1,871
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Oral host-microbe interactions investigated in 3D organotypic models

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 397-416 | Received 12 Jan 2023, Accepted 02 May 2023, Published online: 11 May 2023

References

  • Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. 2005. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 43(11):5721–5732.
  • Abhyankar VP, Bates AM, Fischer CL, Johnson GK, Guthmiller JM, Progulske-Fox A, Brogden KA. 2019. Dataset on the chemokine and cytokine responses of multi-cell cultures treated with Porphyromonas gingivalis hemagglutinin B. Data Brief. 22:964–970.
  • Aguilar C, Alves da Silva M, Saraiva M, Neyazi M, Olsson IAS, Bartfeld S. 2021. Organoids as host models for infection biology - a review of methods. Exp Mol Med. 53(10):1471–1482.
  • Ahlstrand T, Tuominen H, Beklen A, Torittu A, Oscarsson J, Sormunen R, Pöllänen MT, Permi P, Ihalin R. 2017. A novel intrinsically disordered outer membrane lipoprotein of Aggregatibacter actinomycetemcomitans binds various cytokines and plays a role in biofilm response to interleukin-1beta and interleukin-8. Virulence. 8(2):115–134.
  • Almela T, Al-Sahaf S, Brook IM, Khoshroo K, Rasoulianboroujeni M, Fahimipour F, Tahriri M, Dashtimoghadam E, Bolt R, Tayebi L, et al. 2018. 3D printed tissue engineered model for bone invasion of oral cancer. Tissue Cell. 52:71–77.
  • Andrian E, Grenier D, Rouabhia M. 2004. In vitro models of tissue penetration and destruction by Porphyromonas gingivalis. Infect Immun. 72(8):4689–4698.
  • Andrian E, Mostefaoui Y, Rouabhia M, Grenier D. 2007. Regulation of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases by Porphyromonas gingivalis in an engineered human oral mucosa model. J Cell Physiol. 211(1):56–62.
  • Baddal B, Marrazzo P. 2021. Refining host-pathogen interactions: organ-on-chip side of the coin. Pathogens. 10(2):203.
  • Bao K, Belibasakis GN, Selevsek N, Grossmann J, Bostanci N. 2015. Proteomic profiling of host-biofilm interactions in an oral infection model resembling the periodontal pocket. Sci Rep. 5:15999.
  • Bao K, Papadimitropoulos A, Akgül B, Belibasakis GN, Bostanci N. 2015. Establishment of an oral infection model resembling the periodontal pocket in a perfusion bioreactor system. Virulence. 6(3):265–273.
  • Barrila J, Crabbé A, Yang J, Franco K, Nydam SD, Forsyth RJ, Davis RR, Gangaraju S, Ott CM, Coyne CB, et al. 2018. Modeling host-pathogen interactions in the context of the microenvironment: three-dimensional cell culture comes of age. Infect Immun. 86(11):e00282-18.
  • Barrila J, Radtke AL, Crabbé A, Sarker SF, Herbst-Kralovetz MM, Ott CM, Nickerson CA. 2010. Organotypic 3D cell culture models: using the rotating wall vessel to study host-pathogen interactions. Nat Rev Microbiol. 8(11):791–801.
  • Bedran TBL, Mayer MPA, Spolidorio DP, Grenier D. 2014. Synergistic anti-inflammatory activity of the antimicrobial peptides human beta-defensin-3 (hBD-3) and cathelicidin (LL-37) in a three-dimensional co-culture model of gingival epithelial cells and fibroblasts. PLoS One. 9(9):e106766.
  • Beklen A, Torittu A, Ihalin R, Pöllänen M. 2019. Aggregatibacter actinomycetemcomitans biofilm reduces gingival epithelial cell keratin expression in an organotypic gingival tissue culture model. Pathogens. 8(4):278.
  • Belibasakis GN, Kast JI, Thurnheer T, Akdis CA, Bostanci N. 2015. The expression of gingival epithelial junctions in response to subgingival biofilms. Virulence. 6(7):704–709.
  • Belibasakis GN, Thurnheer T, Bostanci N. 2013. Interleukin-8 responses of multi-layer gingival epithelia to subgingival biofilms: role of the “red complex” species. PLoS One. 8(12):e81581.
  • Belstrom D. 2020. The salivary microbiota in health and disease. J Oral Microbiol. 12(1):1723975.
  • Bertolini MM, Xu H, Sobue T, Nobile CJ, Del Bel Cury AA, Dongari-Bagtzoglou A. 2015. Candida-streptococcal mucosal biofilms display distinct structural and virulence characteristics depending on growth conditions and hyphal morphotypes. Mol Oral Microbiol. 30(4):307–322.
  • Bierbaumer L, Schwarze UY, Gruber R, Neuhaus W. 2018. Cell culture models of oral mucosal barriers: a review with a focus on applications, culture conditions and barrier properties. Tissue Barriers. 6(3):1479568.
  • Bostanci N, Bao K, Wahlander A, Grossmann J, Thurnheer T, Belibasakis GN. 2015. Secretome of gingival epithelium in response to subgingival biofilms. Mol Oral Microbiol. 30(4):323–335.
  • Brown JL, Johnston W, Delaney C, Rajendran R, Butcher J, Khan S, Bradshaw D, Ramage G, Culshaw S. 2019. Biofilm-stimulated epithelium modulates the inflammatory responses in co-cultured immune cells. Sci Rep. 9(1):15779.
  • Brown JL, Johnston W, Delaney C, Short B, Butcher MC, Young T, Butcher J, Riggio M, Culshaw S, Ramage G, et al. 2019. Polymicrobial oral biofilm models: simplifying the complex. J Med Microbiol. 68(11):1573–1584.
  • Bugueno IM, Batool F, Keller L, Kuchler-Bopp S, Benkirane-Jessel N, Huck O. 2018. Porphyromonas gingivalis bypasses epithelial barrier and modulates fibroblastic inflammatory response in an in vitro 3D spheroid model. Sci Rep. 8(1):14914.
  • Buskermolen JK, Janus MM, Roffel S, Krom BP, Gibbs S. 2018. Saliva-derived commensal and pathogenic biofilms in a human gingiva model. J Dent Res. 97(2):201–208.
  • Chen L, Feng Z, Yuan G, Emerson CC, Stewart PL, Ye F, Jin G. 2020. Human immunodeficiency virus-associated exosomes promote Kaposi’s sarcoma-associated herpesvirus infection via the epidermal growth factor receptor. J Virol. 94(9):e01782-19.
  • Claveau I, Mostefaoui Y, Rouabhia M. 2004. Basement membrane protein and matrix metalloproteinase deregulation in engineered human oral mucosa following infection with Candida albicans. Matrix Biol. 23(7):477–486.
  • Dabija-Wolter G, Sapkota D, Cimpan MR, Neppelberg E, Bakken V, Costea DE. 2012. Limited in-depth invasion of Fusobacterium nucleatum into in vitro reconstructed human gingiva. Arch Oral Biol. 57(4):344–351.
  • de Carvalho Dias K, de Sousa DL, Barbugli PA, Cerri PS, Salih VM, Vergani CE. 2018. Development and characterization of a 3D oral mucosa model as a tool for host-pathogen interactions. J Microbiol Methods. 152:52–60.
  • De Rudder C, Calatayud Arroyo M, Lebeer S, Van de Wiele T. 2020. Dual and triple epithelial coculture model systems with donor-derived microbiota and THP-1 macrophages to mimic host-microbe interactions in the human sinonasal cavities. mSphere. 5(1):e00916-19.
  • De Ryck T, Grootaert C, Jaspaert L, Kerckhof F-M, Van Gele M, De Schrijver J, Van den Abbeele P, Swift S, Bracke M, Van de Wiele T, et al. 2014. Development of an oral mucosa model to study host-microbiome interactions during wound healing. Appl Microbiol Biotechnol. 98(15):6831–6846.
  • Decanis N, Savignac K, Rouabhia M. 2009. Farnesol promotes epithelial cell defense against Candida albicans through Toll-like receptor 2 expression, interleukin-6 and human beta-defensin 2 production. Cytokine. 45(2):132–140.
  • Delben JA, Zago CE, Tyhovych N, Duarte S, Vergani CE. 2016. Effect of atmospheric-pressure cold plasma on pathogenic oral biofilms and in vitro reconstituted oral epithelium. PLoS One. 11(5):e0155427.
  • Delon LC, Guo Z, Oszmiana A, Chien C-C, Gibson R, Prestidge C, Thierry B. 2019. A systematic investigation of the effect of the fluid shear stress on Caco-2cells towards the optimization of epithelial organ-on-chip models. Biomaterials. 225:119521.
  • Diaz PI, Xie Z, Sobue T, Thompson A, Biyikoglu B, Ricker A, Ikonomou L, Dongari-Bagtzoglou A. 2012. Synergistic interaction between Candida albicans and commensal oral streptococci in a novel in vitro mucosal model. Infect Immun. 80(2):620–632.
  • Dickinson BC, Moffatt CE, Hagerty D, Whitmore SE, Brown TA, Graves DT, Lamont RJ. 2011. Interaction of oral bacteria with gingival epithelial cell multilayers. Mol Oral Microbiol. 26(3):210–220.
  • Diesch T, Filippi C, Fritschi N, Filippi A, Ritz N. 2021. Cytokines in saliva as biomarkers of oral and systemic oncological or infectious diseases: a systematic review. Cytokine. 143:155506.
  • Dongari-Bagtzoglou A, Kashleva H. 2006. Development of a highly reproducible three-dimensional organotypic model of the oral mucosa. Nat Protoc. 1(4):2012–2018.
  • Dongari-Bagtzoglou A, Kashleva H. 2006. Development of a novel three-dimensional in vitro model of oral Candida infection. Microb Pathog. 40(6):271–278.
  • Dongari-Bagtzoglou A. 2008. Pathogenesis of mucosal biofilm infections: challenges and progress. Expert Rev anti Infect Ther. 6(2):201–208.
  • Dragan IF, Hotlzman LP, Karimbux NY, Morin RA, Bassir SH. 2017. Clinical outcomes of comparing soft tissue alternatives to free gingival graft: a systematic review and meta-analysis. J Evid Based Dent Pract. 17(4):370–380 e3.
  • Dutta D, Clevers H. 2017. Organoid culture systems to study host-pathogen interactions. Curr Opin Immunol. 48:15–22.
  • Falsetta ML, Klein MI, Colonne PM, Scott-Anne K, Gregoire S, Pai C-H, Gonzalez-Begne M, Watson G, Krysan DJ, Bowen WH, et al. 2014. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect Immun. 82(5):1968–1981.
  • França CM, Tahayeri A, Rodrigues NS, Ferdosian S, Puppin Rontani RM, Sereda G, Ferracane JL, Bertassoni LE. 2020. The tooth on-a-chip: a microphysiologic model system mimicking the biologic interface of the tooth with biomaterials. Lab Chip. 20(2):405–413.
  • Gibbs S, Roffel S, Meyer M, Gasser A. 2019. Biology of soft tissue repair: gingival epithelium in wound healing and attachment to the tooth and abutment surface. Eur Cell Mater. 38:63–78.
  • Groeger S, Doman E, Chakraborty T, Meyle J. 2010. Effects of Porphyromonas gingivalis infection on human gingival epithelial barrier function in vitro. Eur J Oral Sci. 118(6):582–589.
  • Gursoy UK, Kononen E. 2012. Understanding the roles of gingival beta-defensins. J Oral Microbiol. 4:15127.
  • Gursoy UK, Pöllänen M, Könönen E, Uitto V-J. 2010. Biofilm formation enhances the oxygen tolerance and invasiveness of Fusobacterium nucleatum in an oral mucosa culture model. J Periodontol. 81(7):1084–1091.
  • Gursoy UK, Pöllänen M, Könönen E, Uitto V-J. 2012. A novel organotypic dento-epithelial culture model: effect of Fusobacterium nucleatum biofilm on B-defensin-2, -3, and LL-37 expression. J Periodontol. 83(2):242–247.
  • Hajishengallis G. 2015. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 15(1):30–44.
  • Hong B-Y, Sobue T, Choquette L, Dupuy AK, Thompson A, Burleson JA, Salner AL, Schauer PK, Joshi P, Fox E, et al. 2019. Chemotherapy-induced oral mucositis is associated with detrimental bacterial dysbiosis. Microbiome. 7(1):66.
  • Ingendoh-Tsakmakidis A, Mikolai C, Winkel A, Szafrański SP, Falk CS, Rossi A, Walles H, Stiesch M. 2019. Commensal and pathogenic biofilms differently modulate peri-implant oral mucosa in an organotypic model. Cell Microbiol. 21(10):e13078.
  • Israr M, Rosenthal D, Frejo-Navarro L, DeVoti J, Meyers C, Bonagura VR. 2018. Microarray analysis of human keratinocytes from different anatomic sites reveals site-specific immune signaling and responses to human papillomavirus type 16 transfection. Mol Med. 24(1):23.
  • Jackson R, et al. 2020. 3D Oral and cervical tissue models for studying papillomavirus host-pathogen interactions. Curr Protoc Microbiol. 59(1):e129.
  • Janjić K, Schädl B, Andrukhov O, Agis H. 2020. The response of gingiva monolayer, spheroid, and ex vivo tissue cultures to collagen membranes and bone substitute. J Tissue Eng Regen Med. 14(9): p):1307–1317.
  • Kim JY, An CH, Kim JY, Jung JK. 2020. Experimental animal model systems for understanding salivary secretory disorders. Int J Mol Sci. 21(22):8423.
  • Kirchner FR, LeibundGut-Landmann S. 2021. Tissue-resident memory Th17 cells maintain stable fungal commensalism in the oral mucosa. Mucosal Immunol. 14(2):455–467.
  • Koning JJ, Rodrigues Neves CT, Schimek K, Thon M, Spiekstra SW, Waaijman T, de Gruijl TD, Gibbs S. 2021. A multi-organ-on-chip approach to investigate how oral exposure to metals can cause systemic toxicity leading to langerhans cell activation in skin. Front Toxicol. 3:824825.
  • Lamont RJ, Koo H, Hajishengallis G. 2018. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 16(12):745–759.
  • Lermann U, Morschhauser J. 2008. Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans. Microbiology (Reading). 154(Pt 11):3281–3295.
  • Li X, Shang L, Brandt BW, Buijs MJ, Roffel S, van Loveren C, Crielaard W, Gibbs S, Deng DM. 2021. Saliva-derived microcosm biofilms grown on different oral surfaces in vitro. NPJ Biofilms Microbiomes. 7(1):74.
  • Lin GC, Leitgeb T, Vladetic A, Friedl H-P, Rhodes N, Rossi A, Roblegg E, Neuhaus W. 2020. Optimization of an oral mucosa in vitro model based on cell line TR146. Tissue Barriers. 8(2):1748459.
  • Makielski KR, Lee D, Lorenz LD, Nawandar DM, Chiu Y-F, Kenney SC, Lambert PF. 2016. Human papillomavirus promotes Epstein-Barr virus maintenance and lytic reactivation in immortalized oral keratinocytes. Virology. 495:52–62.
  • Mark Welch JL, Dewhirst FE, Borisy GG. 2019. Biogeography of the oral microbiome: the site-specialist hypothesis. Annu Rev Microbiol. 73:335–358.
  • Melkoumov A, Goupil M, Louhichi F, Raymond M, de Repentigny L, Leclair G. 2013. Nystatin nanosizing enhances in vitro and in vivo antifungal activity against Candida albicans. J Antimicrob Chemother. 68(9):2099–2105.
  • Métris A, Barrett P, Price L, Klamert S, Fernandez-Piquer J. 2022. A tiered approach to risk assess microbiome perturbations induced by application of beauty and personal care products. Microbial Risk Analysis. 20:100188.
  • Mikolai C, et al. 2020. Early host-microbe interaction in a peri-implant oral mucosa-biofilm model. Cell Microbiol. 22(8):e13209.
  • Moharamzadeh K, Colley H, Murdoch C, Hearnden V, Chai WL, Brook IM, Thornhill MH, Macneil S. 2012. Tissue-engineered oral mucosa. J Dent Res. 91(7):642–650.
  • Montelongo-Jauregui D, Saville SP, Lopez-Ribot JL. 2019. Contributions of Candida albicans dimorphism, adhesive interactions, and extracellular matrix to the formation of dual-species biofilms with Streptococcus gordonii. mBio. 10(3):e01179-19.
  • Morse DJ, Wilson MJ, Wei X, Lewis MAO, Bradshaw DJ, Murdoch C, Williams DW. 2018. Denture-associated biofilm infection in three-dimensional oral mucosal tissue models. J Med Microbiol. 67(3):364–375.
  • Mostefaoui Y, Bart C, Frenette M, Rouabhia M. 2004. Candida albicans and Streptococcus salivarius modulate IL-6, IL-8, and TNF-alpha expression and secretion by engineered human oral mucosa cells. Cell Microbiol. 6(11):1085–1096.
  • Mostefaoui Y, Claveau I, Rouabhia M. 2004. In vitro analyses of tissue structure and interleukin-1beta expression and production by human oral mucosa in response to Candida albicans infections. Cytokine. 25(4):162–171.
  • Moutsopoulos NM, Konkel JE. 2018. Tissue-specific immunity at the oral mucosal barrier. Trends Immunol. 39(4):276–287.
  • Moysidou CM, Owens RM. 2021. Advances in modelling the human microbiome-gut-brain axis in vitro. Biochem Soc Trans. 49(1):187–201.
  • Nawandar DM, Wang A, Makielski K, Lee D, Ma S, Barlow E, Reusch J, Jiang R, Wille CK, Greenspan D, et al. 2015. Differentiation-dependent KLF4 expression promotes lytic Epstein-Barr virus infection in epithelial cells. PLoS Pathog. 11(10):e1005195.
  • Nikaido M, Otani T, Kitagawa N, Ogata K, Iida H, Anan H, Inai T. 2019. Anisomycin, a JNK and p38 activator, suppresses cell-cell junction formation in 2D cultures of K38 mouse keratinocyte cells and reduces claudin-7 expression, with an increase of paracellular permeability in 3D cultures. Histochem Cell Biol. 151(5):369–384.
  • Ohnemus U, et al. 2008. An ex-vivo oral mucosa infection model for the evaluation of the topical activity of antifungal agents. Mycoses. 51(1):21–29.
  • Olek M, Machorowska-Pieniążek A, Olek K, Cieślar G, Kawczyk-Krupka A. 2021. Photodynamic therapy in the treatment of oral squamous cell carcinoma - the state of the art in preclinical research on the animal model. Photodiagnosis Photodyn Ther. 34:102236.
  • Ollington B, Colley HE, Murdoch C. 2021. Immunoresponsive tissue-engineered oral mucosal equivalents containing macrophages. Tissue Eng Part C Methods. 27(8):462–471.
  • Paino A, Lohermaa E, Sormunen R, Tuominen H, Korhonen J, Pöllänen MT, Ihalin R. 2012. Interleukin-1beta is internalised by viable Aggregatibacter actinomycetemcomitans biofilm and locates to the outer edges of nucleoids. Cytokine. 60(2):565–574.
  • Pasman R, Krom BP, Zaat SAJ, Brul S. 2022. The role of the oral immune system in oropharyngeal candidiasis-facilitated invasion and dissemination of Staphylococcus aureus. Front Oral Health. 3:851786.
  • Perpich JD, Yakoumatos L, Stocke KS, Lewin GR, Ramos A, Yoder-Himes DR, Whiteley M, Lamont RJ. 2022. Porphyromonas gingivalis tyrosine kinase is a fitness determinant in polymicrobial infections. Infect Immun. 90(6):e0017022.
  • Phyu WK, Ong KC, Kong CK, Alizan AK, Ramanujam TM, Wong KT. 2017. Squamous epitheliotropism of enterovirus A71 in human epidermis and oral mucosa. Sci Rep. 7:45069.
  • Pinnock A, Murdoch C, Moharamzadeh K, Whawell S, Douglas CWI. 2014. Characterisation and optimisation of organotypic oral mucosal models to study Porphyromonas gingivalis invasion. Microbes Infect. 16(4):310–319.
  • Pöllänen MT, Gursoy UK, Könönen E, Uitto V-J. 2012. Fusobacterium nucleatum biofilm induces epithelial migration in an organotypic model of dento-gingival junction. J Periodontol. 83(10):1329–1335.
  • Rahimi C, Rahimi B, Padova D, Rooholghodos SA, Bienek DR, Luo X, Kaufman G, Raub CB. 2018. Oral mucosa-on-a-chip to assess layer-specific responses to bacteria and dental materials. Biomicrofluidics. 12(5):054106.
  • Rodrigues NS, França CM, Tahayeri A, Ren Z, Saboia VPA, Smith AJ, Ferracane JL, Koo H, Bertassoni LE. 2021. Biomaterial and biofilm interactions with the pulp-dentin complex-on-a-chip. J Dent Res. 100(10):1136–1143.
  • Rouabhia M, Mukherjee PK, Lattif AA, Curt S, Chandra J, Ghannoum MA. 2011. Disruption of sphingolipid biosynthetic gene IPT1 reduces Candida albicans adhesion and prevents activation of human gingival epithelial cell innate immune defense. Med Mycol. 49(5):458–466.
  • Sacks PG. 1996. Cell, tissue and organ culture as in vitro models to study the biology of squamous cell carcinomas of the head and neck. Cancer Metastasis Rev. 15(1):27–51.
  • Schaller M, Boeld U, Oberbauer S, Hamm G, Hube B, Korting HC. 2004. Polymorphonuclear leukocytes (PMNs) induce protective Th1-type cytokine epithelial responses in an in vitro model of oral candidosis. Microbiology (Reading). 150(Pt 9):2807–2813.
  • Schaller M, Mailhammer R, Grassl G, Sander CA, Hube B, Korting HC. 2002. Infection of human oral epithelia with Candida species induces cytokine expression correlated to the degree of virulence. J Invest Dermatol. 118(4):652–657.
  • Schmidt M, Raghavan B, Müller V, Vogl T, Fejer G, Tchaptchet S, Keck S, Kalis C, Nielsen PJ, Galanos C, et al. 2010. Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nat Immunol. 11(9):814–819.
  • Sedghi LM, Bacino M, Kapila YL. 2021. Periodontal disease: the good, the bad, and the unknown. Front Cell Infect Microbiol. 11:766944.
  • Semlali A, Leung KP, Curt S, Rouabhia M. 2011. Antimicrobial decapeptide KSL-W attenuates Candida albicans virulence by modulating its effects on Toll-like receptor, human beta-defensin, and cytokine expression by engineered human oral mucosa. Peptides. 32(5):859–867.
  • Shang L, Deng D, Buskermolen JK, Janus MM, Krom BP, Roffel S, Waaijman T, van Loveren C, Crielaard W, Gibbs S, et al. 2018. Multi-species oral biofilm promotes reconstructed human gingiva epithelial barrier function. Sci Rep. 8(1):16061.
  • Shang L, Deng D, Buskermolen JK, Roffel S, Janus MM, Krom BP, Crielaard W, Gibbs S. 2019. Commensal and pathogenic biofilms alter toll-like receptor signaling in reconstructed human gingiva. Front Cell Infect Microbiol. 9:282.
  • Shang L, Deng D, Roffel S, Gibbs S. 2020. Differential influence of Streptococcus mitis on host response to metals in reconstructed human skin and oral mucosa. Contact Dermatitis. 83(5):347–360.
  • Silva S, Henriques M, Hayes A, Oliveira R, Azeredo J, Williams DW. 2011. Candida glabrata and Candida albicans co-infection of an in vitro oral epithelium. J Oral Pathol Med. 40(5):421–427.
  • Simian M, Bissell MJ. 2017. Organoids: a historical perspective of thinking in three dimensions. J Cell Biol. 216(1):31–40.
  • Soares DG, Bordini EAF, Swanson WB, de Souza Costa CA, Bottino MC. 2021. Platform technologies for regenerative endodontics from multifunctional biomaterials to tooth-on-a-chip strategies. Clin Oral Invest. 25(8):4749–4779.
  • Sobue T, Bertolini M, Thompson A, Peterson DE, Diaz PI, Dongari-Bagtzoglou A. 2018. Chemotherapy-induced oral mucositis and associated infections in a novel organotypic model. Mol Oral Microbiol. 33(3):212–223.
  • Song Y, Uchida H, Sharipol A, Piraino L, Mereness JA, Ingalls MH, Rebhahn J, Newlands SD, DeLouise LA, Ovitt CE, et al. 2021. Development of a functional salivary gland tissue chip with potential for high-content drug screening. Commun Biol. 4(1):361.
  • Souza JGS, Bertolini M, Thompson A, Barão VAR, Dongari-Bagtzoglou A. 2020. Biofilm interactions of candida albicans and mitis group streptococci in a titanium-mucosal interface model. Appl Environ Microbiol. 86(9):e02950-19.
  • Souza JGS, Bertolini M, Thompson A, Mansfield JM, Grassmann AA, Maas K, Caimano MJ, Barao VAR, Vickerman MM, Dongari-Bagtzoglou A, et al. 2020. Role of glucosyltransferase R in biofilm interactions between Streptococcus oralis and Candida albicans. Isme J. 14(5):1207–1222.
  • Stathopoulou PG, Benakanakere MR, Galicia JC, Kinane DF. 2010. Epithelial cell pro-inflammatory cytokine response differs across dental plaque bacterial species. J Clin Periodontol. 37(1):24–29.
  • Swidergall M, Solis NV, Millet N, Huang MY, Lin J, Phan QT, Lazarus MD, Wang Z, Yeaman MR, Mitchell AP, et al. 2021. Activation of EphA2-EGFR signaling in oral epithelial cells by Candida albicans virulence factors. PLoS Pathog. 17(1):e1009221.
  • Syrjänen S, Mikola H, Nykänen M, Hukkanen V. 1996. In vitro establishment of lytic and nonproductive infection by herpes simplex virus type 1 in three-dimensional keratinocyte culture. J Virol. 70(9):6524–6528.
  • Tabatabaei F, Moharamzadeh K, Tayebi L. 2020. Three-dimensional in vitro oral mucosa models of fungal and bacterial infections. Tissue Eng Part B Rev. 26(5):443–460.
  • Takahashi N, Sulijaya B, Yamada-Hara M, Tsuzuno T, Tabeta K, Yamazaki K. 2019. Gingival epithelial barrier: regulation by beneficial and harmful microbes. Tissue Barriers. 7(3):e1651158.
  • Tardif F, Goulet JP, Zakrazewski A, Chauvin P, Rouabhia M. 2004. Involvement of interleukin-18 in the inflammatory response against oropharyngeal candidiasis. Med Sci Monit. 10(8):BR239–49.
  • Thurnheer T, Belibasakis GN, Bostanci N. 2014. Colonisation of gingival epithelia by subgingival biofilms in vitro: role of “red complex” bacteria. Arch Oral Biol. 59(9):977–986.
  • Toma AI, Fuller JM, Willett NJ, Goudy SL. 2021. Oral wound healing models and emerging regenerative therapies. Transl Res. 236:17–34.
  • Turunen A, Hukkanen V, Nygårdas M, Kulmala J, Syrjänen S. 2014. The combined effects of irradiation and herpes simplex virus type 1 infection on an immortal gingival cell line. Virol J. 11:125.
  • Vahav I, van den Broek LJ, Thon M, Monsuur HN, Spiekstra SW, Atac B, Scheper RJ, Lauster R, Lindner G, Marx U, et al. 2020. Reconstructed human skin shows epidermal invagination towards integrated neopapillae indicating early hair follicle formation in vitro. J Tissue Eng Regen Med. 14(6):761–773.
  • Valm AM. 2019. The structure of dental plaque microbial communities in the transition from health to dental caries and periodontal disease. J Mol Biol. 431(16):2957–2969.
  • Villar CC, Kashleva H, Mitchell AP, Dongari-Bagtzoglou A. 2005. Invasive phenotype of Candida albicans affects the host proinflammatory response to infection. Infect Immun. 73(8):4588–4595.
  • Wayakanon K, Thornhill MH, Douglas CWI, Lewis AL, Warren NJ, Pinnock A, Armes SP, Battaglia G, Murdoch C. 2013. Polymersome-mediated intracellular delivery of antibiotics to treat Porphyromonas gingivalis-infected oral epithelial cells. FASEB J. 27(11):4455–4465.
  • Whiley RA, Cruchley AT, Gore C, Hagi-Pavli E. 2012. Candida albicans strain-dependent modulation of pro-inflammatory cytokine release by in vitro oral and vaginal mucosal models. Cytokine. 57(1):89–97.
  • Xu H, Sobue T, Bertolini M, Thompson A, Dongari-Bagtzoglou A. 2016. Streptococcus oralis and Candida albicans synergistically activate mu-calpain to degrade E-cadherin from oral epithelial junctions. J Infect Dis. 214(6):925–934.
  • Yadev NP, Murdoch C, Saville SP, Thornhill MH. 2011. Evaluation of tissue engineered models of the oral mucosa to investigate oral candidiasis. Microb Pathog. 50(6):278–285.
  • Zenobia C, Luo XL, Hashim A, Abe T, Jin L, Chang Y, Jin ZC, Sun JX, Hajishengallis G, Curtis MA, et al. 2013. Commensal bacteria-dependent select expression of CXCL2 contributes to periodontal tissue homeostasis. Cell Microbiol. 15(8):1419–1426.
  • Zhang Y, Shang L, Roffel S, Krom BP, Gibbs S, Deng D. 2022. Stable reconstructed human gingiva-microbe interaction model: differential response to commensals and pathogens. Front Cell Infect Microbiol. 12:991128.
  • Zheng S, Yu S, Fan X, Zhang Y, Sun Y, Lin L, Wang H, Pan Y, Li C. 2021. Porphyromonas gingivalis survival skills: immune evasion. J Periodontal Res. 56(6):1007–1018.