1,521
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Unnatural amino acids: promising implications for the development of new antimicrobial peptides

, , & ORCID Icon
Pages 231-255 | Received 13 Oct 2021, Accepted 19 Feb 2022, Published online: 07 Mar 2022

References

  • Agostini F, Völler J‐S, Koksch B, Acevedo‐Rocha CG, Kubyshkin V, Budisa N. 2017. Biocatalysis with unnatural amino acids: enzymology meets xenobiology. Angew Chem. 129(33):9810–9835.
  • Ahn M, Gunasekaran P, Rajasekaran G, Kim EY, Lee S-J, Bang G, Cho K, Hyun J-K, Lee H-J, Jeon YH, et al. 2017. Pyrazole derived ultra-short antimicrobial peptidomimetics with potent anti-biofilm activity. Eur J Med Chem. 125:551–564.
  • Almaaytah A, Qaoud MT, Abualhaijaa A, Al-Balas Q, Alzoubi KH. 2018. Hybridization and antibiotic synergism as a tool for reducing the cytotoxicity of antimicrobial peptides. Infect Drug Resist. 11:835–847.
  • Almahboub SA, Narancic T, Devocelle M, Kenny ST, Palmer-Brown W, Murphy C, Nikodinovic-Runic J, O’Connor KE. 2018. Biosynthesis of 2-aminooctanoic acid and its use to terminally modify a lactoferricin B peptide derivative for improved antimicrobial activity. Appl Microbiol Biotechnol. 102(2):789–799.
  • Anderhuber N, Fladischer P, Gruber-Khadjawi M, Mairhofer J, Striedner G, Wiltschi B. 2016. High-level biosynthesis of norleucine in E. coli for the economic labeling of proteins. J Biotechnol. 235:100–111.
  • Arias M, Jensen KV, Nguyen LT, Storey DG, Vogel HJ. 2015. Hydroxy-tryptophan containing derivatives of tritrpticin: modification of antimicrobial activity and membrane interactions. Biochim Biophys Acta. 1848(1 Pt B):277–288.
  • Arias M, Piga KB, Hyndman ME, Vogel HJ. 2018. Improving the activity of Trp-rich antimicrobial peptides by Arg/Lys substitutions and changing the length of cationic residues. Biomolecules. 8(2):19.
  • Asfaw H, Laqua K, Walkowska AM, Cunningham F, Martinez-Martinez MS, Cuevas-Zurita JC, Ballell-Pages L, Imming P. 2017. Design, synthesis and structure-activity relationship study of wollamide B; a new potential anti TB agent. PLoS One. 12(4):e0176088.
  • Bagheri M, Beyermann M, Dathe M. 2009. Immobilization reduces the activity of surface-bound cationic antimicrobial peptides with no influence upon the activity spectrum. Antimicrob Agents Chemother. 53(3):1132–1141.
  • Bagheri M, Hancock REW. 2017. High-performance liquid chromatography and mass spectrometry-based design of proteolytically stable antimicrobial peptides. In: Hansen PR, editors. Antimicrobial peptides: methods and protocols. New York (NY): Springer New York; p. 61–71.
  • Bao K, Yuan WY, Ma CB, Yu X, Wang L, Hong M, Xi XP, Zhou M, Chen TB. 2018. Modification targeting the "Rana Box" motif of a novel nigrocin peptide from Hylarana latouchii enhances and broadens its potency against multiple bacteria. Front Microbiol. 9:2846.
  • Bechinger B, Gorr SU. 2017. Antimicrobial peptides: mechanisms of action and resistance. J Dent Res. 96(3):254–260.
  • Ha Gan B, Gaynord J, Rowe SM, Deingruber T, Spring DR. 2021. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev. 50(13):7820–7880.
  • Bhonsle JB, Clark T, Bartolotti L, Hicks RP. 2013. A brief overview of antimicrobial peptides containing unnatural amino acids and ligand-based approaches for peptide ligands. Curr Top Med Chem. 13(24):3205–3244.
  • Bisht GS, Rawat DS, Kumar A, Kumar R, Pasha S. 2007. Antimicrobial activity of rationally designed amino terminal modified peptides. Bioorg Med Chem Lett. 17(15):4343–4346.
  • Blaskovich MAT. 2016. Unusual amino acids in medicinal chemistry. J Med Chem. 59(24):10807–10836.
  • Braunstein A, Papo N, Shai Y. 2004. In vitro activity and potency of an intravenously injected antimicrobial peptide and its DL amino acid analog in mice infected with bacteria. Antimicrob Agents Chemother. 48(8):3127–3129.
  • Brogden KA. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 3(3):238–250.
  • Buckholtz GA, Reger NA, Anderton WD, Schimoler PJ, Roudebush SL, Meng WS, Miller MC, Gawalt ES. 2016. Reducing Escherichia coli growth on a composite biomaterial by a surface immobilized antimicrobial peptide. Mater Sci Eng C Mater Biol Appl. 65:126–134.
  • Buer BC, Meagher JL, Stuckey JA, Marsh ENG. 2012. Structural basis for the enhanced stability of highly fluorinated proteins. Proc Natl Acad Sci USA. 109(13):4810–4815.
  • Cao L, Langen LV, Sheldon RA. 2003. Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol. 14(4):387–394.
  • Cardoso M, Cândido E, Chan L, Torres MDT, Oshiro K, Rezende S, Porto WF, Lu TK, Fuente-Nunez Cdl, Craik DJ, et al. 2018. A computationally designed peptide derived from Escherichia coli as a potential drug template for antibacterial and antibiofilm therapies. ACS Infect Dis. 4(12):1727–1736.
  • Cardoso MH, Meneguetti BT, Costa BO, Buccini DF, Oshiro K, Preza S, Carvalho C, Migliolo L, Franco OL. 2019. Non-Lytic antibacterial peptides that translocate through bacterial membranes to act on intracellular targets. Int J Mol Sci. 20(19):4877.
  • Carreira EM, Turner N, Hönig M, Sondermann P. 2017. Enantioselective chemo- and biocatalysis: partners in retrosynthesis. Angew Chem Int Ed Engl. 56(31):8942–8973.
  • Chen CX, Hu J, Yang C, Zhang Y, Wang F, Mu QM, Pan F, Xu H, Lu JR. 2016. Amino acid side chains affect the bioactivity of designed short peptide amphiphiles. J Mater Chem B. 4(13):2359–2368.
  • Chen HL, Su PY, Kuo SC, Lauderdale TLY, Shih C. 2018. Adding a C-terminal cysteine (CTC) can enhance the bactericidal activity of three different antimicrobial peptides. Front Microbiol. 9:1440.
  • Choi H, Hwang JS, Kim H, Lee DG. 2013. Antifungal effect of CopA3 monomer peptide via membrane-active mechanism and stability to proteolysis of enantiomeric D-CopA3. Biochem Biophys Res Commun. 440(1):94–98.
  • Chu-Kung AF, Nguyen R, Bozzelli KN, Tirrell M. 2010. Chain length dependence of antimicrobial peptide-fatty acid conjugate activity. J Colloid Interface Sci. 345(2):160–167.
  • Chu HL, Yu HY, Yip BS, Chih YH, Liang CW, Cheng HT, Cheng JW. 2013. Boosting salt resistance of short antimicrobial peptides. Antimicrob Agents Chemother. 57(8):4050–4052.
  • Ciumac D, Gong H, Hu X, Lu JR. 2019. Membrane targeting cationic antimicrobial peptides. J Colloid Interface Sci. 537:163–185.
  • Cleophas RTC, Riool M, Quarles van Ufford HC, Zaat SAJ, Kruijtzer JAW, Liskamp RMJ. 2014. Convenient preparation of bactericidal hydrogels by covalent attachment of stabilized antimicrobial peptides using thiol–ene click chemistry. ACS Macro Lett. 3(5):477–480.
  • Conlon JM, Al-Kharrge R, Ahmed E, Raza H, Galadari S, Condamine E. 2007. Effect of aminoisobutyric acid (Aib) substitutions on the antimicrobial and cytolytic activities of the frog skin peptide, temporin-1DRa. Peptides. 28(10):2075–2080.
  • Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins MCL. 2011. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater. 7(4):1431–1440.
  • Costa FMTA, Maia SR, Gomes PAC, Martins MCL. 2015. Dhvar5 antimicrobial peptide (AMP) chemoselective covalent immobilization results on higher antiadherence effect than simple physical adsorption. Biomaterials. 52(1):531–538.
  • Dahiya R, Kumar S, Khokra SL, Gupta SV, Sutariya VB, Bhatia D, Sharma A, Singh S, Maharaj S. 2018. Toward the synthesis and improved biopotential of an N-methylated analog of a proline-rich cyclic tetrapeptide from marine bacteria. Mar Drugs. 16(9):305.
  • Dennison SR, Phoenix DA. 2011. Influence of C-terminal amidation on the efficacy of modelin-5. Biochemistry. 50(9):1514–1523.
  • Dewan PC, Anantharaman A, Chauhan VS, Sahal D. 2009. Antimicrobial action of prototypic amphipathic cationic decapeptides and their branched dimers. Biochemistry. 48(24):5642–5657.
  • Dewangan RP, Bisht GS, Singh VP, Yar MS, Pasha S. 2018. Design and synthesis of cell selective α/β-diastereomeric peptidomimetic with potent in vivo antibacterial activity against methicillin resistant S. Aureus. Bioorg Chem. 76:538–547.
  • Dos Santos Cabrera MP, Arcisio-Miranda M, Broggio Costa ST, Konno K, Ruggiero JR, Procopio J, Ruggiero Neto J. 2008. Study of the mechanism of action of anoplin, a helical antimicrobial decapeptide with ion channel-like activity, and the role of the amidated C-terminus. J Pept Sci. 14(6):661–669.
  • Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD, Krajewski S, Lombardo CR, Rao R, Ruoslahti E, et al. 1999. Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med. 5(9):1032–1038.
  • Falciani C, Lozzi L, Pollini S, Luca V, Carnicelli V, Brunetti J, Lelli B, Bindi S, Scali S, Di Giulio A, et al. 2012. Isomerization of an antimicrobial peptide broadens antimicrobial spectrum to gram-positive bacterial pathogens. PLoS One. 7(10):e46259.
  • Falciani C, Lozzi L, Scali S, Brunetti J, Bracci L, Pini A. 2014. Site-specific pegylation of an antimicrobial peptide increases resistance to Pseudomonas aeruginosa elastase. Amino Acids. 46(5):1403–1407.
  • Fanelli R, Besserer-Offroy É, René A, Côté J, Tétreault P, Collerette-Tremblay J, Longpré J-M, Leduc R, Martinez J, Sarret P, et al. 2015. Synthesis and characterization in vitro and in vivo of (L)-(trimethylsilyl)alanine containing neurotensin analogues. J Med Chem. 58(19):7785–7795.
  • Fernandez-Lopez S, Kim H-S, Choi EC, Delgado M, Granja JR, Khasanov A, Kraehenbuehl K, Long G, Weinberger DA, Wilcoxen KM, et al. 2001. Antibacterial agents based on the cyclic D,L-alpha-peptide architecture. Nature. 412(6845):452–455.
  • Fjell CD, Hiss JA, Hancock REW, Schneider G. 2011. Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov. 11(1):37–51.
  • Fox MA, Thwaite JE, Ulaeto DO, Atkins TP, Atkins HS. 2012. Design and characterization of novel hybrid antimicrobial peptides based on cecropin A, LL-37 and magainin II. Peptides. 33(2):197–205.
  • Goodwin D, Simerska P, Toth I. 2012. Peptides as therapeutics with enhanced bioactivity. Curr Med Chem. 19(26):4451–4461.
  • Grassi L, Maisetta G, Esin S, Batoni G. 2017. Combination strategies to enhance the efficacy of antimicrobial peptides against bacterial biofilms. Front Microbiol. 8:2409.
  • Grimsey E, Collis DWP, Mikut R, Hilpert K. 2020. The effect of lipidation and glycosylation on short cationic antimicrobial peptides. Biochim Biophys Acta Biomembr. 1862(8):183195.
  • Hancock REW, Sahl HG. 2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 24(12):1551–1557.
  • Haney EF, Barbosa SC, Baquir B, Hancock REW. 2019. Influence of non-natural cationic amino acids on the biological activity profile of innate defense regulator peptides. J Med Chem. 62(22):10294–10304.
  • Hao J, Luo S, Pan L. 2021. Computer-aided intelligent design using deep multi-objective cooperative optimization algorithm. Future Gener Comp SY. 124(10):49–53.
  • He YK, He XF. 2016. Molecular design and genetic optimization of antimicrobial peptides containing unnatural amino acids against antibiotic-resistant bacterial infections. Biopolymers. 106(5):746–756.
  • Henriksen JR, Etzerodt T, Gjetting T, Andresen TL. 2014. Side chain hydrophobicity modulates therapeutic activity and membrane selectivity of antimicrobial peptide mastoparan-X. PLoS One. 9(3):e91007.
  • Hernandez-Gordillo V, Geisler I, Chmielewski J. 2014. Dimeric unnatural polyproline-rich peptides with enhanced antibacterial activity. Bioorg Med Chem Lett. 24(2):556–559.
  • Hernandez-Montelongo J, Corrales Ureña YR, Machado D, Lancelloti M, Pinheiro MP, Rischka K, Lisboa-Filho PN, Cotta MA. 2018. Electrostatic immobilization of antimicrobial peptides on polyethylenimine and their antibacterial effect against staphylococcus epidermidis. Colloids Surf B Biointerfaces. 164:370–378.
  • Hicks RP, Abercrombie JJ, Wong RK, Leung KP. 2013. Antimicrobial peptides containing unnatural amino acid exhibit potent bactericidal activity against ESKAPE pathogens. Bioorg Med Chem. 21(1):205–214.
  • Hicks RP, Bhonsle JB, Venugopal D, Koser BW, Magill AJ. 2007. De novo design of selective antibiotic peptides by incorporation of unnatural amino acids. J Med Chem. 50(13):3026–3036.
  • Hilpert K, Volkmer-Engert R, Walter T, Hancock REW. 2005. High-throughput generation of small antibacterial peptides with improved activity. Nat Biotechnol. 23(8):1008–1012.
  • Hong SY, Oh JE, Lee KH. 1999. Effect of D-amino acid substitution on the stability, the secondary structure, and the activity of membrane-active peptide. Biochem Pharmacol. 58(11):1775–1780.
  • Illa O, Olivares JA, Nolis P, Ortuño RM. 2017. The relevance of the relative configuration in the folding of hybrid peptides containing β-cyclobutane amino acids and γ-amino-L-proline residues. Tetrahedron. 73(44):6286–6295.
  • Imanishi S, Katoh T, Yin Y, Yamada M, Kawai M, Suga H. 2021. In vitro selection of macrocyclic D/L-hybrid peptides against human EGFR. J Am Chem Soc. 143(15):5680–5684.
  • Jenssen H, Fjell CD, Cherkasov A, Hancock REW. 2008. QSAR modeling and computer-aided design of antimicrobial peptides. J Pept Sci. 14(1):110–114.
  • Jia F, Wang J, Peng J, Zhao P, Kong Z, Wang K, Yan W, Wang R. 2017. D-amino acid substitution enhances the stability of antimicrobial peptide polybia-CP. Acta Biochim Biophys Sin. 49(10):916–925.
  • Juretić D, Vukičević D, Tossi A. 2017. Tools for designing amphipathic helical antimicrobial peptides. In: Hansen PR, editor. Antimicrobial peptides: methods and protocols. New York (NY): Springer New York; p. 23–34.
  • Kai M, Zhang W, Xie H, Liu LW, Huang SJ, Li X, Zhang ZZ, Liu YY, Zhang BZ, Song JJ, et al. 2018. Effects of linker amino acids on the potency and selectivity of dimeric antimicrobial peptides. Chin. Chem. Lett. 29(7):1163–1166. ),
  • Kang W, Liu H, Ma L, Wang M, Wei S, Sun P, Jiang M, Guo M, Zhou C, Dou J. 2017. Effective antimicrobial activity of a peptide mutant Cbf-14-2 against penicillin-resistant bacteria based on its unnatural amino acids. Eur J Pharm Sci. 105:169–177.
  • Karabi S, Chaudhary N. 2018. Antimicrobial peptides from C-terminal amphipathic region of E. coli FtsA. Biochim Biophys Acta Biomembr. 1860(12):2506–2514.
  • Khara JS, Priestman M, Uhía I, Hamilton MS, Krishnan N, Wang Y, Yang YY, Langford PR, Newton SM, Robertson BD, et al. 2016. Unnatural amino acid analogues of membrane-active helical peptides with anti-mycobacterial activity and improved stability. J Antimicrob Chemother. 71(8):2181–2191.
  • Kimura T, Hesaka A, Isaka Y. 2020. D-Amino acids and kidney diseases. Clin Exp Nephrol. 24(5):404–410.
  • Kleczkowska P, Hermans E, Kosson P, Kowalczyk A, Lesniak A, Pawlik K, Bojnik E, Benyhe S, Nowicka B, Bujalska-Zadrozny M, et al. 2016. Antinociceptive effect induced by a combination of opioid and neurotensin moieties vs. their hybrid peptide [Ile(9)]PK20 in an acute pain treatment in rodents. Brain Res. 1648(Pt A):172–180.
  • Kleczkowska P, Kosson P, Ballet S, Van den Eynde I, Tsuda Y, Tourwé D, Lipkowski AW. 2010. PK20, a new opioid-neurotensin hybrid peptide that exhibits central and peripheral antinociceptive effects. Mol Pain. 6(1):86.
  • Klippenstein V, Mony L, Paoletti P. 2018. Probing ion channel structure and function using light-sensitive amino acids. Trends Biochem Sci. 43(6):436–451.
  • Knappe D, Henklein P, Hoffmann R, Hilpert K. 2010. Easy strategy to protect antimicrobial peptides from fast degradation in serum. Antimicrob Agents Chemother. 54(9):4003–4005.
  • Lainson JC, Daly SM, Triplett K, Johnston SA, Hall PR, Diehnelt CW. 2017. Synthetic antibacterial peptide exhibits synergy with oxacillin against MRSA. ACS Med Chem Lett. 8(8):853–857.
  • Lavecchia A. 2015. Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today. 20(3):318–331.
  • Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, et al. 2013. Antibiotic resistance—the need for global solutions. Lancet Infect Dis. 13(12):1057–1098.,
  • Lee CJ, Qiu TA, Sweedler JV. 2020. D-Alanine: distribution, origin, physiological relevance, and implications in disease. Biochim Biophys Acta Proteins Proteom. 1868(11):140482.
  • Lee DG, Kim HN, Park Y, Kim HK, Choi BH, Choi C-H, Hahm K-S. 2002. Design of novel analogue peptides with potent antibiotic activity based on the antimicrobial peptide, HP (2–20), derived from N-terminus of Helicobacter pylori ribosomal protein L1. BBA – Proteins Proteom. 1598(1–2):185–194.
  • Li Y, Liu T, Liu Y, Tan Z, Ju Y, Yang Y, Dong WB. 2019. Antimicrobial activity, membrane interaction and stability of the D-amino acid substituted analogs of antimicrobial peptide W3R6. J. Photoch. Photobio. 200:111645.
  • Lima AN, Philot EA, Trossini GHG, Scott LPB, Maltarollo VG, Honorio KM. 2016. Use of machine learning approaches for novel drug discovery. Expert Opin Drug Discov. 11(3):225–239.
  • Liu TQ, Zhu NY, Zhong C, Zhu YW, Gou SH, Chang LL, Bao HX, Liu H, Zhang Y, Ni JM. 2020. Effect of N-methylated and fatty acid conjugation on analogs of antimicrobial peptide anoplin. Eur J Pharm Sci. 152:105453.
  • Lohan S, Cameotra SS, Bisht GS. 2014. Antibacterial evaluation of structurally amphipathic, membrane active small cationic peptidomimetics: synthesized by incorporating 3-amino benzoic acid as peptidomimetic element. Eur J Med Chem. 83:102–115.
  • Lozeau LD, Grosha J, Kole D, Prifti F, Dominko T, Camesano TA, Rolle MW. 2017. Collagen tethering of synthetic human antimicrobial peptides cathelicidin LL37 and its effects on antimicrobial activity and cytotoxicity. Acta Biomater. 52:9–20.
  • Müller AT, Gabernet G, Hiss JA, Schneider G. 2017. modlAMP: python for antimicrobial peptides. Bioinformatics. 33(17):2753–2755.
  • Müller AT, Hiss JA, Schneider G. 2018. Recurrent neural network model for constructive peptide design. J Chem Inf Model. 58(2):472–479.
  • Maccari G, Di Luca M, Nifosí R, Cardarelli F, Signore G, Boccardi C, Bifone A. 2013. Antimicrobial peptides design by evolutionary multiobjective optimization. PLoS Comput Biol. 9(9):e1003212.
  • Manabe T, Kawasaki K. 2017. D-form KLKLLLLLKLK-NH2 peptide exerts higher antimicrobial properties than its L-form counterpart via an association with bacterial cell wall components. Sci Rep. 7(1):43384.
  • Mangoni ML, Papo N, Saugar JM, Barra D, Shai Y, Simmaco M, Rivas L. 2006. Effect of natural L- to D-Amino acid conversion on the organization, membrane binding, and biological function of the antimicrobial peptides bombinins H. Biochemistry. 45(13):4266–4276.
  • Mao C, Mohanraj G, Kandiyote NS, Kasher R, Arnusch CJ. 2018. UV mediated attachment of short arginine-tryptophan antimicrobial peptides on reverse osmosis membrane surfaces inhibit Pseudomonas aeruginosa biofilm. Desalination. 431:73–79.
  • Meng H, Kumar K. 2007. Antimicrobial activity and protease stability of peptides containing fluorinated amino acids. J Am Chem Soc. 129(50):15615–15622.
  • Mura M, Wang J, Zhou Y, Pinna M, Zvelindovsky AV, Dennison SR, Phoenix DA. 2016. The effect of amidation on the behaviour of antimicrobial peptides. Eur Biophys J. 45(3):195–207.
  • Nahhas AF, Chang R, Webster TJ. 2018. Introducing unnatural amino acids-containing tripeptides as antimicrobial and anticancer agents. J Biomed Nanotechnol. 14(5):987–993.
  • Narancic T, Almahboub SA, O’Connor KE. 2019. Unnatural amino acids: production and biotechnological potential. World J. Microbiol. Biotechnol. 35(4):67.
  • Neumann-Staubitz P, Neumann H. 2016. The use of unnatural amino acids to study and engineer protein function. Curr Opin Struct Biol. 38:119–128.
  • Niu W, Guo J. 2017. Novel fluorescence-based biosensors incorporating unnatural amino acids. Methods Enzymol. 589:191–291.
  • Oh D, Shin SY, Lee S, Kang JH, Kim SD, Ryu PD, Hahm K-S, Kim Y. 2000. Role of the hinge region and the tryptophan residue in the synthetic antimicrobial peptides, cecropin A(1-8)-magainin 2(1–12) and its analogues, on their antibiotic activities and structures. Biochemistry. 39(39):11855–11864.
  • Oh JE, Lee KH. 1999. Synthesis of novel unnatural amino acid as a building block and its incorporation into an antimicrobial peptide. Bioorgan. Med. Chem. 7(12):2985–2990.
  • Oliva R, Chino M, Pane K, Pistorio V, De Santis A, Pizzo E, D’Errico GA-O, Pavone V, Lombardi A, Del Vecchio P, et al. 2018. Exploring the role of unnatural amino acids in antimicrobial peptides. Sci Rep. 8(1):8888.
  • Ong ZY, Cheng JC, Huang Y, Xu KJ, Ji ZK, Fan WM, Yang YY. 2014a. Effect of stereochemistry, chain length and sequence pattern on antimicrobial properties of short synthetic β-sheet forming peptide amphiphiles. Biomaterials. 35(4):1315–1325.
  • Ong ZY, Wiradharma N, Yang YY. 2014b. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic c potentials. Adv Drug Deliv Rev. 78:28–45.
  • Pan M, Lu C, Zheng MC, Zhou W, Song FL, Chen WD, Yao F, Liu DJ, Cai JF. 2020. Unnatural amino-acid-based star-shaped poly(L-Ornithine)s as emerging long-term and biofilm-disrupting antimicrobial peptides to treat Pseudomonas aeruginosa-infected burn wounds. Adv Healthcare Mater. 9(19):2000647.
  • Parmeggiani F, Weise NJ, Ahmed ST, Turner NJ. 2018. Synthetic and therapeutic applications of ammonia-lyases and aminomutases. Chem Rev. 118(1):73–118.
  • Peschel A, Sahl HG. 2006. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol. 4(7):529–536.
  • Pizzolato-Cezar LR, Okuda-Shinagawa NM, Machini MT. 2019. Combinatory therapy antimicrobial peptide-antibiotic to minimize the ongoing rise of resistance. Front Microbiol. 10:1703.
  • Pollegioni L, Rosini E, Molla G. 2020. Advances in enzymatic synthesis of D-Amino acids. Int J Mol Sci. 21(9):3206.
  • Purwin M, Markowska A, Bruzgo I, Rusak T, Surażyński A, Jaworowska U, Midura-Nowaczek K. 2017. Peptides with 6-aminohexanoic acid: synthesis and evaluation as plasmin inhibitors. Int J Pept Res Ther. 23(2):235–245.
  • Raj H, Szymański W, de Villiers J, Rozeboom HJ, Veetil VP, Reis CR, de Villiers M, Dekker FJ, de Wildeman S, Quax WJ, et al. 2012. Engineering methylaspartate ammonia lyase for the asymmetric synthesis of unnatural amino acids. Nat Chem. 4(6):478–484.
  • Ramagopal UA, Ramakumar S, Sahal D, Chauhan VS. 2001. De novo design and characterization of an apolar helical hairpin peptide at atomic resolution: compaction mediated by weak interactions. Proc Natl Acad Sci USA. 98(3):870–874.
  • Reinhardt A, Neundorf I. 2016. Design and application of antimicrobial peptide conjugates. Int J Mol Sci. 17(5):701.
  • Russell AL, Kennedy AM, Spuches AM, Gibson WS, Venugopal D, Klapper D, Srouji AH, Bhonsle JB, Hicks RP. 2011. Determining the effect of the incorporation of unnatural amino acids into antimicrobial peptides on the interactions with zwitterionic and anionic membrane model systems. Chem Phys Lipids. 164(8):740–758.
  • Russell AL, Williams BC, Spuches A, Klapper D, Srouji AH, Hicks RP. 2012. The effect of the length and flexibility of the side chain of basic amino acids on the binding of antimicrobial peptides to zwitterionic and anionic membrane model systems. Bioorgan. Med. Chem. 20(5):1723–1739.
  • Saikia K, Sravani YD, Ramakrishnan V, Chaudhary N. 2017. Highly potent antimicrobial peptides from N-terminal membrane-binding region of. Sci Rep. 7(1):42994.
  • Scherpenzeel MV, Pot MVD, Arnusch CJ, Liskamp RMJ, Pieters RJ. 2007. Detection of galectin-3 by novel peptidic photoprobes. Bioorg Med Chem Lett. 17(2):376–378.
  • Schneider P, Müller AT, Gabernet G, Button AL, Posselt G, Wessler S, Hiss JA, Schneider G. 2017. Hybrid network model for “Deep Learning” of chemical data: application to antimicrobial peptides. Mol Inf. 36(1–2):1600011.
  • Shao C, Zhu Y, Lai Z, Tan P, Shan A. 2019. Antimicrobial peptides with protease stability: progress and perspective. Future Med Chem. 11(16):2047–2050.
  • Sharma N, Furter R, Kast P, Tirrell DA. 2000. Efficient introduction of aryl bromide functionality into proteins in vivo. FEBS Lett. 467(1):37–40.
  • Shin A, Lee E, Jeon D, Park Y-G, Bang JK, Park Y-S, Shin SY, Kim Y. 2015. Peptoid-substituted hybrid antimicrobial peptide derived from papiliocin and magainin 2 with enhanced bacterial selectivity and anti-inflammatory activity. Biochemistry. 54(25):3921–3931.
  • Sim JY, Kim S, Lee J, Lim H, Kim HH, Park Z-Y, Kim JI. 2019. A significantly enhanced antibacterial spectrum of D-enantiomeric lipopeptide bactenecin. Biochem Biophys Res Commun. 514(2):497–502.
  • Strömstedt AA, Pasupuleti M, Schmidtchen A, Malmsten M. 2009. Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37. Antimicrob Agents Chemother. 53(2):593–602.
  • Tall YA, Al-Rawashdeh Ba, Abualhaijaa A, Almaaytah A, Masadeh M, Alzoubi KH. 2020. Functional characterization of a novel hybrid peptide with high potency against gram-negative bacteria. Curr Pharm Des. 26(3):376–385.
  • Tanishiki N, Yano Y, Matsuzaki K. 2019. Endowment of pH responsivity to anticancer peptides by introducing 2,3-diaminopropionic acid residues. Chembiochem. 20(16):2109–2117.
  • Tapia VE, Ay B, Volkmer R. 2009. Exploring and profiling protein function with peptide arrays. In: Cretich M., Chiari M., editors. Peptide microarrays: methods and protocols. Totowa (NJ): Humana Press; p. 3–17.
  • Thery T, Shwaiki LN, O’Callaghan YC, O’Brien NM, Arendt EK. 2019. Antifungal activity of a de novo synthetic peptide and derivatives against fungal food contaminants. J Pept Sci. 25(1):e3137.
  • Ting DSJ, Beuerman RW, Dua HS, Lakshminarayanan R, Mohammed I. 2020. Strategies in translating the therapeutic potentials of host defense peptides. Front Immunol. 11:983.
  • Torres MDT, Sothiselvam S, Lu TK, Fuente-Nunez CDL. 2019. Peptide design principles for antimicrobial applications. J Mol Biol. 431(18):3547–3567.
  • Tripathi AK, Kumari T, Tandon A, Sayeed M, Afshan T, Kathuria M, Shukla PK, Mitra K, Ghosh JK. 2017. Selective phenylalanine to proline substitution for improved antimicrobial and anticancer activities of peptides designed on phenylalanine heptad repeat. Acta Biomater. 57:170–186.
  • Tsuchiya K, Numata K. 2017. Chemoenzymatic synthesis of polypeptides containing the unnatural amino acid 2-aminoisobutyric acid. Chem Commun. 53(53):7318–7321.
  • Veltri D, Kamath U, Shehu A. 2017. Improving recognition of antimicrobial peptides and target selectivity through machine learning and genetic programming. IEEE/ACM Trans Comput Biol Bioinform. 14(2):300–313.
  • Veltri D, Kamath U, Shehu A. 2018. Deep learning improves antimicrobial peptide recognition. Bioinformatics. 34(16):2740–2747.
  • Wade D, Boman A, Wåhlin B, Drain CM, Andreu D, Boman HG, Merrifield RB. 1990. All-D amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci USA. 87(12):4761–4765.
  • Wade HM, Darling LEO, Elmore DE. 2019. Hybrids made from antimicrobial peptides with different mechanisms of action show enhanced membrane permeabilization. Biochim Biophys Acta Biomembr. 1861(10):182980.
  • Wang C, Yang C, Chen YC, Ma L, Huang K. 2019. Rational design of hybrid peptides: a novel drug design approach. Curr Med Sci. 39(3):349–355.
  • Wang D, Haapasalo M, Gao Y, Ma JZ, Shen Y. 2018. Antibiofilm peptides against biofilms on titanium and hydroxyapatite surfaces. Bioact. Mater. 3(4):418–425.
  • Wang GS. 2012. Post-translational modifications of natural antimicrobial peptides and strategies for peptide engineering. Curr Biotechnol. 1(1):72–79.
  • Wang Y, Yang YJ, Chen YN, Zhao HY, Zhang S. 2016. Computer-aided design, structural dynamics analysis, and in vitro susceptibility test of antibacterial peptides incorporating unnatural amino acids against microbial infections. Comput Meth Prog Bio. 134:215–223.
  • Wang Y, Zhang JW, Gao T, Zhang NH, He J, Wu F. 2021. Covalent immobilization of DJK-5 peptide on porous titanium for enhanced antibacterial effects and restrained inflammatory osteoclastogenesis. Colloids Surf B Biointerfaces. 202:111697.
  • Weaver BA. 2014. How Taxol/paclitaxel kills cancer cells. Mol Biol Cell. 25(18):2677–2681.
  • Wei XB, Wu RJ, Si DY, Liao XD, Zhang LL, Zhang RJ. 2016. Novel hybrid peptide cecropin A (1-8)-LL37 (17-30) with potential antibacterial activity. Int J Mol Sci. 17(7):983.
  • Willcox MDP, Hume EBH, Aliwarga Y, Kumar N, Cole N. 2008. A novel cationic-peptide coating for the prevention of microbial colonization on contact lenses. J Appl Microbiol. 105(6):1817–1825.
  • Wu RJ, Wang Q, Zheng ZJ, Zhao LM, Shang YJ, Wei XB, Liao XD, Zhang RJ. 2014. Design, characterization and expression of a novel hybrid peptides melittin (1-13)-LL37 (17–30). Mol Biol Rep. 41(7):4163–4169.
  • Xiong M, Chen M, Zhang J. 2016. Rational evolution of antimicrobial peptides containing unnatural amino acids to combat burn wound infections. Chem Biol Drug Des. 88(3):404–410.
  • Xue YP, Cao CH, Zheng YG. 2018. Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev. 47(4):1516–1561.
  • Yan H, Hancock REW. 2001. Synergistic interactions between mammalian antimicrobial defense peptides. Antimicrob Agents Chemother. 45(5):1558–1560.
  • Yasir M, Dutta D, Hossain KR, Chen R, Ho KKK, Kuppusamy R, Clarke RJ, Kumar N, Willcox MDP. 2020. Mechanism of action of surface immobilized antimicrobial peptides against Pseudomonas aeruginosa. Front Microbiol. 10:3053.
  • Yeaman MR, Yount NY. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 55(1):27–55.
  • Yousefinejad S, Bagheri M, Moosavi-Movahedi AA. 2015. Quantitative sequence-activity modeling of antimicrobial hexapeptides using a segmented principal component strategy: an approach to describe and predict activities of peptide drugs containing L/D and unnatural residues. Amino Acids. 47(1):125–134.
  • Zhu X, Dong N, Wang Z, Ma Z, Zhang L, Ma Q, Shan A. 2014. Design of imperfectly amphipathic α-helical antimicrobial peptides with enhanced cell selectivity. Acta Biomater. 10(1):244–257.
  • Zotti MD, Biondi B, Peggion C, Park Y, Hahm KS, Formaggio F, Toniolo C. 2011. Synthesis, preferred conformation, protease stability, and membrane activity of heptaibin, a medium-length peptaibiotic. J Pept Sci. 17(8):1099–1387.
  • Zou GZ, De Leeuw E, Li C, Pazgier M, Li Cq, Zeng Py, Lu WY, Lubkowski J, Lu Wy. 2007. Toward understanding the cationicity of defensins. Arg and Lys versus their noncoded analogs. J Biol Chem. 282(27):19653–19665.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.