554
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Microbial cell factories a new dimension in bio-nanotechnology: exploring the robustness of nature

, &
Pages 397-427 | Received 19 Apr 2021, Accepted 01 Sep 2021, Published online: 23 Sep 2021

References

  • Abboud Y, Saffaj T, Chagraoui A, El Bouari A, Brouzi K, Tanane O, Ihssane B. 2014. Biosynthesis, characterization, and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci. 4(5):571–576.
  • Abdalla AM, Hossain S, Azad AT, Petra PMI, Begum F, Eriksson SG, Azad AK. 2018. Nanomaterials for solid oxide fuel cells: a review. Renew Sust Energ Rev. 82:353–368.
  • Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S. 2009. Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett. 63(15):1231–1234.
  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M. 2002. Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc. 124(41):12108–12109.
  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M. 2003. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloid Surfaces B. 28(4):313–318.
  • Ahmed S, Ahmad M, Swami BL, Ikram S. 2016. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. 7(1):17–28.
  • Ahmed S, Saifullah Ahmad M, Swami BL, Ikram S. 2016. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sc. 9:1–7.
  • Alias N, Nawang MMM, Ghazali NA, Mohd TAT, Manaf SFA, Sauki A, Shahruddin MZ, Ramlee NA. 2014. Green nanoparticle oil well cement from agro waste rice husk ash. In 2014 5th International Conference on Material and Manufacturing Technology (ICMMT 2014); May 8-9; Kuala Lumpur, Malaysia.
  • Al-Naamani L, Dobretsov S, Dutta J. 2016. Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innov. Food Sci Emerg Technol. 38:231–237.
  • Anantharaj S, Nithiyanantham U, Ede SR, Kundu S. 2014. Osmium organosol on DNA: application in catalytic hydrogenation reaction, and in SERS studies. Ind Eng Chem Res. 53(49):19228–19238.
  • Apte M, Sambre D, Gaikawad S, Joshi S, Bankar A, Kumar AR, Zinjarde S. 2013. Psychrotrophic yeast Yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin. AMB Express. 3(1):32.
  • Arroyo GV, Madrid AT, Gavilanes AF, Naranjo B, Debut A, Arias MT, Angulo Y. 2020. Green synthesis of silver nanoparticles for application in cosmetics. J Environ Sci Health A Tox Hazard Subst Environ Eng. 55(11):1304–1320.
  • Arroyo-Maya IJ, McClements DJ. 2015. Biopolymer nanoparticles as potential delivery systems for anthocyanins: fabrication, and properties. Food Res Int. 69:1–8.
  • Asghari-Paskiabi F, Imani M, Eybpoosh S, Rafii-Tabar H, Razzaghi-Abyaneh M. 2020. Population kinetics and mechanistic aspects of Saccharomyces cerevisiae growth in relation to selenium sulfide nanoparticle synthesis. Front Microbiol. 11:1019.
  • Ashraf S, Abbasi AZ, Pfeiffer C, Hussain SZ, Khalid ZM, Gil PR, Parak WJ, Hussain I. 2013. Protein-mediated synthesis, pH-induced reversible agglomeration, toxicity and cellular interaction of silver nanoparticles. Colloids Surf B Biointerfaces. 102:511–518.
  • Baeumner A. 2004. Nanosensors identify pathogens in food. Food Technol. 58:51–55.
  • Balasubramani G, Ramkumar R, Krishnaveni N, Pazhanimuthu A, Natarajan T, Sowmiya R, Perumal P. 2015. Structural characterization, antioxidant and anticancer properties of gold nanoparticles synthesized from leaf extract (decoction)of Antigonon leptopus Hook. &Arn. &. J Trace Elem Med Biol. 30:83–89.
  • Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A. 2009. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf. 339(1–3):134–139.
  • Baruwati B, Polshettiwar V, Varma RS. 2009. Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem. 11(7):926–930.
  • Bezbaruah AN, Krajangpan S, Chisholm BJ, Khan E, Bermudez JJE. 2009. Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. J Hazard Mater. 166(2–3):1339–1343.
  • Bezbaruah AN, Shanbhogue SS, Simsek S, Khan E. 2011. Encapsulation of iron nanoparticles in alginate biopolymer for trichloroethylene remediation. J Nanopart Res. 13(12):6673–6681.
  • Bhainsa KC, D'souza SF. 2006. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces. 47(2):160–164.
  • Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M. 2006. Extracellular biosynthesis of magnetite using fungi. Small. 2(1):135–141.
  • Bharde A, Wani A, Shouche Y, Joy PA, Prasad BL, Sastry M. 2005. Bacterial aerobic synthesis of nanocrystalline magnetite. J Am Chem Soc. 127(26):9326–9327.
  • Biçer M, Şişman İ. 2010. Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution. Powder Technol. 198(2):279–284.
  • Bigley C, Greenwood P. 2003. Using silica to control bleed, and segregation in self-compacting concrete. Concrete. 37:43–45.
  • Bosetti M, Massè A, Tobin E, Cannas M. 2002. Silver coated materials for external fixation devices: in vitro biocompatibility, and genotoxicity. Biomaterials. 23(3):887–892.
  • Boxall AB, Chaudhry Q, Sinclair C, Jones A, Aitken R, Jefferson B, Watts C. 2007. Current, and future predicted environmental exposure to engineered nanoparticles. London: Central Science Laboratory, Department of the Environment and Rural Affairs.
  • Brannon-Peppas L, Blanchette JO. 2004. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 56(11):1649–1659.
  • Breierová E, Vajczikova I, Sasinková V, Stratilová E, Fišera M, Gregor T, Šajbidor J. 2002. Biosorption of cadmium ions by different yeast species. Z Naturforsch C J Biosci. 57(7–8):634–639.
  • Brody AL. 2006. Nano, and food packaging technologies converge. Food Technol. 60:92–94.
  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ. 2006. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol. 40(14):4374–4381.
  • Buzea C, Pacheco II, Robbie K. 2007. Nanomaterials and nanoparticles: sources and toxicity. Nanomaterials, and Nanoparticles: sources, and Toxicity. Biointerphases 2. MR17–MR71. 2(4):MR17–MR71..
  • Cabrera FC, Mohan H, Dos Santos RJ, Agostini DL, Aroca RF, Rodríguez-Pérez MA, Job AE. 2013. Green synthesis of gold nanoparticles with self-sustained natural rubber membranes. J Nanomat. 2013:1–10.
  • Campillo I, Dolado JS, Porro A. 2004. High-performance nanostructured materials for construction. Special Publication. Royal Soc Chem. 292:215–226.
  • Cao Y, Tian N, Bahr D, Zavattieri PD, Youngblood J, Moon RJ, Weiss J. 2016. The influence of cellulose nanocrystals on the microstructure of cement paste. Cem Concr Compos. 74:164–173.
  • Castro-Longoria E, Moreno-Velásquez SD, Vilchis-Nestor AR, Arenas-Berumen E, Avalos-Borja M. 2012. Production of platinum nanoparticles, and nanoaggregates using Neurospora crassa. J Microbiol Biotechnol. 22: 1000–1004.
  • Chamberlain MC. 2012. Neurotoxicity of intra-CSF liposomal cytarabine (DepoCyt) administered for the treatment of leptomeningeal metastases: a retrospective case series. J Neurooncol. 109(1):143–148.
  • Chen H, Weiss J, Shahidi F. 2006. Nanotechnology in nutraceuticals, and functional foods. Food Technol. 60:30–36.
  • Chen YL, Tuan HY, Tien CW, Lo WH, Liang HC, Hu YC. 2009. Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli. Biotechnol Prog. 25(5):1260–1266.
  • Cheng MMC, Cuda G, Bunimovich YL, Gaspari M, Heath JR, Hill HD, Mirkin CA, Nijdam AJ, Terracciano R, Thundat T, et al. 2006. Nanotechnologies for biomolecular detection and medical diagnostics. Curr Opin Chem Biol. 10(1):11–19.
  • Cheng Y, Samia AC, Meyers JD, Panagopoulos I, Fei B, Burda C. 2008a. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc. 130(32):10643–10647.
  • Cheng Y, Wang J, Rao T, He X, Xu T. 2008b. Pharmaceutical applications of dendrimers: promising nanocarriers for drug delivery. Front Biosci. 13:1447–1471.
  • Chou KS, Lu YC, Lee HH. 2005. Effect of alkaline ion on the mechanism, and kinetics of chemical reduction of silver. Mater Chem Phys. 94(2-3):429–433.
  • Cui H, Surendhiran D, Li C, Lin L. 2020. Biodegradable zein active film containing chitosan nanoparticle encapsulated with pomegranate peel extract for food packaging. Food Packag Shelf Life. 24:100511.
  • Cui W, Lu W, Zhang Y, Lin G, Wei T, Jiang L. 2010. Gold nanoparticle ink suitable for electric-conductive pattern fabrication using in ink-jet printing technology. Colloids Surf. 358(1–3):35–41.
  • da Costa Correia V, Santos SF, Teixeira RS, Junior HS. 2018. Nanofibrillated cellulose and cellulosic pulp for reinforcement of the extruded cement based materials. Constr Build Mater. 160:376–384.
  • Dahl JA, Maddux BL, Hutchison JE. 2007. Toward greener nanosynthesis. Chem Rev. 107(6):2228–2269.
  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR. 1989. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature. 338(6216):596–597.
  • Das VL, Thomas R, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK. 2014. Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech. 4(2):121–126.
  • Daughton CG, Ternes TA. 1999. Pharmaceuticals, and personal care products in the environment: agents of subtle change? Enviro Health Persp. 107(suppl 6):907–938.
  • Davis FF. 2002. The origin of pegnology. Adv Drug Deliv Rev. 4:457–458.
  • Devipriya D, Roopan SM. 2017. Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles, and its antifungal studies against Aspergillus niger, Aspergillus flavus. Mater Sci Eng C. 80:38–44.
  • Dorniani D, Hussein MZB, Kura AU, Fakurazi S, Shaari AH, Ahmad Z. 2012. Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery. Int J Nanomedicine. 7:5745–5756.
  • Drolet DW, Nelson J, Tucker CE, Zack PM, Nixon K, Bolin R, Judkins MB, Farmer JA, Wolf JL, Gill SC, et al. 2000. Pharmacokinetics and safety of an anti-vascular endothelial growth factor aptamer (NX1838) following injection into the vitreous humor of rhesus monkeys . Pharm Res. 17(12):1503–1510.
  • Drummond C, McCann R, Patwardhan SV. 2014. A feasibility study of the biologically inspired green manufacturing of precipitated silica. Chem Eng. 244:483–492.
  • Ealias AM, Saravanakumar MP. 2017. A review on the classification, characterisation, synthesis of nanoparticles, and their application. In IOP Conf Ser Mater Sci Eng. 263:032019.
  • Eckelman MJ, Zimmerman JB, Anastas PT. 2008. Toward green nano: E‐factor analysis of several nanomaterial syntheses. J Ind Ecol. 12:316–328.
  • Edie News. 2004. EU smart construction materials to absorb pollution. http://www.greenbiz.com/news/printer.cfm?NewsID=26557.
  • El Golli A, Fendrich M, Bazzanella N, Dridi C, Miotello A, Orlandi M. 2021. Wastewater remediation with ZnO photocatalysts: green synthesis and solar concentration as an economically and environmentally viable route to application. J Environ Manage. 286:112226.
  • El‐Baz AF, Sorour NM, Shetaia YM. 2016. Trichosporon jirovecii–mediated synthesis of cadmium sulfide nanoparticles. J Basic Microbiol. 56(5):520–530.
  • Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. 1997. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 277(5329):1078–1081.
  • El-Rafie HM, El-Rafie M, Zahran MK. 2013. Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydr Polym. 96(2):403–410.
  • Eustis S, El-Sayed MA. 2006. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev. 35(3):209–217.
  • Fariq A, Khan T, Yasmin A. 2017. Microbial synthesis of nanoparticles, and their potential applications in biomedicine. J Appl Biomed. 15(4):241–248.
  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PR, Venketesan R. 2010. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed-Nanotechnol. 6:103–109.
  • Fassas A, Anagnostopoulos A. 2005. The use of liposomal daunorubicin (DaunoXome) in acute myeloid leukemia. Leuk Lymphoma. 46(6):795–802.
  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli, and Staphylococcus aureus. J Biomed Mater Res. 52(4):662–668.
  • Fernández JG, Fernández-Baldo MA, Berni E, Camí G, Durán N, Raba J, Sanz M. 2016. Production of silver nanoparticles using yeasts, and evaluation of their antifungal activity against phytopathogenic fungi. Process Biochem. 51(9):1306–1313.
  • Flanagan R. 2001. Vision 2020: building Sweden's future. Göteborg: Department of Building Economics, and Management, Chalmers University of Technology.
  • Foser S, Schacher A, Weyer KA, Brugger D, Dietel E, Marti S, Schreitmüller T. 2003. Isolation, structural characterization, and antiviral activity of positional isomers of monopegylated interferon alpha-2a (PEGASYS). Protein Expr Purif. 30(1):78–87.
  • Fouad RR, Aljohani HA, Shoueir KR. 2016. Biocompatible poly(vinyl alcohol) nanoparticle-based binary blends for oil spill control . Mar Pollut Bull. 112(1–2):46–52.
  • Franco CA, Cortés FB, Nassar NN. 2014. Adsorptive removal of oil spill from oil-in-fresh water emulsions by hydrophobic alumina nanoparticles functionalized with petroleum vacuum residue. J Colloid Interface Sci. 425:168–177.
  • Fu HL, Cheng SX, Zhang XZ, Zhuo RX. 2007. Dendrimer/DNA complexes encapsulated in a water soluble polymer, and supported on fast degrading star poly (DL-lactide) for localized gene delivery. J Control Release. 124(3):181–188.
  • Gao S, Shi Y, Zhang S, Jiang K, Yang S, Li Z, Takayama-Muromachi E. 2008. Biopolymer-assisted green synthesis of iron oxide nanoparticles, and their magnetic properties. J Phys Chem. 112:10398–10401.
  • Geetha R, Ashokkumar T, Tamilselvan S, Govindaraju K, Sadiq M, Singaravelu G. 2013. Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nanotechnol. 4(4–5):91–98.
  • Ghaffar A, Kiran S, Rafique MA, Iqbal S, Nosheen S, Hou Y, Afzal G, Bashir M, Aimun U, Yumei H, Gulnaz A, Mudassar B, Ume A. 2021. Citrus paradisi fruit peel extract mediated green synthesis of copper nanoparticles for remediation of disperse Yellow 125 dye. DWT. 212:368–375.
  • Gianeti MD, Wagemaker AL, Seixas TCV, Campos Mbgp M. 2012. The use of nanotechnology in cosmetic formulations: the influence of vehicle in the vitamin A skin penetration. Curr Nanosci. 8:526–534.
  • Gibbs F, Kermasha S, Alli I, Catherine N, Mulligan B. 1999. Encapsulation in the food industry: a review. Int J Food Sci Nutr. 50(3):213–224.
  • Gilbertson LM, Zimmerman JB, Plata DL, Hutchison JE, Anastas PT. 2015. Designing nanomaterials to maximize performance and minimize undesirable implications guided by the principles of green chemistry. Chem Soc Rev. 44(16):5758–5777.
  • Govindaraju K, Kiruthiga V, Kumar VG, Singaravelu G. 2009. Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum wightii Grevilli, and their antibacterial effects. J Nanosci. 9:5497–5501.
  • Greene B, Hosea M, McPherson R, Henzl M, Alexander MD, Darnall DW. 1986. Interaction of gold(I) and gold(III) complexes with algal biomass. Environ Sci Technol. 20(6):627–632.
  • Gupta A, Maynes M, Silver S. 1998. Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl Environ Microbiol. 64(12):5042–5045.
  • He F, Zhao D. 2005. Preparation, and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol. 39(9):3314–3320.
  • He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N. 2007. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett. 61(18):3984–3987.
  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A. 2008. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 71(7):1308–1316.
  • Helmke BP, Minerick AR. 2006. Designing a nano-interface in a microfluidic chip to probe living cells: challenges, and perspectives. Proceedings of the National Academy of Sciences. 103(17):6419–6424.
  • Herrera-Becerra R, Rius JL, Zorrilla C. 2010. Tannin biosynthesis of iron oxide nanoparticles. Appl Phys A. 100(2):453–459.
  • Hershfield MS. 1995. PEG-ADA replacement therapy for adenosine deaminase deficiency: an update after 8.5 years. J Clin Immunol. 76:S228–S232.
  • Hodoroaba VD, Rades S, Unger WE. 2014. Inspection of morphology, and elemental imaging of single nanoparticles by high‐resolution SEM/EDX in transmission mode. Surf Interface Anal. 46(10–11):945–948.
  • Holley C. 2005. Nanotechnology, and packaging. Secure protection for the future. Verpack Rundsch. 56:53–56.
  • Honary S, Barabadi H, Gharaei-Fathabad E, Naghibi F. 2012. Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum, and Penicillium waksmanii. Dig J Nanomater Bios. 7:999–1005.
  • Hsieh MC, Koga H, Nogi M, Suganuma K. 2014 November. Highly heat-resistant bio-based nanofiber substrate for flexible electronics. In IEEE CPMT Symposium Japan 2014, 186–189, IEEE.
  • Hsieh PYH, Ofori JA. 2007. Innovations in food technology for health. Asia Pac J Clin Nutr. 16:65–73.
  • Hu K, Huang X, Gao Y, Huang X, Xiao H, McClements DJ. 2015. Core-shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein-pectin nanoparticles. Food Chem. 182:275–281.
  • Hulkoti NI, Taranath TC. 2014. Biosynthesis of nanoparticles using microbes—a review. Colloid Surface B. 121:474–483.
  • Hurst SJ, Lytton-Jean AK, Mirkin CA. 2006. Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem. 78(24):8313–8318.
  • Hutchison JE. 2008. Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano. 2(3):395–402.
  • Ingle A, Rai M, Gade A, Bawaskar M. 2009. Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanoparticle Res. 11:2079–2085. DOI:https://doi.org/10.1007/s11051-008-9573-y.
  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. 2014. Synthesis of silver nanoparticles: chemical, physical, and biological methods. Res Pharm Sci. 9(6):385–406.
  • Javed R, Zia M, Naz S, Aisida SO, Ul Ain N, Ao Q. 2020. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J Nanobiotechnology. 18(1):172–115.
  • Jayakumarai G, Gokulpriya C, Sudhapriya R, Sharmila G, Muthukumaran C. 2015. Phytofabrication, and characterization of monodisperse copper oxide nanoparticles using Albizia lebbeck leaf extract. Appl Nanosci. 5(8):1017–1021.
  • Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KB. 2012. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc. 90:78–84.
  • Jegan A, Ramasubbu A, Saravanan S, Vasanthkumar S. 2011. One-pot synthesis, and characterization of biopolymer-iron oxide nanocomposite. Int J Nano Dimens. 2:105–110.
  • Jena J, Pradhan N, Dash BP, Panda PK, Mishra BK. 2015. Pigment mediated biogenic synthesis of silver nanoparticles using diatom Amphora sp., and its antimicrobial activity. J Saudi Chem Soc. 19(6):661–666.
  • Ji W, Zhang T, Lu Z, Shen J, Xiao Z, Zhang X. 2019. Synthesis, and characterization of novel biocompatible nanocapsules encapsulated lily fragrance. Chin Chem Lett. 30(3):739–742.
  • Jiménez-Pérez ZE, Singh P, Kim YJ, Mathiyalagan R, Kim DH, Lee MH, Yang DC. 2018. Applications of Panax ginseng leaves-mediated gold nanoparticles in cosmetics relation to antioxidant, moisture retention, and whitening effect on B16BL6 cells. J Ginseng Res. 42(3):327–333.
  • Jo JH, Singh P, Kim YJ, Wang C, Mathiyalagan R, Jin CG, Yang DC. 2016. Pseudomonas deceptionensis DC5-mediated synthesis of extracellular silver nanoparticles. Artif Cells Nanomed Biotechnol. 44(6):1576–1581.
  • Johnston CW, Wyatt MA, Li X, Ibrahim A, Shuster J, Southam G, Magarvey NA. 2013. Gold biomineralization by a metallophore from a gold-associated microbe. Nat Chem Biol. 9(4):241–243.
  • Kabri TH, Arab-Tehrany E, Belhaj N, Linder M. 2011. Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3. J Nanobiotechnology. 9:41.
  • Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S. 2008. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces. 65(1):150–153.
  • Kamasamudram KS, Ashraf W, Landis EN. 2020. Cellulose nanocomposites for performance enhancement of ordinary Portland cement-based materials. Transport Res Rec. DOI:https://doi.org/10.1177/0361198120958421
  • Kasthuri J, Kathiravan K, Rajendiran N. 2009. Phyllanthin-assisted biosynthesis of silver, and gold nanoparticles: a novel biological approach. J Nanopart Res. 11(5):1075–1085.
  • Kathiraven T, Sundaramanickam A, Shanmugam N, Balasubramanian T. 2015. Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa, and their antibacterial activity against some human pathogens. Appl Nanosci. 5(4):499–504.
  • Katti KK, Kattumuri V, Bhaskaran S, Katti KV, Kannan R. 2009. Facile and general method for synthesis of sugar coated gold nanoparticles. Int J Green Nanotechnol Biomed. 1(1):B53–B59.
  • Kaviya S, Santhanalakshmi J, Viswanathan B. 2011. Green synthesis of silver nanoparticles using Polyalthia longifolia leaf extract along with D-sorbitol: study of antibacterial activity. J Nanotechnol. 2011:1–5.
  • Kawasaki ES, Player A. 2005. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine. 1(2):101–109.
  • Khalil KA, Fouad H, Elsarnagawy T, Almajhdi FN. 2013. Preparation, and characterization of electrospun PLGA/silver composite nanofibers for biomedical applications. Int J Electrochem Sci. 8:3483–3493.
  • Kharissova OV, Dias HR, Kharisov BI, Pérez BO, Pérez VMJ. 2013. The greener synthesis of nanoparticles. Trends Biotechnol. 31(4):240–248.
  • Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S. 2012. A review on nanomaterials for environmental remediation. Energy Environ Sci. 5(8):8075–8109.
  • Klaus T, Joerger R, Olsson E, Granqvist CG. 1999. Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci. 96(24):13611–13614.
  • Klaus-Joerger T, Joerger R, Olsson E, Granqvist CG. 2001. Bacteria as workers in the living factory: metal-accumulating bacteria, and their potential for materials science. Trends Biotechnol. 19(1):15–20.
  • Köhler M, Fritzsche W. 2008. Nanotechnology: an introduction to nanostructuring techniques. Germany: John Wiley & Sons.
  • Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S. 2004. Microbial synthesis of gold nanoparticles by metal reducing bacterium. Trans Mater Res Soc Jpn. 29:2341–2343.
  • Korbekandi H, Iravani S. 2012. Silver nanoparticles. In: Hashim AA, editor. The delivery of nanoparticles. Croatia: InTech.
  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM. 2003. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology. 14(1):95–100.
  • Krishna R, Titus E, Krishna R, Bardhan N, Bahadur D, Gracio J. 2012. Wet-chemical green synthesis of L-lysine amino acid stabilized biocompatible iron-oxide magnetic nanoparticles. j Nanosci Nanotechnol. 12(8):6645–6651.
  • Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N. 2010. Synthesis of silver nanoparticles using Acalypha indica leaf extracts, and its antibacterial activity against water borne pathogens. Colloid Surface B. 76(1):50–56.
  • Kulkarni JA, Witzigmann D, Chen S, Cullis PR, van der Meel R. 2019. Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Acc Chem Res. 52(9):2435–2444.
  • Kumar PV, Pammi SVN, Kollu P, Satyanarayana KVV, Shameem U. 2014. Green synthesis, and characterization of silver nanoparticles using Boerhaavia diffusa plant extract, and their antibacterial activity. Ind Crops Prod. 52:562–566.
  • Kumar R, Singh N, Pandey SN. 2015. Potential of green synthesized zero-valent iron nanoparticles for remediation of lead-contaminated water. Int J Environ Sci Technol. 12(12):3943–3950.
  • Kundu S. 2013. Formation of self-assembled Ag nanoparticles on DNA chains with enhanced catalytic activity. Phys Chem Chem Phys. 15(33):14107–14119.
  • Kundu S, Maheshwari V, Saraf RF. 2008. Photolytic metallization of Au nanoclusters, and electrically conducting micrometer long nanostructures on a DNA scaffold. Langmuir. 24(2):551–555.
  • Kundu S, Nithiyanantham U. 2014. DNA-mediated fast synthesis of shape-selective ZnO nanostructures, and their potential applications in catalysis, and dye-sensitized solar cells. Ind Eng Chem Res. 53(35):13667–13679.
  • Kuzumaki T, Miyazawa K, Ichinose H, Ito K. 1998. Processing of carbon nanotube reinforced aluminum composite. J Mater Res. 13(9):2445–2449.
  • Lah NA, Zubir MN, Mahendran A, Samykano L. 2018. Engineered nanomaterial in electronics, and electrical industries. In: Hussain CM, editor. Hand book of nanomaterials for industrial applications. Cambridge, MA: Elsevier Inc; p. 324–364.
  • Lam JY, Shih CC, Lee WY, Chueh CC, Jang GW, Huang CJ, Tung SH, Chen WC. 2018. Bio‐based transparent conductive film consisting of polyethylene furanoate and silver nanowires for flexible optoelectronic devices. Macromol Rapid Commun. 39(13):1800271.
  • Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW. 2003. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science. 300(5624):1434–1436.
  • Lengke MF, Fleet ME, Southam G. 2006. Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold (I)− thiosulfate, and gold (III)− chloride complexes. Langmuir. 22(6):2780–2787.
  • Li L, Zhang W, Desikan Seshadri VD, Cao G. 2019. Synthesis and characterization of gold nanoparticles from Marsdenia tenacissima and its anticancer activity of liver cancer HepG2 cells. Artif Cells Nanomed Biotechnol. 47(1):3029–3036.
  • Li Y, Cheng Y, Xu T. 2007. Design, synthesis and potent pharmaceutical applications of glycodendrimers: a mini review. Curr Drug Discov Technol. 4(4):246–254.
  • Li Y, Guo M, Lin Z, Zhao M, Xiao M, Wang C, Xu T, Chen T, Zhu B. 2016. Polyethylenimine-functionalized silver nanoparticle-based co-delivery of paclitaxel to induce HepG2 cell apoptosis. Int J Nanomedicine. 11:6693–6702.
  • Lu W, Shen Y, Xie A, Zhang W. 2010. Green synthesis, and characterization of superparamagnetic Fe3O4 nanoparticles. J Magn Magn Mater. 322(13):1828–1833.
  • Lukman AI, Gong B, Marjo CE, Roessner U, Harris AT. 2011. Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J Colloid Interface Sci. 353(2):433–444.
  • Luther GW, Rickard DT. 2005. Metal sulfide cluster complexes, and their biogeochemical importance in the environment. J Nanopart Res. 7(4–5):389–407.
  • Ma H, Bertsch PM, Glenn TC, Kabengi NJ, Williams PL. 2009. Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ Toxicol Chem. 28(6):1324–1330.
  • Ma H, Kabengi NJ, Bertsch PM, Unrine JM, Glenn TC, Williams PL. 2011. Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: the importance of illumination mode and primary particle size. Environ Pollut. 159(6):1473–1480.
  • Ma RZ, Wu J, Wei BQ, Liang J, Wu DH. 1998. Processing, and properties of carbon nanotubes–nano-SiC ceramic. J Mater Sci. 33(21):5243–5246.
  • Mahdavi M, Namvar F, Ahmad MB, Mohamad R. 2013. Green biosynthesis and characterization of magnetic iron oxide (Fe₃O₄) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules. 18(5):5954–5964.
  • Majumdar D, Singha A, Mondal PK, Kundu S. 2013. DNA-mediated wirelike clusters of silver nanoparticles: an ultrasensitive SERS substrate. ACS Appl Mater Interfaces. 5(16):7798–7807.
  • Majumdar M, Biswas SC, Choudhury R, Upadhyay P, Adhikary A, Roy DN, Misra TK. 2019. Synthesis of gold nanoparticles using citrus macroptera fruit extract: anti‐biofilm and anticancer activity. ChemistrySelect. 4(19):5714–5723.
  • Majumder A, Ramrakhiani L, Mukherjee D, Mishra U, Halder A, Mandal AK, Ghosh S. 2019. Green synthesis of iron oxide nanoparticles for arsenic remediation in water and sludge utilization. Clean Techn Environ Policy. 21(4):795–813.
  • Manik UP, Nande A, Raut S, Dhoble SJ. 2020. Green synthesis of silver nanoparticles using plant leaf extraction of Artocarpus heterophylus and Azadirachta indica. Results in Materials. 6:100086.
  • Marsalek R. 2014. Particle size, and zeta potential of ZnO. APCBEE Procedia. 9:13–17.
  • Mathew AP, Dufresne A. 2002. Morphological investigation of nanocomposites from sorbitol plasticized starch and Tunicin whiskers. Biomacromolecules. 3(3):609–617.
  • Matsumura Y, Yoshikata K, Kunisaki SI, Tsuchido T. 2003. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol. 69(7):4278–4281.
  • Mecke A, Uppuluri S, Sassanella TM, Lee DK, Ramamoorthy A, Baker JR, Jr Orr BG, Holl MMB. 2004. Direct observation of lipid bilayer disruption by poly(amidoamine) dendrimers. Chem Phys Lipids. 132(1):3–14.
  • Mejdoub R, Hammi H, Suñol JJ, Khitouni M, M ‘Nif A, Boufi S. 2017. Nanofibrillated cellulose as nanoreinforcement in Portland cement: thermal, mechanical and microstructural properties. J Compos Mater. 51(17):2491–2503.
  • Menger FM. 2002. Supramolecular chemistry, and self-assembly special feature: supramolecular chemistry, and self-assembly. Pnas Usa. 99(8):4818–4822.
  • Meyerhoff A. 1999. US Food, and Drug Administration approval of AmBisome (liposomal amphotericin B) for treatment of visceral leishmaniasis. Clin Infect Dis. 28(1):42–48.
  • Mishra A, Sardar M. 2015. Cellulase assisted synthesis of nano-silver and gold: application as immobilization matrix for biocatalysis. Int J Biol Macromol. 77:105–113.
  • Mishra A, Tripathy SK, Wahab R, Jeong SH, Hwang I, Yang YB, Kim YS, Shin HS, Yun SI. 2011. Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum, and their cytotoxic effects against mouse mayo blast cancer C2 C12 cells. Appl Microbiol. 92:617–630.
  • Mittal AK, Chisti Y, Banerjee UC. 2013. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv. 31(2):346–356.
  • Moghaddam AB, Moniri M, Azizi S, Rahim RA, Ariff AB, Saad WZ, Namvar F, Navaderi M, Mohamad R. 2017. Biosynthesis of ZnO nanoparticles by a new Pichia kudriavzevii yeast strain, and evaluation of their antimicrobial, and antioxidant activities. Molecules. 22(6):872.
  • Moon H, Lee J, Min J, Kang S. 2014. Developing genetically engineered encapsulin protein cage nanoparticles as a targeted delivery nanoplatform. Biomacromolecules. 15(10):3794–3801.
  • Moraru CI, Panchapakesan CP, Huang Q, Takhistov P, Liu S, Kokini JL. 2003. Nanotechnology: a new frontier in food science understanding the special properties of materials of nanometer size will allow food scientists to design new, healthier, tastier, and safer foods. Nanotechnology. 57: 24–29.
  • Moreno-Álvarez SA, Martínez-Castañón GA, Niño-Martínez N, Reyes-Macías JF, Patiño-Marín N, Loyola-Rodríguez JP, Ruiz F. 2010. Preparation, and bactericide activity of gallic acid stabilized gold nanoparticles. J Nanopart Res. 12(8):2741–2746.
  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology. 16(10):2346–2353.
  • Mounika G, Ramesh B, Rama JK. 2020. Experimental investigation on physical and mechanical properties of alkali activated concrete using industrial and agro waste. Mater Today: Proc. 33:4372–4376.
  • MubarakAli D, Thajuddin N, Jeganathan K, Gunasekaran M. 2011. Plant extract mediated synthesis of silver, and gold nanoparticles, and its antibacterial activity against clinically isolated pathogens. Colloid Surface B. 85(2):360–365.
  • Mukherjee D, Ghosh S, Majumdar S, Annapurna K. 2016. Green synthesis of α-Fe2O3 nanoparticles for arsenic (V) remediation with a novel aspect for sludge management. J Environ Chem Eng. 4(1):639–650.
  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, et al. 2001. Fungus-mediated synthesis of silver nanoparticles, and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett. 1(10):515–519.
  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, et al. 2001. Bioreduction of AuCl4− ions by the fungus, Verticillium sp., and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed. 40(19):3585–3588.
  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP. 2008. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic, and agriculturally important fungus T. asperellum. Nanotechnology. 19(7):075103.
  • Mukherjee S, Ghosh S, Das DK, Chakraborty P, Choudhury S, Gupta P, Adhikary A, Dey S, Chattopadhyay S. 2015. Gold-conjugated green tea nanoparticles for enhanced anti-tumor activities and hepatoprotection—synthesis, characterization and in vitro evaluation. J Nutr Biochem. 26(11):1283–1297.
  • Mukhopadhyay R, Kazi J, Debnath MC. 2018. Synthesis and characterization of copper nanoparticles stabilized with Quisqualis indica extract: evaluation of its cytotoxicity and apoptosis in B16F10 melanoma cells. Biomed Pharmacother. 97:1373–1385.
  • Müller H-J, Beier R, da Palma J, Lanvers C, Ahlke E, von Schütz V, Gunkel M, Horn A, Schrappe M, Henze G, et al. 2002. PEG-asparaginase (Oncaspar) 2500 U/m 2 BSA in reinduction, and relapse treatment in the ALL/NHL-BFM protocols. Cancer Chemother Pharmacol. 49(2):149–154.
  • Murphy CJ. 2008. Sustainability as an emerging design criterion in nanoparticle synthesis, and applications. J Mater Chem. 18(19):2173–2176.
  • Nadagouda MN, Varma RS. 2007. A greener synthesis of core (Fe, Cu)-shell (Au, Pt, Pd, and Ag) nanocrystals using aqueous vitamin C. Cryst Growth Des. 7(12):2582–2587.
  • Najigivi A. 2011. Development of high strength cement-based concrete utilizing silicon dioxide nanoparticles and rice husk ash [Doctoral dissertation]. Malaysia: Universiti Putra Malaysia.
  • Narain A, Asawa S, Chhabria V, Patil-Sen Y. 2017. Cell membrane coated nanoparticles: next-generation therapeutics. Nanomedicine. 12(21):2677–2692.
  • Narayanan KB, Sakthivel N. 2011. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interface Sci. 169(2):59–79.
  • Natrajan D, Srinivasan S, Sundar K, Ravindran A. 2015. Formulation of essential oil-loaded chitosan–alginate nanocapsules. J Food Drug Anal. 23(3):560–568.
  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L. 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 17(5):372–386.
  • Nel A, Xia T, Mädler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science. 311(5761):622–627.
  • Nevalainen H, Suominen P, Taimisto K. 1994. On the safety of Trichoderma reesei. J Biotechnol. 37(3):193–200.
  • Nikolić S, Keck CM, Anselmi C, Müller RH. 2011. Skin photoprotection improvement: synergistic interaction between lipid nanoparticles and organic UV filters. Int J Pharm. 414(1–2):276–284.
  • Nithya R, Ragunathan R. 2009. Synthesis of silver nanoparticle using Pleurotus sajor caju, and its antimicrobial study. Dig J Nanomater Bios. 4:623–629.
  • Northfelt DW, Dezube BJ, Thommes JA, Miller BJ, Fischl MA, Friedman-Kien A, Kaplan LD, Du Mond C, Mamelok RD, Henry DH. 1998. Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi's sarcoma: results of a randomized phase III clinical trial. JCO. 16(7):2445–2451.
  • Ortega FG, Fernández-Baldo MA, Fernández JG, Serrano MJ, Sanz MI, Díaz-Mochón JJ, Lorente JA, Raba J. 2015. Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast. Int J Nanomedicine. 10:2021–2031.
  • Oskam G. 2006. Metal oxide nanoparticles: synthesis, characterization, and application. J Sol-Gel Sci Technol. 37(3):161–164.
  • Ozin GA, Arsenault A. 2015. Nanochemistry: a chemical approach to nanomaterials. London: Royal Society of Chemistry.
  • Öztürk BY. 2019. Intracellular and extracellular green synthesis of silver nanoparticles using Desmodesmus sp.: their antibacterial and antifungal effects. Caryologia. 72:29–43.
  • Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R. 2011. Nanoparticle: an overview of preparation, and characterization. J Appl Pharm Sci. 1:228–234.
  • Pantidos N, Horsfall LE. 2014. Biological synthesis of metallic nanoparticles by bacteria, fungi, and plants. J Nanomed Nanotechnol. 05(05):1.
  • Park HM, Lee WK, Park CY, Cho WJ, Ha CS. 2003. Environmentally friendly polymer hybrids Part I mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J Mater Sci. 38(5):909–915.
  • Park TJ, Lee SY, Heo NS, Seo TS. 2010. In vivo synthesis of diverse metal nanoparticles by recombinant Escherichia coli. Angew Chem Int Ed. 49(39):7019–7024.
  • Park Y, Hong YN, Weyers A, Kim YS, Linhardt RJ. 2011. Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol. 5(3):69–78.
  • Parker HL, Rylott EL, Hunt AJ, Dodson JR, Taylor AF, Bruce NC, Clark JH. 2014. Supported palladium nanoparticles synthesized by living plants as a catalyst for Suzuki-Miyaura reactions. PLOS One. 9(1):e87192.
  • Pastrana H, Avila A, Tsai CS. 2018. Nanomaterials in cosmetic products: the challenges with regard to current legal frameworks, and consumer exposure. Nanoethics. 12(2):123–137.
  • Patwardhan SV. 2011. Biomimetic, and bioinspired silica: recent developments, and applications. ChemComm. 47:7567–7582.
  • Patwardhan SV, Manning JR, Chiacchia M. 2018. Bioinspired synthesis as a potential green method for the preparation of nanomaterials: opportunities, and challenges. Curr Opin Green Sustain Chem. 12:110–116.
  • Perera M, Wijenayaka LA, Siriwardana K, Dahanayake D, de Silva KN. 2020. Gold nanoparticle decorated titania for sustainable environmental remediation: green synthesis, enhanced surface adsorption and synergistic photocatalysis. RSC Adv. 10(49):29594–29602.
  • Pérez-de-Mora A, Burgos P, Madejón E, Cabrera F, Jaeckel P, Schloter M. 2006. Microbial community structure, and function in a soil contaminated by heavy metals: effects of plant growth, and different amendments. Soil Biol Biochem. 38(2):327–341.
  • Pinto RJ, Lucas JM, Silva FM, Girão AV, Oliveira FJ, Marques PA, Freire CS. 2019. Bio-based synthesis of oxidation resistant copper nanowires using an aqueous plant extract. J Clean Prod. 221:122–131.
  • Pinto RJ, Martins MA, Lucas JM, Vilela C, Sales AJ, Costa LC, Marques PA, Freire CS. 2020. Highly electroconductive nanopapers based on nanocellulose and copper nanowires: a new generation of flexible and sustainable electrical materials. ACS Appl Mater Interfaces. 12(30):34208–34216.
  • Pokorski JK, Steinmetz NF. 2011. The art of engineering viral nanoparticles. Mol Pharm. 8(1):29–43.
  • Popescu M, Velea A, Lőrinczi A. 2010. Biogenic production of nanoparticles. Dig J Nanomater Bios. 5: 1035–1040.
  • Pothakamury UR, Barbosa-Cánovas GV. 1995. Fundamental aspects of controlled release in foods. Trends Food Sci Technol. 6(12):397–406.
  • Pradeep T. 2009. Noble metal nanoparticles for water purification: a critical review. Thin Solid Films. 517:6441–6478.
  • Pradeep T, Nair AS. 2005. Adsorbent composition, a device and a method for decontaminating water containing pesticides. PCT Application No. PCT/IN2005/ 000022, Publication Number WO/2005/070534.
  • Pradeep T, Nair AS. 2006. A method of preparing purified water from water containing pesticides (Chlorpyrifos and Malathion). Indian Patent 200767.
  • Prasad R, Pandey R, Barman I. 2016. Engineering tailored nanoparticles with microbes: quo vadis? WIREs Nanomed Nanobiotechnol. 8(2):316–330.
  • Prasad TN, Kambala VSR, Naidu R. 2013. Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis, and their characterisation. J Appl Phycol. 25(1):177–182.
  • Pugazhenthiran N, Anandan S, Kathiravan G, Prakash NKU, Crawford S, Ashokkumar M. 2009. Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanopart Res. 11(7):1811–1815.
  • Qin XS, Luo ZG, Peng XC. 2018. Fabrication and characterization of quinoa protein nanoparticle-stabilized food-grade pickering emulsions with ultrasound treatment: interfacial adsorption/arrangement properties. J Agric Food Chem. 66(17):4449–4457.
  • Raj S, Jose S, Sumod US, Sabitha M. 2012. Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioallied Sci. 4(3):186–193.
  • Rajathi FAA, Parthiban C, Kumar VG, Anantharaman P. 2012. Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing). Spectrochim Acta A. 99:166–173.
  • Rajoka MSR, Mehwish HM, Zhang H, Ashraf M, Fang H, Zeng X, Wu Y, Khurshid M, Zhao L, He Z. 2020. Antibacterial and antioxidant activity of exopolysaccharide mediated silver nanoparticle synthesized by Lactobacillus brevis isolated from Chinese koumiss. Colloids Surf B Biointerfaces. 186:110734.
  • Rangnekar A, Sarma TK, Singh AK, Deka J, Ramesh A, Chattopadhyay A. 2007. Retention of enzymatic activity of alpha-amylase in the reductive synthesis of gold nanoparticles . Langmuir. 23(10):5700–5706.
  • Ranoszek-Soliwoda K, Tomaszewska E, Socha E, Krzyczmonik P, Ignaczak A, Orlowski P, Krzyzowska M, Celichowski G, Grobelny J. 2017. The role of tannic acid, and sodium citrate in the synthesis of silver nanoparticles. J Nanopart Res. 19(8):273.
  • Rao MSC, Vijayalakshmi MM, Praveenkumar TR. 2021. Behaviour of green concrete (blended concrete) using agro-industrial waste as partial replacement of cement along with nanoparticles. Appl Nanosci. 1–9.
  • Rashidi L, Khosravi-Darani K. 2011. The applications of nanotechnology in food industry. Crit Rev Food Sci Nutr. 51(8):723–730.
  • Ravindra S, Mulaba-Bafubiandi AF, Rajinikanth V, Varaprasad K, Reddy NN, Raju KM. 2012. Development, and characterization of curcumin loaded silver nanoparticle hydrogels for antibacterial, and drug delivery applications. J Inorg Organomet Polym. 22(6):1254–1262.
  • Realis I. 2002. A critical investor's guide to nanotechnology. Inrealis. com.
  • Reddy GAK, Joy JM, Mitra T, Shabnam S, Shilpa T. 2012. Nano silver–a review. Int J Adv Pharm. 2:09–15.
  • Reimhult E. 2017. Nanoparticle risks, and identification in a world where small things do not survive. Nanoethics. 11(3):283–290.
  • Reizabal A, Gonçalves S, Pereira N, Costa CM, Pérez L, Vilas-Vilela JL, Lanceros-Mendez S. 2020. Optically transparent silk fibroin/silver nanowire composites for piezoresistive sensing and object recognitions. J Mater Chem C. 8(37):13053–13062.
  • Riddin TL, Gericke M, Whiteley CG. 2006. Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology. 17(14):3482–3489.
  • Roco MC, Mirkin CA, Hersam MC. 2011. Nanotechnology research directions for societal needs in 2020: summary of international study. J Nanopart Res. 13(3):897–919.
  • Romero-Franco M, Godwin HA, Bilal M, Cohen Y. 2017. Needs and challenges for assessing the environmental impacts of engineered nanomaterials (ENMs)). Beilstein J Nanotechnol. 8:989–1014.
  • Rosset V, Ahmed N, Zaanoun I, Stella B, Fessi H, Elaissari A. 2012. Elaboration of argan oil nanocapsules containing naproxen for cosmetic, and transdermal local application. J Colloid Sci. 1:218–224.
  • Roy K, Sarkar CK, Ghosh CK. 2015. Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast. Appl Nanosci. 5(8):953–959.
  • Saharan V, Kumaraswamy RV, Choudhary RC, Kumari S, Pal A, Raliya R, Biswas P. 2016. Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. J Agric Food Chem. 64(31):6148–6155.
  • Saif S, Tahir A, Chen Y. 2016. Green synthesis of iron nanoparticles, and their environmental applications, and implications. Nanomaterials. 6(11):209.
  • Saifuddin N, Wong CW, Yasumira AA. 2009. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J Chem. 6:61–70.
  • Salunke BK, Sawant SS, Lee SI, Kim BS. 2016. Microorganisms as efficient biosystem for the synthesis of metal nanoparticles: current scenario and future possibilities. World J Microbiol Biotechnol. 32(5):88.
  • Sandeep S, Santhosh AS, Swamy NK, Suresh GS, Melo JS, Mallu P. 2016. Biosynthesis of silver nanoparticles using Convolvulus pluricaulis leaf extract and assessment of their catalytic, electrocatalytic and phenol remediation properties. AML. 7(5):383–389.
  • Sandhu SS, Shukla H, Shukla S. 2017. Biosynthesis of silver nanoparticles by endophytic fungi: Its mechanism, characterization techniques, and antimicrobial potential. Afr J Biotechnol. 16:683–698.
  • Sanghi R, Verma P. 2009. Biomimetic synthesis, and characterisation of protein capped silver nanoparticles. Biores Technol. 100(1):501–504.
  • Saravanan M, Amelash T, Negash L, Gebreyesus A, Selvaraj A, Rayar V, Deekonda K. 2013. Extracellular biosynthesis, and biomedical application of silver nanoparticles synthesized from baker’s yeast. Int J Res Pharm Biomed Sci. 4:822–828.
  • Savage N, Diallo MS. 2005. Nanomaterials, and water purification: opportunities, and challenges. J Nanopart Res. 7(4–5):331–342.
  • Savasari M, Emadi M, Bahmanyar MA, Biparva P. 2015. Optimization of Cd (II) removal from aqueous solution by ascorbic acid-stabilized zero valent iron nanoparticles using response surface methodology. J Ind Eng Chem. 21:1403–1409.
  • Sayyad AS, Balakrishnan K, Ci L, Kabbani AT, Vajtai R, Ajayan PM. 2012. Synthesis of iron nanoparticles from hemoglobin and myoglobin. Nanotechnology. 23(5):055602.
  • Schlüter M, Hentzel T, Suarez C, Koch M, Lorenz WG, Böhm L, Düring RA, Koinig KA, Bunge M. 2014. Synthesis of novel palladium (0) nanocatalysts by microorganisms from heavy-metal-influenced high-alpine sites for dehalogenation of polychlorinated dioxins. Chemosphere. 117:462–470.
  • Schoenmaker L, Witzigmann D, Kulkarni JA, Verbeke R, Kersten GFA, Jiskoot W, Crommelin DJ. 2021. mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. Int J Pharm. 601:120586.
  • Schröfel A, Kratošová G, Šafařík I, Šafaříková M, Rašk I, Shor LM. 2014. Applications of biosynthesized metallic nanoparticles – a review. Acta Biomater. 10(10):4023–4042.
  • Schröfel A, Kratošová G, Šafařík I, Šafaříková M, Raška I, Shor LM. 2014. Applications of biosynthesized metallic nanoparticles – a review. Acta Biomater. 10(10):4023–4042.
  • Seifan M, Ebrahiminezhad A, Ghasemi Y, Samani AK, Berenjian A. 2018. Amine-modified magnetic iron oxide nanoparticle as a promising carrier for application in bio self-healing concrete. Appl Microbiol Biotechnol. 102(1):175–184.
  • Senapati S, Syed A, Moeez S, Kumar A, Ahmad A. 2012. Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Mater Lett. 79:116–118.
  • Şengül H, Theis TL, Ghosh S. 2008. Toward sustainable nanoproducts: an overview of nanomanufacturing methods. J Ind Ecol. 12(3):329–359.
  • Seshadri S, Saranya K, Kowshik M. 2011. Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol Prog. 27(5):1464–1469.
  • Shahidi F, Han XQ. 1993. Encapsulation of food ingredients. Crit Rev Food Sci Nutr. 33(6):501–547.
  • Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA. 2007. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem. 42(5):919–923.
  • Shahzadi K, Wu L, Ge X, Zhao F, Li H, Pang S, Jiang Y, Guan J, Mu X. 2016. Preparation and characterization of bio-based hybrid film containing chitosan and silver nanowires. Carbohydr Polym. 137:732–738.
  • Shankar S, Rhim JW. 2015. Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydr Polym. 130:353–363.
  • Sharma JK, Srivastava P, Ameen S, Akhtar MS, Sengupta SK, Singh G. 2017. Phytoconstituents assisted green synthesis of cerium oxide nanoparticles for thermal decomposition and dye remediation. Mater Res Bull. 91:98–107.
  • Sheikhloo Z, Salouti M, Katiraee F. 2011. Biological synthesis of gold nanoparticles by fungus Epicoccum nigrum. J Clust Sci. 22(4):661–665.
  • Shivaji S, Madhu S, Singh S. 2011. Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem. 46(9):1800–1807.
  • Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K. 2007. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B Biointerfaces. 57(1):97–101.
  • Singh P, Kim YJ, Singh H, Mathiyalagan R, Wang C, Yang DC. 2015. Biosynthesis of anisotropic silver nanoparticles by Bhargavaea indica, and their synergistic effect with antibiotics against pathogenic microorganisms. J Nanomater. 2015:1–10.
  • Singh P, Kim YJ, Singh H, Wang C, Hwang KH, Farh MEA, Yang DC. 2015. Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles. Int J Nanomedicine. 10:2567–2577.
  • Singh P, Kim YJ, Wang C, Mathiyalagan R, Yang DC. 2016a. Microbial synthesis of flower-shaped gold nanoparticles. Artif Cells Nanomed Biotechnol. 44(6):1469–1474.
  • Singh P, Kim YJ, Wang C, Mathiyalagan R, Yang DC. 2016b. Weissella oryzae DC6-facilitated green synthesis of silver nanoparticles and their antimicrobial potential. Artif Cells Nanomed Biotechnol. 44(6):1569–1575.
  • Singh P, Kim YJ, Zhang D, Yang DC. 2016. Biological synthesis of nanoparticles from Plants and Microorganisms. Trends Biotechnol. 34(7):588–599.
  • Sinha SN, Paul D, Halder N, Sengupta D, Patra SK. 2015. Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont.) Wittrock, and evaluation of their antibacterial activity. Appl Nanosci. 5(6):703–709.
  • Sintubin L, De Windt W, Dick J, Mast J, Van Der Ha D, Verstraete W, Boon N. 2009. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol. 84(4):741–749.
  • Sioutas C, Delfino RJ, Singh M. 2005. Exposure assessment for atmospheric ultrafine particles (UFPs), and implications in epidemiologic research. Environ Health Perspect. 113(8):947–955.
  • Siqueira NM, Contri RV, Paese K, Beck RCR, Pohlmann AR, Guterres SS. 2011. Innovative sunscreen formulation based on benzophenone-3-loaded chitosan-coated polymeric nanocapsules. Skin Pharmacol Physiol. 24(3):166–174.
  • Siripong P, Yahuafai J, Shimizu K, Ichikawa K, Yonezawa S, Asai T, Kanokmedakul K, Ruchirawat S, Oku N. 2006. Antitumor activity of liposomal naphthoquinone esters isolated from Thai medicinal plant: Rhinacanthus nasutus K URZ. Biol Pharma Bull. 29(11):2279–2283.
  • Siskova KM, Straska J, Krizek M, Tucek J, Machala L, Zboril R. 2013. Formation of zero-valent iron nanoparticles mediated by amino acids. Procedia Environ Sci. 18:809–817.
  • Sondi I, Salopek-Sondi B. 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 275(1):177–182.
  • Song JY, Kim BS. 2009. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng. 32(1):79–84.
  • Song JY, Kwon EY, Kim BS. 2010. Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng. 33(1):159–164.
  • Song T. 2015. Graphene-tapered ZnO nanorods array as a flexible antireflection layer. J Nanomater. 2015:1–6. 2015.
  • Soto ER, Ostroff GR. 2008. Characterization of multilayered nanoparticles encapsulated in yeast cell wall particles for DNA delivery. Bioconjugate Chem. 19(4):840–848.
  • Souza MP, Vaz AF, Correia MT, Cerqueira MA, Vicente AA, Carneiro-da-Cunha MG. 2014. Quercetin-loaded lecithin/chitosan nanoparticles for functional food applications. Food Bioprocess Technol. 7(4):1149–1159.
  • Spadaro D, Gullino ML. 2005. Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Prot. 24(7):601–613.
  • Spigno G, Donsì F, Amendola D, Sessa M, Ferrari G, De Faveri DM. 2013. Nanoencapsulation systems to improve solubility, and antioxidant efficiency of a grape marc extract into hazelnut paste. J Food Eng. 114(2):207–214.
  • Sreeja V, Jayaprabha KN, Joy PA. 2015. Water-dispersible ascorbic-acid-coated magnetite nanoparticles for contrast enhancement in MRI. Appl Nanosci. 5(4):435–441.
  • Sun S, Zeng H. 2002. Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc. 124(28):8204–8205.
  • Sun X, Zheng C, Zhang F, Yang Y, Wu G, Yu A, Guan N. 2009. Size-controlled synthesis of magnetite (Fe3O4) nanoparticles coated with glucose, and gluconic acid from a single Fe (III) precursor by a sucrose bifunctional hydrothermal method. J Phys Chem. 113:16002–16008.
  • Sundrarajan M, Ambika S, Bharathi K. 2015. Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata, and their activity against pathogenic bacteria. Adv Powder Technol. 26(5):1294–1299.
  • Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL. 2004. Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol. 11(11):1553–1559.
  • Talekar S, Joshi G, Chougle R, Nainegali B, Desai S, Joshi A, Kambale S, Kamat P, Haripurkar R, Jadhav S, et al. 2014. Preparation of stable cross-linked enzyme aggregates (CLEAs) of NADH-dependent nitrate reductase and its use for silver nanoparticle synthesis from silver nitrate. Catal Commun. 53:62–66.
  • Tanaka T, Shiramoto S, Miyashita M, Fujishima Y, Kaneo Y. 2004. Tumor targeting based on the effect of enhanced permeability and retention (EPR) and the mechanism of receptor-mediated endocytosis (RME) ). Int J Pharm. 277(1–2):39–61.
  • Tang Z, Kotov NA. 2005. One‐dimensional assemblies of nanoparticles: preparation, properties, and promise. Adv Mater. 17(8):951–962.
  • Tarafdar JC, Raliya R. 2013. Rapid, low-cost, and ecofriendly approach for iron nanoparticle synthesis using Aspergillus oryzae TFR9. J Nano. 2013:1–4.
  • Thakkar KN, Mhatre SS, Parikh RY. 2010. Biological synthesis of metallic nanoparticles. Nanomedicine. 6(2):257–262.
  • Thapa D, Palkar VR, Kurup MB, Malik SK. 2004. Properties of magnetite nanoparticles synthesized through a novel chemical route. Mater Lett. 58(21):2692–2694.
  • Tomalia DA. 2005. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog Polym Sci. 30(3–4):294–324.
  • Tran QH, Nguyen VQ, Le A-T. 2013. Silver nanoparticles: synthesis, properties, toxicology, applications, and perspectives. Adv Nat Sci: Nanosci Nanotechnol. 4(3):033001.
  • Tsekhmistrenko S, Bityutskii V, Tsekhmistrenko O, Horalskyi L, Tymoshok N, Spivak M. 2020. Bacterial synthesis of nanoparticles: a green approach. http://rep.btsau.edu.ua/handle/BNAU/4680.
  • Ubbink J, Krüger J. 2006. Physical approaches for the delivery of active ingredients in foods. Trends Food Sci Tech. 17(5):244–254.
  • Vahabi K, Mansoori GA, Karimi S. 2011. Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insciences J. 1:65–79.
  • Vanin DVF, Andrade VD, Fiorentin TA, Recouvreux DDOS, Carminatti CA, Al-Qureshi HA. 2020. Cement pastes modified by cellulose nanocrystals: a dynamic moduli evolution assessment by the impulse excitation technique. Mater Chem Phys. 239:122038.
  • Varanasi P, Fullana A, Sidhu S. 2007. Remediation of PCB contaminated soils using iron nano-particles. Chemosphere. 66(6):1031–1038.
  • Varshney M, Li Y. 2007. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples. Biosens Bioelectron. 22(11):2408–2414.
  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH. 2007. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett. 61(6):1413–1418.
  • Vinardell MP, Llanas H, Marics L, Mitjans M. 2017. In vitro comparative skin irritation induced by nano, and non-nano zinc oxide. Nanomaterials. 7(3):56.
  • Walsh TR, Knecht MR. 2017. Biointerface structural effects on the properties, and applications of bioinspired peptide-based nanomaterials. Chem Rev. 117(20):12641–12704.
  • Wang C, Kim YJ, Singh P, Mathiyalagan R, Jin Y, Yang DC. 2016a. Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artif Cells Nanomed Biotechnol. 44(4):1127–1132.
  • Wang G, Zhang L, Zhang J. 2012. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev. 41(2):797–828.
  • Wang H, Wick RL, Xing B. 2009. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut. 157(4):1171–1177.
  • Wang H, Zhao X, He C. 2016b. Innovative permeation, and antifouling properties of PVDF ultrafiltration membrane with stepped hollow SiO2 microspheres in membrane matrix. Mater Lett. 182:376–379.
  • Wang J, Yu J, Bai D, Li Z, Liu H, Li Y, Chen S, Cheng J, Li L. 2020. Biodegradable, flexible, and transparent conducting silver nanowires/polylactide film with high performance for optoelectronic devices. Polymers. 12(3):604.
  • Wiener E, Brechbiel MW, Brothers H, Magin RL, Gansow OA, Tomalia DA, Lauterbur PC. 1994. Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med. 31(1):1–8.
  • Weiss J, Takhistov P, McClements DJ. 2006. Functional materials in food nanotechnology. J Food Science. 71(9):R107–R116.
  • Weller M, Overton T, Rourke J, Armstrong F. 2017. Química inorgânica. Brazil: Bookman Editora.
  • Wiechers JW, Musee N. 2010. Engineered inorganic nanoparticles and cosmetics: facts, issues, knowledge gaps and challenges. J Biomed Nanotechnol. 6(5):408–431.
  • Wrona M, Cran MJ, Nerín C, Bigger SW. 2017. Development and characterisation of HPMC films containing PLA nanoparticles loaded with green tea extract for food packaging applications. Carbohydr Polym. 156:108–117.
  • Wu S, Du Y, Sun S. 2017. Transition metal dichalcogenide based nanomaterials for rechargeable batteries. Chem Eng. 307:189–207.
  • Wu Z, Huang X, Li YC, Xiao H, Wang X. 2018. Novel chitosan films with laponite immobilized Ag nanoparticles for active food packaging. Carbohydr Polym. 199:210–218.
  • Xie DY, Qian D, Song F, Wang XL, Wang YZ. 2017. A fully biobased encapsulant constructed of soy protein and cellulose nanocrystals for flexible electromechanical sensing. ACS Sustainable Chem Eng. 5(8):7063–7070.
  • Xu W, Zhong L, Xu F, Song W, Wang J, Zhu J, Chou S. 2019. Ultraflexible transparent bio‐based polymer conductive films based on Ag nanowires. Small. 15(21):1805094.
  • Yan Q, Street J, Yu F. 2015. Synthesis of carbon-encapsulated iron nanoparticles from wood derived sugars by hydrothermal carbonization (HTC), and their application to convert bio-syngas into liquid hydrocarbons. Biomass Bioenerg. 83:85–95.
  • Yugandhar P, Vasavi T, Devi PUM, Savithramma N. 2017. Bioinspired green synthesis of copper oxide nanoparticles from Syzygium alternifolium (Wt.) Walp: characterization, and evaluation of its synergistic antimicrobial, and anticancer activity. Appl Nanosci. 7(7):417–427.
  • Zain NM, Stapley AGF, Shama G. 2014. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohydr Polym. 112:195–202.
  • Zhan GD, Kuntz JD, Garay JE, Mukherjee AK. 2003. Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes. Appl Phys Lett. 83(6):1228–1230.
  • Zhang H, Zhou H, Bai J, Li Y, Yang J, Ma Q, Qu Y. 2019. Biosynthesis of selenium nanoparticles mediated by fungus Mariannaea sp. HJ and their characterization. Colloids Surf, A. 571:9–16.
  • Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. 2008. Nanoparticles in medicine: therapeutic applications, and developments. Clin Pharmacol Ther. 83(5):761–769.
  • Zhang X, Qu Y, Shen W, Wang J, Li H, Zhang Z, Li S, Zhou J. 2016. Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloid Surface A. 497:280–285.
  • Zhang Y, Cui C, Yang B, Zhang K, Zhu P, Li G, Sun R, Wong C. 2018. Size-controllable copper nanomaterials for flexible printed electronics. J Mater Sci. 53(18):12988–12995.
  • Zhou Z, Lin S, Yue T, Lee TC. 2014. Adsorption of food dyes from aqueous solution by glutaraldehyde cross-linked magnetic chitosan nanoparticles. J Food Eng. 126:133–141.
  • Zhu W, Bartos PJ, Porro A. 2004. Application of nanotechnology in construction. Mat Struct. 37(9):649–658.
  • Zinchenko A, Miwa Y, Lopatina LI, Sergeyev VG, Murata S. 2014. DNA hydrogel as a template for synthesis of ultrasmall gold nanoparticles for catalytic applications. ACS Appl Mater Interfaces. 6(5):3226–3232.
  • Zwolak I, Zaporowska H. 2012. Selenium interactions and toxicity: a review. Selenium interactions and toxicity. Cell Biol Toxicol. 28(1):31–46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.