408
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

The WxxxE proteins in microbial pathogenesis

, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 197-213 | Received 23 Oct 2021, Accepted 19 Feb 2022, Published online: 14 Mar 2022

References

  • Alaidarous M, Ve T, Casey LW, Valkov E, Ericsson DJ, Ullah MO, Schembri MA, Mansell A, Sweet MJ, Kobe B. 2014. Mechanism of bacterial interference with TLR4 signaling by Brucella Toll/interleukin-1 receptor domain-containing protein TcpB. J Biol Chem. 289(2):654–668.
  • Alto NM, Shao F, Lazar CS, Brost RL, Chua G, Mattoo S, McMahon SA, Ghosh P, Hughes TR, Boone C, et al. 2006. Identification of a bacterial type III effector family with G protein mimicry functions. Cell. 124(1):133–145.
  • Arbeloa A, Bulgin RR, MacKenzie G, Shaw RK, Pallen MJ, Crepin VF, Berger CN, Frankel G. 2008. Subversion of actin dynamics by EspM effectors of attaching and effacing bacterial pathogens. Cell Microbiol. 10(7):1429–1441.
  • Arbeloa A, Garnett J, Lillington J, Bulgin RR, Berger CN, Lea SM, Matthews S, Frankel G. 2010. EspM2 is a RhoA guanine nucleotide exchange factor. Cell Microbiol. 12(5):654–664.
  • Askarian F, Van Sorge NM, Sangvik M, Beasley FC, Henriksen JR, Sollid JU, Van Strijp JA, Nizet V, Johannessen M. 2014. A Staphylococcus aureus TIR domain protein virulence factor blocks TLR2-mediated NF-κB signaling. J Innate Immun. 6(4):485–498.
  • Atmakuri K, Cascales E, Christie PJ. 2004. Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol. 54(5):1199–1211.
  • Barthel M, Hapfelmeier S, Quintanilla-Martínez L, Kremer M, Rohde M, Hogardt M, Pfeffer K, Rüssmann H, Hardt W-D. 2003. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect Immun. 71(5):2839–2858.
  • Berger CN, Crepin VF, Jepson MA, Arbeloa A, Frankel G. 2009. The mechanisms used by enteropathogenic Escherichia coli to control filopodia dynamics. Cell Microbiol. 11(2):309–322.
  • Beuzón CR, Méresse S, Unsworth KE, Ruíz-Albert J, Garvis S, Waterman SR, Ryder TA, Boucrot E, Holden DW. 2000. Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J. 19(13):3235–3249.
  • Bos JL, Rehmann H, Wittinghofer A. 2007. GEFs and GAPs: critical elements in the control of small G proteins. Cell. 129(5):865–877.
  • Boucrot E, Henry T, Borg J-P, Gorvel J-P, Méresse S. 2005. The intracellular fate of Salmonella depends on the recruitment of kinesin. Science. 308(5725):1174–1178.
  • Brumell JH, Tang P, Mills SD, Finlay BB. 2001. Characterization of Salmonella-induced filaments (Sifs) reveals a delayed interaction between Salmonella-containing vacuoles and late endocytic compartments. Traffic. 2(9):643–653.
  • Bulgin RR, Arbeloa A, Chung JC, Frankel G. 2009. EspT triggers formation of lamellipodia and membrane ruffles through activation of Rac-1 and Cdc42. Cell Microbiol. 11(2):217–229.
  • Chan SL, Low LY, Hsu S, Li S, Liu T, Santelli E, Le Negrate G, Reed JC, Woods VL, Pascual J. 2009. Molecular mimicry in innate immunity: crystal structure of a bacterial TIR domain. J Biol Chem. 284(32):21386–21392.
  • Chen M, Han G, Dietrich CR, Dunn TM, Cahoon EB. 2006. The essential nature of sphingolipids in plants as revealed by the functional identification and characterization of the Arabidopsis LCB1 subunit of serine palmitoyltransferase. Plant Cell. 18(12):3576–3593.
  • Cirl C, Miethke T. 2010. Microbial Toll/interleukin 1 receptor proteins: a new class of virulence factors. Int J Med Microbiol. 300(6):396–401.
  • Cirl C, Wieser A, Yadav M, Duerr S, Schubert S, Fischer H, Stappert D, Wantia N, Rodriguez N, Wagner H, et al. 2008. Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat Med. 14(4):399–406.
  • Colonne PM, Winchell CG, Voth DE. 2016. Hijacking host cell highways: manipulation of the host actin cytoskeleton by obligate intracellular bacterial pathogens. Front Cell Infect Microbiol. 6:107.
  • Cornelis GR. 2006. The type III secretion injectisome. Nat Rev Microbiol. 4(11):811–825.
  • Coronas-Serna JM, Louche A, Rodríguez-Escudero M, Roussin M, Imbert PRC, Rodríguez-Escudero I, Terradot L, Molina M, Gorvel J-P, Cid VJ, et al. 2020. The TIR-domain containing effectors BtpA and BtpB from Brucella abortus impact NAD metabolism. PLOS Pathog. 16(4):e1007979.
  • Costa TR, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G. 2015. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol. 13(6):343–359.
  • Costa SC, Lesser CF. 2014. A multifunctional region of the Shigella type 3 effector IpgB1 is important for secretion from bacteria and membrane targeting in eukaryotic cells. PLOS One. 9(4):e93461.
  • Craig-Mylius KA, Weiss AA. 1999. Mutants in the ptlA-H genes of Bordetella pertussis are deficient for pertussis toxin secretion. FEMS Microbiol Lett. 179(2):479–484.
  • Dean P, Kenny B. 2004. Intestinal barrier dysfunction by enteropathogenic Escherichia coli is mediated by two effector molecules and a bacterial surface protein. Mol Microbiol. 54(3):665–675.
  • Diacovich L, Dumont A, Lafitte D, Soprano E, Guilhon A-A, Bignon C, Gorvel J-P, Bourne Y, Méresse S. 2009. Interaction between the SifA virulence factor and its host target SKIP is essential for Salmonella pathogenesis. J Biol Chem. 284(48):33151–33160.
  • Dietrich CR, Han G, Chen M, Berg RH, Dunn TM, Cahoon EB. 2008. Loss-of-function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability. Plant J. 54(2):284–298.
  • Dietrich KA, Sindelar CV, Brewer PD, Downing KH, Cremo CR, Rice SE. 2008. The kinesin-1 motor protein is regulated by a direct interaction of its head and tail. Proc Natl Acad Sci USA. 105(26):8938–8943.
  • Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, Amitai G, Sorek R. 2018. Systematic discovery of antiphage defense systems in the microbial pangenome. Science. 359(6379):eaar4120.
  • Drecktrah D, Knodler LA, Howe D, Steele-Mortimer O. 2007. Salmonella trafficking is defined by continuous dynamic interactions with the endolysosomal system. Traffic. 8(3):212–225.
  • Dumont A, Boucrot E, Drevensek S, Daire V, Gorvel JP, Poüs C, Holden DW, Méresse S. 2010. SKIP, the host target of the Salmonella virulence factor SifA, promotes kinesin-1-dependent vacuolar membrane exchanges. Traffic. 11(7):899–911.
  • East A, Mechaly AE, Huysmans GHM, Bernarde C, Tello-Manigne D, Nadeau N, Pugsley AP, Buschiazzo A, Alzari PM, Bond PJ, et al. 2016. Structural basis of pullulanase membrane binding and secretion revealed by X-ray crystallography, molecular dynamics and biochemical analysis. Structure. 24(1):92–104.
  • Essuman K, Summers DW, Sasaki Y, Mao X, DiAntonio A, Milbrandt J. 2017. The SARM1 toll/interleukin-1 receptor domain possesses intrinsic NAD + cleavage activity that promotes pathological axonal degeneration. Neuron. 93(6):1334–1343.e5.
  • Essuman K, Summers DW, Sasaki Y, Mao X, Yim AKY, DiAntonio A, Milbrandt J. 2018. TIR domain proteins are an ancient family of NAD+-consuming enzymes. Curr Biol. 28(3):421–430.e4.
  • Farizo KM, Cafarella TG, Burns DL. 1996. Evidence for a ninth gene, ptlI, in the locus encoding the pertussis toxin secretion system of Bordetella pertussis and formation of a PtlI-PtlF complex. J Biol Chem. 271(49):31643–31649.
  • Felix C, Türköz BK, Ranaldi S, Koelblen T, Terradot L, O’Callaghan D, Vergunst AC. 2014. The Brucella TIR domain containing proteins BtpA and BtpB have a structural WxxxE motif important for protection against microtubule depolymerisation. Cell Commun Signal. 12(1):1–15.
  • Freeman JA, Ohl ME, Miller SI. 2003. The Salmonella enterica serovar typhimurium translocated effectors SseJ and SifB are targeted to the Salmonella-containing vacuole. Infect Immun. 71(1):418–427.
  • Fukazawa A, Alonso C, Kurachi K, Gupta S, Lesser CF, McCormick BA, Reinecker H-C. 2008. GEF-H1 mediated control of NOD1 dependent NF-kappaB activation by Shigella effectors. PLOS Pathog. 4(11):e1000228.
  • Galán JE. 2009. Common themes in the design and function of bacterial effectors. Cell Host Microbe. 5(6):571–579.
  • Garcia-del Portillo F, Zwick MB, Leung KY, Finlay BB. 1993. Salmonella induces the formation of filamentous structures containing lysosomal membrane glycoproteins in epithelial cells. Proc Natl Acad Sci USA. 90(22):10544–10548.
  • Goody RS, Müller MP, Schoebel S, Oesterlin LK, Blümer J, Peters H, Blankenfeldt W, Itzen A. 2011. The versatile Legionella effector protein DrrA. Commun Integr Biol. 4(1):72–74.
  • Hachani A, Biskri L, Rossi G, Marty A, Ménard R, Sansonetti P, Parsot C, Van Nhieu GT, Bernardini ML, Allaoui A. 2008. IpgB1 and IpgB2, two homologous effectors secreted via the Mxi-Spa type III secretion apparatus, cooperate to mediate polarized cell invasion and inflammatory potential of Shigella flexenri. Microbes Infect. 10(3):260–268.
  • Ham JH, Majerczak DR, Nomura K, Mecey C, Uribe F, He S-Y, Mackey D, Coplin DL. 2009. Multiple activities of the plant pathogen type III effector proteins WtsE and AvrE require WxxxE motifs. Mol Plant Microbe Interact. 22(6):703–712.
  • Handa Y, Suzuki M, Ohya K, Iwai H, Ishijima N, Koleske AJ, Fukui Y, Sasakawa C. 2007. Shigella IpgB1 promotes bacterial entry through the ELMO-Dock180 machinery. Nat Cell Biol. 9(1):121–128.
  • Hardiman CA, Roy CR. 2014. AMPylation is critical for Rab1 localization to vacuoles containing Legionella pneumophila. MBio. 5(1):e01035-13.
  • Hardt W-D, Chen L-M, Schuebel KE, Bustelo XR, Galán JE. 1998. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell. 93(5):815–826.
  • Horsefield S, Burdett H, Zhang X, Manik MK, Shi Y, Chen J, Qi T, Gilley J, Lai J-S, Rank MX, et al. 2019. NAD + cleavage activity by animal and plant TIR domains in cell death pathways. Science. 365(6455):793–799.
  • Hu X, Yu J, Zhou X, Li Z, Xia Y, Luo Z, Wu Y. 2014. A small GTPase‑like protein fragment of Mycoplasma promotes tumor cell migration and proliferation in vitro via interaction with Rac1 and Stat3. Mol Med Rep. 9(1):173–179.
  • Huang Z, Sutton SE, Wallenfang AJ, Orchard RC, Wu X, Feng Y, Chai J, Alto NM. 2009. Structural insights into host GTPase isoform selection by a family of bacterial GEF mimics. Nat Struct Mol Biol. 16(8):853–860.
  • Imbert PR, Louche A, Luizet J-B, Grandjean T, Bigot S, Wood TE, Gagné S, Blanco A, Wunderley L, Terradot L, et al. 2017. A Pseudomonas aeruginosa TIR effector mediates immune evasion by targeting UBAP1 and TLR adaptors. EMBO J. 36(13):1869–1887.
  • Jackson LK, Nawabi P, Hentea C, Roark EA, Haldar K. 2008. The Salmonella virulence protein SifA is a G protein antagonist. Proc Natl Acad Sci USA. 105(37):14141–14146.
  • Jaiswal M, Gremer L, Dvorsky R, Haeusler LC, Cirstea IC, Uhlenbrock K, Ahmadian MR. 2011. Mechanistic insights into specificity, activity, and regulatory elements of the regulator of G-protein signaling (RGS)-containing Rho-specific guanine nucleotide exchange factors (GEFs) p115, PDZ-RhoGEF (PRG), and leukemia-associated RhoGEF (LARG). J Biol Chem. 286(20):18202–18212.
  • Jang T-H, Park HH. 2014. Crystal structure of TIR domain of TLR6 reveals novel dimeric interface of TIR-TIR interaction for toll-like receptor signaling pathway. J Mol Biol. 426(19):3305–3313.
  • Jepson MA, Pellegrin S, Peto L, Banbury DN, Leard AD, Mellor H, Kenny B. 2003. Synergistic roles for the Map and Tir effector molecules in mediating uptake of enteropathogenic Escherichia coli (EPEC) into non-phagocytic cells. Cell Microbiol. 5(11):773–783.
  • Jin L, Ham JH, Hage R, Zhao W, Soto-Hernández J, Lee SY, Paek S-M, Kim MG, Boone C, Coplin DL, et al. 2016. Direct and indirect targeting of PP2A by conserved bacterial type-III effector proteins. PLoS Pathog. 12(5):e1005609.
  • Knuff-Janzen K, Tupin A, Yurist-Doutsch S, Rowland JL, Finlay BB. 2020. Multiple Salmonella-pathogenicity island 2 effectors are required to facilitate bacterial establishment of its intracellular niche and virulence. PLoS One. 15(6):e0235020.
  • Kotob SI, Burns DL. 1997. Essential role of the consensus nucleotide-binding site of PtlH in secretion of pertussis toxin from Bordetella pertussis. J Bacteriol. 179(23):7577–7580.
  • Krieger V, Liebl D, Zhang Y, Rajashekar R, Chlanda P, Giesker K, Chikkaballi D, Hensel M. 2014. Reorganization of the endosomal system in Salmonella-infected cells: the ultrastructure of Salmonella-induced tubular compartments. PLoS Pathog. 10(9):e1004374.
  • Leung K, Finlay B. 1991. Intracellular replication is essential for the virulence of Salmonella typhimurium. Proc Natl Acad Sci USA. 88(24):11470–11474.
  • Li W, Ke Y, Wang Y, Yang M, Gao J, Zhan S, Xinying D, Huang L, Li W, Chen Z, et al. 2016. Brucella TIR-like protein TcpB/Btp1 specifically targets the host adaptor protein MAL/TIRAP to promote infection. Biochem Biophys Res Commun. 477(3):509–514.
  • Low LY, Mukasa T, Reed JC, Pascual J. 2007. Characterization of a TIR-like protein from Paracoccus denitrificans. Biochem Biophys Res Commun. 356(2):481–486.
  • Mak H, Thurston TLM. 2021. Interesting biochemistries in the structure and function of bacterial effectors. Front Cell Infect Microbiol. 11:608860.
  • Markham JE, Molino D, Gissot L, Bellec Y, Hématy K, Marion J, Belcram K, Palauqui J-C, Satiat-JeuneMaître B, Faure J-D. 2011. Sphingolipids containing very-long-chain fatty acids define a secretory pathway for specific polar plasma membrane protein targeting in Arabidopsis. Plant Cell. 23(6):2362–2378.
  • Martinez E, Schroeder GN, Berger CN, Lee SF, Robinson KS, Badea L, Simpson N, Hall RA, Hartland EL, Crepin VF, et al. 2010. Binding to Na(+)/H(+) exchanger regulatory factor 2 (NHERF2) affects trafficking and function of the enteropathogenic Escherichia coli type III secretion system effectors Map, EspI and NleH. Cell Microbiol. 12(12):1718–1731.
  • Matsuda S, Haneda T, Saito H, Miki T, Okada N. 2019. Salmonella enterica effectors SifA, SpvB, SseF, SseJ, and SteA contribute to type III secretion system 1-independent inflammation in a streptomycin-pretreated mouse model of colitis. Infect Immun. 87(9):e00872-18.
  • Mattoo S, Lee YM, Dixon JE. 2007. Interactions of bacterial effector proteins with host proteins. Curr Opin Immunol. 19(4):392–401.
  • McEwan DG, Richter B, Claudi B, Wigge C, Wild P, Farhan H, McGourty K, Coxon FP, Franz-Wachtel M, Perdu B, et al. 2015. PLEKHM1 regulates Salmonella-containing vacuole biogenesis and infection. Cell Host Microbe. 17(1):58–71.
  • McGourty K, Thurston TL, Matthews SA, Pinaud L, Mota LJ, Holden DW. 2012. Salmonella inhibits retrograde trafficking of mannose-6-phosphate receptors and lysosome function. Science. 338(6109):963–967.
  • Meng X, Bonasera JM, Kim JF, Nissinen RM, Beer SV. 2006. Apple proteins that interact with DspA/E, a pathogenicity effector of Erwinia amylovora, the fire blight pathogen. Mol Plant Microbe Interact. 19(1):53–61.
  • Méresse S, Steele-Mortimer O, Finlay BB, Gorvel JP. 1999. The rab7 GTPase controls the maturation of Salmonella typhimurium‐containing vacuoles in HeLa cells. EMBO J. 18(16):4394–4403.
  • Morita-Ishihara T, Miura M, Iyoda S, Izumiya H, Watanabe H, Ohnishi M, Terajima J. 2013. EspO1-2 regulates EspM2-mediated RhoA activity to stabilize formation of focal adhesions in enterohemorrhagic Escherichia coli-infected host cells. PLOS One. 8(2):e55960.
  • Müller MP, Peters H, Blümer J, Blankenfeldt W, Goody RS, Itzen A. 2010. The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science. 329(5994):946–949.
  • Murata T, Delprato A, Ingmundson A, Toomre DK, Lambright DG, Roy CR. 2006. The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol. 8(9):971–977.
  • Newman RM, Salunkhe P, Godzik A, Reed JC. 2006. Identification and characterization of a novel bacterial virulence factor that shares homology with mammalian Toll/interleukin-1 receptor family proteins. Infect Immun. 74(1):594–601.
  • Novatchkova M, Leibbrandt A, Werzowa J, Neubüser A, Eisenhaber F. 2003. The STIR-domain superfamily in signal transduction, development and immunity. Trends Biochem Sci. 28(5):226–229.
  • Ofir G, Herbst E, Baroz M, Cohen D, Millman A, Doron S, Tal N, Malheiro DBA, Malitsky S, Amitai G, et al. 2021. Antiviral activity of bacterial TIR domains via immune signalling molecules. Nature. 600(7887):116–120.
  • Ohlson MB, Huang Z, Alto NM, Blanc M-P, Dixon JE, Chai J, Miller SI. 2008. Structure and function of Salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation. Cell Host Microbe. 4(5):434–446.
  • Ohya K, Handa Y, Ogawa M, Suzuki M, Sasakawa C. 2005. IpgB1 is a novel Shigella effector protein involved in bacterial invasion of host cells. Its activity to promote membrane ruffling via Rac1 and Cdc42 activation. J Biol Chem. 280(25):24022–24034.
  • O'Neill LA, Bowie AG. 2007. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol. 7(5):353–364.
  • Orchard RC, Kittisopikul M, Altschuler SJ, Wu LF, Süel GM, Alto NM. 2012. Identification of F-actin as the dynamic hub in a microbial-induced GTPase polarity circuit. Cell. 148(4):803–815.
  • Preston GM, Bertrand N, Rainey PB. 2001. Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Mol Microbiol. 41(5):999–1014.
  • Pugsley A, Kornacker M, Ryter A. 1990. Analysis of the subcellular location of pullulanase produced by Escherichia coli carrying the pulA gene from Klebsiella pneumoniae strain UNF5023. Mol Microbiol. 4(1):59–72.
  • Ramachandran RP, Spiegel C, Keren Y, Danieli T, Melamed-Book N, Pal RR, Zlotkin-Rivkin E, Rosenshine I, Aroeti B. 2020. Mitochondrial targeting of the enteropathogenic Escherichia coli map triggers calcium mobilization, ADAM10-MAP kinase signaling, and host cell apoptosis. Mbio. 11(5):e01397-20.
  • Rana RR, Zhang M, Spear AM, Atkins HS, Byrne B. 2013. Bacterial TIR-containing proteins and host innate immune system evasion. Med Microbiol Immunol. 202(1):1–10.
  • Rapisarda C, Tassinari M, Gubellini F, Fronzes R. 2018. Using Cryo-EM to investigate bacterial secretion systems. Annu Rev Microbiol. 72:231–254.
  • Raymond B, Crepin VF, Collins JW, Frankel G. 2011. The WxxxE effector EspT triggers expression of immune mediators in an Erk/JNK and NF-κB-dependent manner. Cell Microbiol. 13(12):1881–1893.
  • Ripoll-Rozada J, Zunzunegui S, de la Cruz F, Arechaga I, Cabezón E. 2013. Functional interactions of VirB11 traffic ATPases with VirB4 and VirD4 molecular motors in type IV secretion systems. J Bacteriol. 195(18):4195–4201.
  • Ruano-Gallego D, Sanchez-Garrido J, Kozik Z, Núñez-Berrueco E, Cepeda-Molero M, Mullineaux-Sanders C, Naemi-Baghshomali Clark J, Slater SL, Wagner N, Glegola-Madejska I, et al. 2021. Type III secretion system effectors form robust and flexible intracellular virulence networks. Science. 371(6534):eabc9531.
  • Salcedo SP, Marchesini MI, Degos C, Terwagne M, Von Bargen K, Lepidi H, Herrmann CK, Santos Lacerda TL, Imbert PRC, Pierre P, et al. 2013. BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions. Front Cell Infect Microbiol. 3:28.
  • Salcedo SP, Marchesini MI, Lelouard H, Fugier E, Jolly G, Balor S, Muller A, Lapaque N, Demaria O, Alexopoulou L, et al. 2008. Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btp1. PLOS Pathog. 4(2):e21.
  • Savvides SN, Yeo HJ, Beck MR, Blaesing F, Lurz R, Lanka E, Buhrdorf R, Fischer W, Haas R, Waksman G. 2003. VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J. 22(9):1969–1980.
  • Sayed IM, Ibeawuchi S-R, Lie D, Anandachar MS, Pranadinata R, Raffatellu M, Das S. 2021. The interaction of enteric bacterial effectors with the host engulfment pathway control innate immune responses. bioRxiv.
  • Sayed IM, Suarez K, Lim E, Singh S, Pereira M, Ibeawuchi S-R, Katkar G, Dunkel Y, Mittal Y, Chattopadhyay R, et al. 2020. Host engulfment pathway controls inflammation in inflammatory bowel disease. FEBS J. 287(18):3967–3988.
  • Schmid MC, Schulein R, Dehio M, Denecker G, Carena I, Dehio C. 2004. The VirB type IV secretion system of Bartonella henselae mediates invasion, proinflammatory activation and antiapoptotic protection of endothelial cells. Mol Microbiol. 52(1):81–92.
  • Shao F, Merritt PM, Bao Z, Innes RW, Dixon JE. 2002. A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell. 109(5):575–588.
  • Shaw RK, Cleary J, Murphy MS, Frankel G, Knutton S. 2005. Interaction of enteropathogenic Escherichia coli with human intestinal mucosa: role of effector proteins in brush border remodeling and formation of attaching and effacing lesions. Infect Immun. 73(2):1243–1251.
  • Siamer S, Gaubert S, Boureau T, Brisset M-N, Barny M-A. 2013. Mutational analysis of a predicted double β-propeller domain of the DspA/E effector of Erwinia amylovora. FEMS Microbiol Lett. 342(1):54–61.
  • Siamer S, Guillas I, Shimobayashi M, Kunz C, Hall MN, Barny M-A. 2014. Expression of the bacterial type III effector DspA/E in Saccharomyces cerevisiae down-regulates the sphingolipid biosynthetic pathway leading to growth arrest. J Biol Chem. 289(26):18466–18477.
  • Simovitch M, Sason H, Cohen S, Zahavi EE, Melamed ‐Book N, Weiss A, Aroeti B, Rosenshine I. 2010. EspM inhibits pedestal formation by enterohaemorrhagic Escherichia coli and enteropathogenic E. coli and disrupts the architecture of a polarized epithelial monolayer. Cell Microbiol. 12(4):489–505.
  • Simpson N, Shaw R, Crepin VF, Mundy R, FitzGerald AJ, Cummings N, Straatman ‐Iwanowska A, Connerton I, Knutton S, Frankel G. 2006. The enteropathogenic Escherichia coli type III secretion system effector Map binds EBP50/NHERF1: implication for cell signalling and diarrhoea. Mol Microbiol. 60(2):349–363.
  • Sindhwani A, Arya SB, Kaur H, Jagga D, Tuli A, Sharma M. 2017. Salmonella exploits the host endolysosomal tethering factor HOPS complex to promote its intravacuolar replication. PLOS Pathog. 13(10):e1006700.
  • Singh AP, Sharma S, Pagarware K, Siraji RA, Ansari I, Mandal A, Walling P, Aijaz S. 2018. Enteropathogenic E. coli effectors EspF and Map independently disrupt tight junctions through distinct mechanisms involving transcriptional and post-transcriptional regulation. Sci Rep. 8(1):1–17.
  • Snyder GA, Cirl C, Jiang J, Chen K, Waldhuber A, Smith P, Römmler F, Snyder N, Fresquez T, Dürr S, et al. 2013. Molecular mechanisms for the subversion of MyD88 signaling by TcpC from virulent uropathogenic Escherichia coli. Proc Natl Acad Sci USA. 110(17):6985–6990.
  • Spear AM, Loman NJ, Atkins HS, Pallen MJ. 2009. Microbial TIR domains: not necessarily agents of subversion? Trends Microbiol. 17(9):393–398.
  • Steele-Mortimer O, Méresse S, Gorvel JP, Toh BH, Finlay BB. 1999. Biogenesis of Salmonella typhimurium-containing vacuoles in epithelial cells involves interactions with the early endocytic pathway. Cell Microbiol. 1(1):33–49.
  • Tan Y, Luo Z-Q. 2011. Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature. 475(7357):506–509.
  • Tomás A, Lery L, Regueiro V, Pérez-Gutiérrez C, Martínez V, Moranta D, Llobet E, González-Nicolau M, Insua JL, Tomas JM, et al. 2015. Functional genomic screen identifies Klebsiella pneumoniae factors implicated in blocking nuclear factor κB (NF-κB) signaling. J Biol Chem. 290(27):16678–16697.
  • Toshchakov VY, Neuwald AF. 2020. A survey of TIR domain sequence and structure divergence. Immunogenetics. 72(3):181–203.
  • Truttmann MC, Guye P, Dehio C. 2011. BID-F1 and BID-F2 domains of Bartonella henselae effector protein BepF trigger together with BepC the formation of invasome structures. PLOS One. 6(10):e25106.
  • Truttmann MC, Rhomberg TA, Dehio C. 2011. Combined action of the type IV secretion effector proteins BepC and BepF promotes invasome formation of Bartonella henselae on endothelial and epithelial cells. Cell Microbiol. 13(2):284–299.
  • Verma A, Burns DL. 2007. Requirements for assembly of PtlH with the pertussis toxin transporter apparatus of Bordetella pertussis. Infect Immun. 75(5):2297–2306.
  • Vetter IR, Wittinghofer A. 2001. The guanine nucleotide-binding switch in three dimensions. Science. 294(5545):1299–1304.
  • Waldhuber A, Snyder GA, Römmler F, Cirl C, Müller T, Xiao TS, Svanborg C, Miethke T. 2016. A comparative analysis of the mechanism of toll-like receptor-disruption by TIR-containing protein C from uropathogenic Escherichia coli. Pathogens. 5(1):25.
  • Wan L, Essuman K, Anderson RG, Sasaki Y, Monteiro F, Chung E-H, Osborne Nishimura E, DiAntonio A, Milbrandt J, Dangl JL, et al. 2019. TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death. Science. 365(6455):799–803.
  • Weber MM, Faris R. 2018. Subversion of the endocytic and secretory pathways by bacterial effector proteins. Front Cell Dev Biol. 6:1.
  • Weigele BA, Orchard RC, Jimenez A, Cox GW, Alto NM. 2017. A systematic exploration of the interactions between bacterial effector proteins and host cell membranes. Nat Commun. 8(1):1–14.
  • Wennerberg K, Rossman KL, Der CJ. 2005. The Ras superfamily at a glance. J Cell Sci. 118(Pt 5):843–846.
  • Williams MM, Sen K, Weigand MR, Skoff TH, Cunningham VA, Halse TA, Tondella ML. 2016. Bordetella pertussis strain lacking pertactin and pertussis toxin. Emerg Infect Dis. 22(2):319–322.
  • Xiong D, Song L, Geng S, Jiao Y, Zhou X, Song H, Kang X, Zhou Y, Xu X, Sun J, et al. 2019. Salmonella coiled-coil- and TIR-containing TcpS evades the innate immune system and subdues inflammation. Cell Rep. 28(3):804–818. e807.
  • Xu Y, Tao X, Shen B, Horng T, Medzhitov R, Manley JL, Tong L. 2000. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature. 408(6808):111–115.
  • Yadav M, Zhang J, Fischer H, Huang W, Lutay N, Cirl C, Lum J, Miethke T, Svanborg C. 2010. Inhibition of TIR domain signaling by TcpC: MyD88-dependent and independent effects on Escherichia coli virulence. PLOS Pathog. 6(9):e1001120.
  • Zhang Q, Zmasek CM, Cai X, Godzik A. 2011. TIR domain-containing adaptor SARM is a late addition to the ongoing microbe-host dialog. Dev Comp Immunol. 35(4):461–468.
  • Zhao W, Moest T, Zhao Y, Guilhon A-A, Buffat C, Gorvel J-P, Méresse S. 2015. The Salmonella effector protein SifA plays a dual role in virulence. Sci Rep. 5(1):1–10.
  • Zihni C, Mills C, Matter K, Balda MS. 2016. Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol. 17(9):564–580.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.