225
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Polyamine as a microenvironment factor in resistance to antibiotics

& ORCID Icon
Received 27 Jan 2023, Accepted 05 Jun 2023, Published online: 20 Jun 2023

References

  • Akhova AV, Tkachenko AG. 2020. Multifaceted role of polyamines in bacterial adaptation to antibiotic-mediated oxidative stress. Korean J Microbiol. 56(2):103–110. doi: 10.7845/kjm.2020.0013.
  • Baumgärtner B, Möller H, Neumann T, Volkmer D. 2017. Preparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process. Beilstein J Nanotechnol. 8:1145–1155. doi: 10.3762/bjnano.8.116.
  • Beenukumar RR, Gödderz D, Palanimurugan R, Dohmen RJ. 2015. Polyamines directly promote antizyme-mediated degradation of ornithine decarboxylase by the proteasome. Microb Cell. 2(6):197–207. doi: 10.15698/mic2015.06.206.
  • Bhagwat A, Haldar T, Saroj S. 2022. Alternatives to combat AMR: hunt for novel antimicrobials. In: Dasharath S, editor. Antimicrobial resistance: collaborative measures of control. 1st ed. Boca Raton, FL: CRC Press; p. 55–84.
  • Botelho J, Grosso F, Peixe L. 2019. Antibiotic resistance in Pseudomonas aeruginosa - mechanisms, epidemiology and evolution. Drug Resist Updat. 44:100640. doi: 10.1016/j.drup.2019.07.002.
  • Chatterjee M, Anju CP, Biswas L, Anil Kumar V, Gopi Mohan C, Biswas R. 2016. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int J Med Microbiol. 306(1):48–58. doi: 10.1016/j.ijmm.2015.11.004.
  • Dela Vega AL, Delcour AH. 1996. Polyamines decrease Escherichia coli outer membrane permeability. J Bacteriol. 178(13):3715–3721. doi: 10.1128/jb.178.13.3715-3721.1996.
  • El-Halfawy OM, Naguib MM, Valvano MA. 2017. Novel antibiotic combinations proposed for treatment of Burkholderia cepacia complex infections. Antimicrob Resist Infect Control. 6:120. doi: 10.1186/s13756-017-0279-8.
  • El-Halfawy OM, Valvano MA. 2013. Chemical communication of antibiotic resistance by a highly resistant subpopulation of bacterial cells. PLoS One. 8(7):e68874. doi: 10.1371/journal.pone.0068874.
  • El-Halfawy OM, Valvano MA. 2014. Putrescine reduces antibiotic-induced oxidative stress as a mechanism of modulation of antibiotic resistance in Burkholderia cenocepacia. Antimicrob Agents Chemother. 58(7):4162–4171.
  • Gevrekci AÖ. 2017. The roles of polyamines in microorganisms. World J Microbiol Biotechnol. 33(11):204. doi: 10.1007/s11274-017-2370-y.
  • Goytia M, Shafer WM. 2010. Polyamines can increase resistance of Neisseria gonorrhoeae to mediators of the innate human host defense. Infect Immun. 78(7):3187–3195. doi: 10.1128/IAI.01301-09.
  • Hasan CM, Pottenger S, Green AE, Cox AA, White JS, Jones T, Winstanley C, Kadioglu A, Wright MH, Neill DR, et al. 2022. Pseudomonas aeruginosa utilises the host-derived polyamine spermidine to facilitate antimicrobial tolerance. JCI Insight. 7(22):e158879. doi: 10.1172/jci.insight.158879.
  • Igarashi K, Kashiwagi K. 2000. Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun. 271(3):559–564. doi: 10.1006/bbrc.2000.2601.
  • Igarashi K, Kashiwagi K. 2010. Characteristics of cellular polyamine transport in prokaryotes and eukaryotes. Plant Physiol Biochem. 48(7):506–512. doi: 10.1016/j.plaphy.2010.01.017.
  • Jian H-J, Wu R-S, Lin T-Y, Li Y-J, Lin H-J, Harroun SG, Lai J-Y, Huang C-C. 2017. Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis. ACS Nano. 11(7):6703–6716. doi: 10.1021/acsnano.7b01023.
  • Kara DA, Borzova VA, Markossian KA, Kleymenov SY, Kurganov BI. 2017. A change in the pathway of dithiothreitol-induced aggregation of bovine serum albumin in the presence of polyamines and arginine. Int J Biol Macromol. 104(Pt A):889–899. doi: 10.1016/j.ijbiomac.2017.06.092.
  • Kwon DH, Lu C-D. 2006. Polyamines induce resistance to cationic peptide, aminoglycoside, and quinolone antibiotics in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother. 50(5):1615–1622. doi: 10.1128/AAC.50.5.1615-1622.2006.
  • Kwon D-H, Lu C-D. 2007. Polyamine effects on antibiotic susceptibility in bacteria. Antimicrob Agents Chemother. 51(6):2070–2077. doi: 10.1128/AAC.01472-06.
  • Lenis YY, Elmetwally MA, Maldonado-Estrada JG, Bazer FW. 2017. Physiological importance of polyamines. Zygote. 25(3):244–255. doi: 10.1017/S0967199417000120.
  • Li L, Li J, Rao JN, Li M, Bass BL, Wang JY. 1999. Inhibition of polyamine synthesis induces p53 gene expression but not apoptosis. Am J Physiol. 276(4):C946–C954. doi: 10.1152/ajpcell.1999.276.4.C946.
  • Michael AJ. 2016. Polyamines in eukaryotes, bacteria, and archaea. J Biol Chem. 291(29):14896–14903. doi: 10.1074/jbc.R116.734780.
  • Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, Han C, Bisignano C, Rao P, Wool E, et al. 2022. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 399(10325):629–655. doi: 10.1016/S0140-6736(21)02724-0.
  • Nesterova LY, Tsyganov IV, Tkachenko AG. 2020. Biogenic polyamines influence the antibiotic susceptibility and cell-surface properties of Mycobacterium smegmatis. Appl Biochem Microbiol. 56(4):387–394. doi: 10.1134/S0003683820040110.
  • Ramani D, De Bandt JP, Cynober L. 2014. Aliphatic polyamines in physiology and diseases. Clin Nutr. 33(1):14–22. doi: 10.1016/j.clnu.2013.09.019.
  • Reygaert WC. 2018. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 4(3):482–501. doi: 10.3934/microbiol.2018.3.482.
  • Samartzidou H, Mehrazin M, Xu Z, Benedik MJ, Delcour AH. 2003. Cadaverine inhibition of porin plays a role in cell survival at acidic pH. J Bacteriol. 185(1):13–19. doi: 10.1128/JB.185.1.13-19.2003.
  • Sarathy JP, Lee E, Dartois V. 2013. Polyamines inhibit porin-mediated fluoroquinolone uptake in mycobacteria. PLoS One. 8(6):e65806. doi: 10.1371/journal.pone.0065806.
  • Shah P, Nanduri B, Swiatlo E, Ma Y, Pendarvis K. 2011. Polyamine biosynthesis and transport mechanisms are crucial for fitness and pathogenesis of Streptococcus pneumoniae. Microbiology. 157(Pt 2):504–515. doi: 10.1099/mic.0.042564-0.
  • Simoni E, Caporaso R, Bergamini C, Fiori J, Fato R, Miszta P, Filipek S, Caraci F, Giuffrida ML, Andrisano V, et al. 2016. Polyamine conjugation as a promising strategy to target amyloid aggregation in the framework of Alzheimer’s disease. ACS Med Chem Lett. 7(12):1145–1150. doi: 10.1021/acsmedchemlett.6b00339.
  • Sun J, Deng Z, Yan A. 2014. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun. 453(2):254–267. doi: 10.1016/j.bbrc.2014.05.090.
  • Tenover FC. 2006. Mechanisms of antimicrobial resistance in bacteria. Am J Infect Control. 34(5 Suppl 1):S3–S10; discussion S64–S73. doi: 10.1016/j.ajic.2006.05.219.
  • Thomas T, Thomas TJ. 2001. Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci. 58(2):244–258. doi: 10.1007/PL00000852.
  • Wan L, Yao X, Faiola F, Liu B, Zhang T, Tabata Y, Mizuguchi H, Nakagawa S, Gao J-Q, Zhao RC, et al. 2016. Coating with spermine-pullulan polymer enhances adenoviral transduction of mesenchymal stem cells. Int J Nanomed. 11:6763–6769. doi: 10.2147/IJN.S109897.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.