobacter baumannii isolate DSM30011 reveals clues into the preantibiotic era genome diversity, virulence potential, and niche range of a predominant nosocomial pathogen. Genome Biol. Evol. 9(9): 2292–2307.
  • Riley MA, Wertz JE. 2002. Bacteriocins: Evolution, ecology, and application. Annu Rev Microbiol. 56(1):117–137.
  • Ringel PD, Hu D, Basler M. 2017. The role of type VI secretion system effectors in target cell lysis and subsequent horizontal gene transfer. Cell Rep. 21(13): 3927–3940.
  • Roca I, Espinal P, Vila-Fanés X, Vila J. 2012. The Acinetobacter baumannii oxymoron: Commensal hospital dweller turned pan-drug-resistant menace. Front Microbiol. 3:148.
  • Rostøl JT, Marraffini L. 2019. (Ph)ighting phages: how bacteria resist their parasites. Cell Host Microbe. 25(2): 184–194.
  • Roussin M, Rabarioelina S, Cluzeau L, Cayron J, Lesterlin C, Salcedo SP, Bigot S. 2019. Identification of a contact-dependent growth inhibition (CDI) system that reduces biofilm formation and host cell adhesion of acinetobacter baumannii DSM30011 strain. Front Microbiol. 10:2450.
  • Ruhe ZC, Wallace AB, Low DA, Hayes CS. 2013. Receptor polymorphism restricts contact-dependent growth inhibition to members of the same species. MBio. 4(4): e00480.
  • Runci F, Gentile V, Frangipani E, Rampioni G, Leoni L, Lucidi M, Visaggio D, Harris G, Chen W, Stahl J, et al. 2019. Contribution of active iron uptake to acinetobacter baumannii pathogenicity. Infect Immun. 87:e00755.
  • Ryazansky S, Kulbachinskiy A, Aravin AA. 2018. The expanded universe of prokaryotic argonaute proteins. MBio. 9(6): e01935.
  • Schmelcher M, Loessner MJ. 2016. Bacteriophage endolysins: Applications for food safety. Curr Opin Biotechnol. 37: 76–87.
  • Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, Barr JJ, Reed SL, Rohwer F, Benler S, et al. 2017. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 61(10): e00954.
  • Schuch R, Nelson D, Fischetti VA. 2002. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature. 418(6900):884–889.
  • Shneider MM, Buth SA, Ho BT, Basler M, Mekalanos JJ, Leiman PG. 2013. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature. 500(7462):350–353.
  • Singh JK, Adams FG, Brown MH. 2019. Diversity and function of capsular polysaccharide in Acinetobacter baumannii. Front Microbiol. 9:1–8.
  • Stahl J, Bergmann H, Göttig S, Ebersberger I, Averhoff B. 2015. Acinetobacter baumannii virulence is mediated by the concerted action of three phospholipases D. PLoS One. 10(9):e0138360–19.
  • Sun Y, Kong L, Wu G, Cao B, Pang X, Deng Z, Dedon PC, Zhang C, You D. 2020. DNA phosphorothioate modifications are widely distributed in the human microbiome. Biomolecules. 10(8):1175.
  • Sužiedeliene E, Jurenaite M, Armalyte J. 2016. Identification and characterization of type II toxin-antitoxin systems in the opportunistic pathogen Acinetobacter baumannii. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria. In ISBN 9781119004813.
  • Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C, Kahlmeter G, Kluytmans J, Carmeli Y, et al. 2018. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 21(3): e36.
  • Thomas CM, Nielsen KM. 2005. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol. 3(9): 711–721.
  • Thomas VM, Brown RM, Ashcraft DS, Pankey GA. 2019. Synergistic effect between nisin and polymyxin B against pandrug-resistant and extensively drug-resistant Acinetobacter baumannii. Int J Antimicrob Agents. 53(5): 663–668.
  • Tilley D, Law R, Warren S, Samis JA, Kumar A. 2014. CpaA a novel protease from Acinetobacter baumannii clinical isolates deregulates blood coagulation. FEMS Microbiol. Lett. 356(1): 53–61.
  • Tomaras AP, Dorsey CW, Edelmann RE, Actis LA. 2003. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: Involvement of a novel chaperone-usher pili assembly system. Microbiology (Reading). 149(12):3473–3484.
  • Touchon M, Cury J, Yoon E-J, Krizova L, Cerqueira GC, Murphy C, Feldgarden M, Wortman J, Clermont D, Lambert T, et al. 2014. The genomic diversification of the whole Acinetobacter genus: origins, mechanisms, and consequences. Genome Biol Evol. 6(10):2866–2882.
  • Vaara M. 1992. Agents that increase the permeability of the outer membrane. Microbiol Rev 56(3): 395–411.
  • Vader G. 2015. Pch2TRIP13: controlling cell division through regulation of HORMA domains. Chromosoma. 124(3):333–339.
  • Van Ulsen P, Rahman S. u, Jong WSP, Daleke-Schermerhorn MH, Luirink J. 2014. Type V secretion: From biogenesis to biotechnology. Biochim Biophys Acta Mol Cell Res. 1843(8): 1592–1611.
  • Vázquez R, García E, García P. 2018. Phage lysins for fighting bacterial respiratory infections: A new generation of antimicrobials. Front Immunol. 9:2252.
  • Venanzio G, Di; Moon KH, Weber BS, Lopez J, Ly PM, Potter RF, Dantas G, Feldman MF. 2019. Multidrug-resistant plasmids repress chromosomally encoded T6SS to enable their dissemination. Proc Natl Acad Sci USA. 116(4): 1378–1383.
  • Viale AM, Evans BA. 2020. Microevolution in the major outer membrane protein ompa of acinetobacter baumannii. Microb. Genomics. 6(6): e000381.
  • Waack U, Warnock M, Yee A, Huttinger Z, Smith S, Kumar A, Deroux A, Ginsburg D, Mobley HLT, Lawrence DA, et al. 2018. CpaA Is a Glycan-Specific Adamalysin-like Protease Secreted by Acinetobacter baumannii That Inactivates Coagulation Factor XII. MBio. 9(6): e01606..[InsertedFromOnline
  • Wang C, Li P, Zhu Y, Huang Y, Gao M, Yuan X, Niu W, Liu H, Fan H, Qin Y, et al. 2020. Identification of a Novel Acinetobacter baumannii phage-derived depolymerase and its therapeutic application in mice. Front Microbiol. 11:1407.
  • Wang L, Jiang S, Deng Z, Dedon PC, Chen S. 2019. DNA phosphorothioate modification - A new multi-functional epigenetic system in bacteria. FEMS Microbiol Rev. 43(2): 109–122.
  • Wang Y, Mi Z, Niu W, An X, Yuan X, Liu H, Li P, Liu Y, Feng Y, Huang Y. 2016. Intranasal treatment with bacteriophage rescues mice from Acinetobacter baumannii-mediated pneumonia. Future Microbiol. 11: 631–641.
  • Weber BS, Hennon SW, Wright MS, Scott NE, de Berardinis V, Foster LJ, Ayala JA, Adams MD, Feldman MF. 2016. Genetic dissection of the type VI secretion system in Acinetobacter and identification of a novel peptidoglycan hydrolase, TagX, required for its biogenesis. MBio. 7(5):e01253.
  • Weber BS, Kinsella RL, Harding CM, Feldman MF. 2017. The secrets of Acinetobacter secretion. Trends Microbiol. 25(7): 532–545.
  • Weber BS, Ly PM, Irwin JN, Pukatzki S, Feldman MF. 2015. A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii. Proc Natl Acad Sci USA. 112(30):9442–9447.
  • Weber BS, Miyata ST, Iwashkiw JA, Mortensen BL, Skaar EP, Pukatzki S, Feldman MF. 2013. Genomic and Functional Analysis of the Type VI Secretion System in Acinetobacter. PLoS One. 8(1):e55142.
  • Whiteley AT, Eaglesham JB, de Oliveira Mann CC, Morehouse BR, Lowey B, Nieminen EA, Danilchanka O, King DS, Lee ASY, Mekalanos JJ, et al. 2019. Bacterial cGAS-like enzymes synthesize diverse nucleotide signals. Nature. 567(7747):194–199. ;.
  • Willett JLE, Ruhe ZC, Goulding CW, Low DA, Hayes CS. 2015. Contact-dependent growth inhibition (CDI) and CdiB/CdiA two-partner secretion proteins. J Mol Biol. 427(23): 3754–3765.
  • Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. 2017. Clinical and pathophysiological overview of Acinetobacter infections: A century of challenges. Clin Microbiol Rev. 30(1):409–447.
  • Wood CR, Ohneck EJ, Edelmann RE, Actis LA. 2018. A light-regulated type I pilus contributes to Acinetobacter baumannii biofilm, motility, and virulence functions. Infect Immun. 86(9): e00442.
  • Wright MS, Haft DH, Harkins DM, Perez F, Hujer KM, Bajaksouzian S, Benard MF, Jacobs MR, Bonomo RA, Adams MD. 2014. New insights into dissemination and variation of the health care- associated pathogen Acinetobacter baumannii from genomic analysis. MBio. 5(1):5.
  • Xiong X, Wu G, Wei Y, Liu L, Zhang Y, Su R, Jiang X, Li M, Gao H, Tian X, et al. 2020. SspABCD–SspE is a phosphorothioation-sensing bacterial defence system with broad anti-phage activities. Nat Microbiol. 5(7): 917–928.
  • Yang X, Long M, Shen X. 2018. Effector–immunity pairs provide the T6SS nanomachine its offensive and defensive capabilities. Molecules. 23(5):1009.
  • Zeidler S, Müller V. 2019. Coping with low water activities and osmotic stress in Acinetobacter baumannii: significance, current status and perspectives. Environ Microbiol. 21(7):2212–2230.
  • Zgheib H, Drider D, Belguesmia Y. 2020. Broadening and enhancing bacteriocins activities by association with bioactive substances. Int J Environ Res Public Health. 17(21): 7835.
  • Zhang Y, Zhang Z, Zhang H, Zhao Y, Zhang Z, Xiao J. 2020. PADS Arsenal: A database of prokaryotic defense systems related genes. Nucleic Acids Res. 48: D590–D598.
  • Zheng J, Shin OS, Cameron DE, Mekalanos JJ. 2010. Quorum sensing and a global regulator TsrA control expression of type VI secretion and virulence in Vibrio cholerae. Proc Natl Acad Sci USA. 107(49): 21128–21133.
  • Zhou X, He X, Liang J, Li A, Xu T, Kieser T, Helmann JD, Deng Z. 2005. A novel DNA modification by sulphur. Mol Microbiol. 57(5): 1428–1438.
  • Zoued A, Brunet YR, Durand E, Aschtgen MS, Logger L, Douzi B, Journet L, Cambillau C, Cascales E. 2014. Architecture and assembly of the Type VI secretion system. Biochim Biophys Acta Mol Cell Res. 1843(8): 1664–1673.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.