222
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Are anaerobic fungi crucial hidden players of microbiomes in anoxic environment?

&
Received 31 Dec 2021, Accepted 25 Nov 2022, Published online: 15 Jul 2023

References

  • Barr DJS. 1980. An outline for the classification of the Chytridiales, and for a new order, the Spizellomycetales. Can J Bot. 58(22):2380–2394. doi: 10.1139/b80-276.
  • Barr DJS. 1988. How modern systematics relates to the rumen fungi. Biosystems. 21(3-4):351–356. doi: 10.1016/0303-2647(88)90032-9.
  • Barr DJS, Kudo H, Jakober KD, Cheng K-J. 1989. Morphology and development of rumen fungi Neocallimastix sp., Piromyces communis, and Orpinomyces bovis gen. nov., sp. nov. Can J Bot. 67(9):2815–2824. doi: 10.1139/b89-361.
  • Bhat MK, Bhat S. 1997. Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv. 15(3-4):583–620. doi: 10.1016/s0734-9750(97)00006-2.
  • Bengtson S, Ivarsson M, Astolfo A, Belivanova V, Broman C, Marone F, Stampanoni M. 2014. Deep-biosphere consortium of fungi and prokaryotes in Eocene subseafloor basalts. Geobiol. 12(6):489–496. doi: 10.1111/gbi.12100.
  • Bengtson S, Rasmussen B, Ivarsson M, Muhling J, Broman C, Marone F, Stampanoni M, Bekker A. 2017. Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt. Nature Ecol Evol. 1:0141.
  • Biddle JF, House CH, Brenchley JE. 2005. Microbial stratification in deeply buried marine sediment reflects changes in sulfate/methane profiles. Geobiol. 3(4):287–295. doi: 10.1111/j.1472-4669.2006.00062.x.
  • Borneman WS, Akin DE, Ljungdahl LG. 1989. Fermentation products and plant cell wall-degrading enzymes produced by monocentric and polycentric anaerobic ruminal fungi. Appl Environ Microbiol. 55(5):1066–1073. doi: 10.1128/aem.55.5.1066-1073.1989.
  • Breznak JA, Switzer JM. 1986. Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol. 52(4):623–630. doi: 10.1128/aem.52.4.623-630.1986.
  • Caldwell DR, Bryant MP. 1966. Medium without rumen fluid for non-selective enumeration and isolation of rumen bacteria. Appl Microbiol. 14(5):794–801. doi: 10.1128/am.14.5.794-801.1966.
  • Chaudhry AS. 2000. Microscopic studies of structure and ruminal fungal colonization in sheep of wheat straw treated with different alkalis. Anaerobe. 6(3):155–161. doi: 10.1006/anae.2000.0335.
  • Chen HZ, Li XL, Blum DL, Ximenes EA, Ljungdahl LG. 2003. CelF of Orpinomyces PC-2 has an intron and encode a cellulase (CelF) containing a carbohydrate-binding module. Appl Biochem Biotech. 105:775–785.
  • Ciobanu M-C, Burgaud G, Dufresne A, Breuker A, Rédou V, Ben Maamar S, Gaboyer F, Vandenabeele-Trambouze O, Lipp JS, Schippers A, et al. 2014. Microorganisms persist at record depths in the subseafloor of the Canterbury Basin. Isme J. 8(7):1370–1380. doi: 10.1038/ismej.2013.250.
  • Coates JD, Councell T, Ellis DJ, Lovley DR. 1998. Carbohydrate oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism. Anaerobe. 4(6):277–282. doi: 10.1006/anae.1998.0172.
  • Damare S, Singh P. 2010. A review on deep-sea fungi: occurrence, diversity and adaptations. Botanica Marina. 53(6):479–492. doi: 10.1515/bot.2010.076.
  • Davidson EA, van der Giezen M, Horner DS, Embley TM, Howe CJ. 2002. An [Fe] hydrogenase from the anaerobic hydrogenosome-containing fungus Neocallimastix frontalis L2. Gene. 296(1-2):45–52. doi: 10.1016/s0378-1119(02)00873-9.
  • Deacon JW. 1984. An introduction to modern mycology. Basic microbiology Vol. 7. Wilkinson JF, editor. Oxford: Blackwell Scientific Publications; p. 239.
  • DeFlaun MF, Oppenheimer SR, Streger S, Condee CW, Fletcher M. 1999. Alterations in adhesion, transport, and membrane characteristics in an adhesion-deficient pseudomonad. Appl Environ Microbiol. 65(2):759–765. doi: 10.1128/AEM.65.2.759-765.1999.
  • Drake H, Ivarsson M, Bengtson S, Heim C, Siljeström S, Whitehouse MJ, Broman C, Belivanova V, Åström ME. 2017. Anaerobic consortia of fungi and sulfate-reducing bacteria in deep granite fractures. Nat Commun. 8(1):55. doi: 10.1038/s41467-017-00094-6.
  • Fliegerova K, Hodrova B, Voigt K. 2004. Classical and molecular approaches as a powerful tool for the characterization of rumen polycentric fungi. Folia Microbiol. 49(2):157–164. doi: 10.1007/BF02931392.
  • Flint HJ. 1997. The rumen microbial ecosystem – some recent developments. Trends Microbiol. 5(12):483–488. doi: 10.1016/S0966-842X(97)01159-1.
  • Freelove AC, Bolam DN, White P, Hazlewood GP, Gilbert HJ. 2001. A novel carbohydrate-binding protein is a component of the plant cell wall-degrading complex of Piromyces equi. J Biol Chem. 276(46):43010–43017. doi: 10.1074/jbc.M107143200.
  • Fritscher J, Hoque E. 2003. Mikrobiologische Aspekte der Untersuchungen an Biofilmen der kalten sulfidischen Quellen in Bayern. In: Trimborn P, Klotz D, editor(s). Jahresbericht 2002Institut für Hydrologie. GSF – Forschungszentrum für Umwelt und Gesundheit; p. 121–123, ISSN 0942-6809.
  • Fujino Y, Ogata K, Nagamine T, Ushida K. 1998. Cloning, sequencing, and expression of an endoglucanase gene from the rumen anaerobic fungus Neocallimastix frontalis MCH3. Biosci Biotechnol Biochem. 62(9):1795–1798. doi: 10.1271/bbb.62.1795.
  • Gerbi C, Bata J, Breton A, Prensier G. 1996. Polysaccharide hydrolase production by the rumen fungus Caecomyces communis. Res Microbiol. 147(5):363–370. doi: 10.1016/0923-2508(96)84711-5.
  • Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N. 2015. 50-plus years of fungal viruses. Virology. 479-480:356–368. doi: 10.1016/j.virol.2015.02.034.
  • Gordon GLR, Phillips MW. 1998. The role of anaerobic gut fungi in ruminants. Nutr Res Rev. 11(1):133–168. doi: 10.1079/NRR19980009.
  • Harfoot CG, Hazlewood GP. 1988. Lipid metabolism in the rumen. In: Hobson PN, editor. The rumen microbial ecosystem. London: Elsevier Applied Science; p. 285–322.
  • Harhangi HR, Freelove ACJ, Ubhayasekera W, van Dinther M, Steenbakkers PJM, Akhmanova A, van der Drift C, Jetten MSM, Mowbray SL, Gilbert HJ, et al. 2003. Cel6A, a major exoglucanase from the cellulosome of the anaerobic fungi Piromyces sp E2 and Piromyces equi. Biochim Biophys Acta. 1628(1):30–39. doi: 10.1016/s0167-4781(03)00112-x.
  • Harhangi HR, Steenbakkers PJM, Akhmanova A, Jetten MSM, van der Drift C, Op den Camp HJM. 2002. A highly expressed family 1 beta-glucosidase with transglycosylation capacity from the anaerobic fungus Piromyces sp E2. Biochim Biophys Acta. 1574(3):293–303. doi: 10.1016/s0167-4781(01)00380-3.
  • Hausner G, Inglis GD, Yanke LJ, Kawchuk LM, McAllister TA. 2000. Analysis of restriction fragment length polymorphisms in the ribosomal DNA of a selection of anaerobic chytrids. Can J Bot. 78(7):917–927. doi: 10.1139/b00-067.
  • Heinrichs G, Hoque E, Wolf M, Stichler W. 2000. Hydrogeologische und biologische Besonderheiten der Schwefelquelle von Irnsing bei Neustadt a. d. Donau. Geol Bl Nordost-Bayern Angrenz Geb. 50:1–16.
  • Hess M, Paul SS, Puniya AK, van der Giezen M, Shaw C, Edwards JE, Fliegerová K. 2020. Anaerobic fungi: past, present, and future. Front Microbiol. 11:584893. doi: 10.3389/fmicb.2020.584893.
  • Ho YW, Bauchop T. 1991. Morphology of three polycentric rumen fungi and description of a procedure for the induction of zoosporogenesis and release of zoospores in cultures. J Gen Microbiol. 137(1):213–217. doi: 10.1099/00221287-137-1-213.
  • Hodrova B, Kopecny J, Kas J. 1998. Cellulolytic enzymes of rumen anaerobic fungi Orpinomyces joyonii and Caecomyces communis. Res Microbiol. 149(6):417–427. doi: 10.1016/S0923-2508(98)80324-0.
  • Holdenrieder O. 1982. Untersuchungen zur biologischen Bekämpfung von Heterobasidion annosum (Fr.) Bref. (Fomes annosus P. Karst.) an Fichte (Picea abies H. Karst.) mit antagonistischen Pilzen [PhD thesis]. Munich: Ludwig-Maximilians-University,
  • Hoque E. 1982. Biochemical aspects of stress physiology of plants and some considerations of defense mechanisms in conifers. Eur J Forest Pathol. 12(4-5):280–296. doi: 10.1111/j.1439-0329.1982.tb01480.x.
  • Hoque E. 1984a. Norway spruce die-back: isolation, biological activity, measurement of concentration of p-hydroxy acetophenone and its O-glucoside (Picein) by gas chromatography. Forest Pathol. 14(6):377–382. doi: 10.1111/j.1439-0329.1984.tb00188.x.
  • Hoque E. 1984b. Spruce die-back: isolation of p-hydroxy acetophenone from diseased shoots of Picea abies. Phytochem. 23(4):923–925. doi: 10.1016/S0031-9422(00)85068-2.
  • Hoque E. 1985. Norway spruce die-back: occurrence, isolation and biological activity of p-hydroxy acetophenone and p-hydroxy acetophenone-O-glucoside and their possible roles during stress phenomena. Forest Pathol. 15(3):129–145. doi: 10.1111/j.1439-0329.1985.tb00877.x.
  • Hoque E. 1986. High-performance liquid chromatographic analysis of p-hydroxy acetophenone and p-hydroxy acetophenone-ß-D-glucopyranoside, two major phenolic compounds in Norway spruce. J Chromatogr. 360:452–458. doi: 10.1016/S0021-9673(00)91697-2.
  • Hoque E. 1988. Isocratic reversed-phase high-performance liquid chromatographic analysis of pigments in Norway spruce. J Chromatogr. 448:417–423. doi: 10.1016/S0021-9673(01)84605-7.
  • Hoque E. 1989. Effects of p-hydroxy acetophenone and its glucoside on the enzymic oxidation of indole-3-acetic acid. Agric Biol Chem. 53(1):239–240. doi: 10.1080/00021369.1989.10869252.
  • Hoque E. 1990. Biochemie und Physiologie erkrankter Fichten: Streß, Hormone, Pathogene. Landsberg am Lech: Ecomed Verlag. ISBN 3-609-65840-1.
  • Hoque E. 1998. Beiträge zu Wirkungsgefüge und Systemantwort der Pflanzen und Pilze auf Stress [Habilitation thesis 1998, TU Dresden]. Aachen: Shaker Verlag, 1999, ISBN 3-8265-6793-5.
  • Hoque E. 2003 Jun 05. Verfahren zum Abbau von Xenobiotika durch Pilzarten mit Monooxygenase-/Dioxygenase-Aktiviät in Gegenwart von Pilzen mit Glutathion-S-Transferase-Aktivität. German Patent DE10125365C2.
  • Hoque E, Fritscher J. 2016. A new mercury accumulating Mucor hiemalis strain from cold sulfidic spring water of Marching. Microbiologyopen. 5(5):763–781. doi: 10.1002/mbo3.368.
  • Hoque E, Fritscher J. 2017. Ecology, adaptation and function of methane-sulfidic spring water biofilm microorganisms, including a strain of anaerobic fungus Mucor hiemalis. MicrobiologyOpen. 6(4):e483. doi: 10.1002/mbo3.483.
  • Hoque E, Fritscher J. 2019. Multimetal bioremediation and biomining by a combination of new aquatic strains of Mucor hiemalis. Sci Rep. 9(1):10318. doi: 10.1038/s41598-019-46560-7.
  • Hoque E, Klotz D. 2003. 4.2 Holzbiosonden zum selektiven in situ Nachweis der schadstoffabbauenden Pilze in einem Lysimeter. In: Trimborn P, Klotz D, editors. Jahresbericht 2002 – Institut für Hydrologie. Neuherberg: GSF-Forschungszentrum für Umwelt und Gesundheit GmbH; p. 64–66, ISSN 0942-6809.
  • Hoque E, Beisker W, Klotz D, Teichmann G, Lang H, Wolf M. 2001. Transport von Phanerochaete chrysosporium- und Mucor hiemalis f. irnsingii-Sporen durch wassergesättigten Quarzsand. In: Trimborn P, Klotz D, editors. Jahresbericht 2000 – Institut für Hydrologie. Neuherberg: GSF - Forschungszentrum; p. 26–37. ISSN 0941-6809.
  • Hoque E, Klotz D, Wolf M, Beisker W. 2003 Jul 07. Verfahren zur Einbringung von Pilzsporen in Sedimentschichten. German Patent 10134833 C2.
  • Hoque E, Pflugmacher S, Fritscher J, Wolf M. 2007. Induction of glutathione S-transferase in biofilms and germinating spores of Mucor hiemalis strain EH5 from cold sulfidic spring waters. Appl Environ Microbiol. 73(8):2697–2707. doi: 10.1128/AEM.02786-06.
  • Hungate RE. 1969. Chapter IV A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbon DW, editors. Methods in microbiology .Vol. 3B. Amsterdam, Netherlands: Elsevier; p. 117–132. doi: 10.1016/S0580-9517(08)70503-8.
  • Iiyama K, Lam TBT, Stone BA. 1994. Covalent cross-links in the cell wall. Plant Physiol. 104(2):315–320. doi: 10.1104/pp.104.2.315.
  • Ivarsson M, Bengtson S, Neubeck A. 2016. The igneous oceanic crust – earth’s largest fungal habitats? Fungal Ecol. 20:249–255. doi: 10.1016/j.funeco.2016.01.009.
  • Ivarsson M, Bengtson S, Skogby H, Lazor P, Broman C, Belivanova V, Marone F. 2015. A fungal-prokaryotic consortium at the basalt-zeolite interface in subseafloor igneous crust. PLoS One. 10(10):e014016. doi: 10.1371/journal.pone.0140106.
  • Ivarsson M, Schnürer A, Bengtson S, Neubeck A. 2016. Anaerobic fungi: a potential source of biological H2 in the oceanic crust. Front Microbiol. 7:674. doi: 10.3389/fmicb.2016.00674.
  • Joblin KN. 1981. Isolation, enumeration and maintenance of rumen anaerobic fungi in roll tubes. Appl Environ Microbiol. 42(6):1119–1122. doi: 10.1128/aem.42.6.1119-1122.1981.
  • Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG. 1978. Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol. 117(3):277–285. doi: 10.1007/BF00738547.
  • Kopecny J, Hodrova B. 1995. Pectinolytic enzymes of anaerobic fungi. Lett Appl Microbiol. 20(5):312–316. doi: 10.1111/j.1472-765X.1995.tb00453.x.
  • Kondo H, Chiba S, Toyoda K, Suzuki N. 2013. Evidence for negative-strand RNA virus infection in fungi. Virology. 435(2):201–209. doi: 10.1016/j.virol.2012.10.002.
  • Krauss G, Sridhar KR, Jung K, Wennrich R, Ehrman J, Bärlocher F. 2003. Aquatic hyphomycetes in polluted ground water habitats of Central Germany. Microbial Ecol. 45:329–339.
  • Lee MRF, Merry RJ, Davies DR, Moorby JM, Humphreys MO, Theodorou MK, MacRae JC, Scollan ND. 2003. Effect of increasing availability of water-soluble carbohydrates on in vitro rumen fermentation. Anim Feed Sci Tech. 104(1-4):59–70. doi: 10.1016/S0377-8401(02)00319-X.
  • Lee SS, Shin KJ, Kim WY, Ha JK, Han IK. 1999. The rumen ecosystem: as a fountain source of noble enzymes – review. Asian Australas J Anim Sci. 12(6):988–1001. doi: 10.5713/ajas.1999.988.
  • Lemke PA, Nash CH. 1974. Fungal viruses. Bacteriol Rev. 38(1):29–56. doi: 10.1128/br.38.1.29-56.1974.
  • Lenhart K, Bunge M, Ratering S, Neu TR, Schüttmann I, Greule M, Kammann C, Schnell S, Müller C, Zorn H, et al. 2012. Evidence for methane production by saprotrophic fungi. Nat Commun. 3:1046. doi: 10.1038/ncomms2049.
  • Li XL, Chen HZ, Ljungdahl LG. 1997a. Monocentric and polycentric anaerobic fungi produce structurally related cellulases and xylanases. Appl Environ Microbiol. 63(2):628–635. doi: 10.1128/aem.63.2.628-635.1997.
  • Li XL, Chen HZ, Ljungdahl LG. 1997b. Two cellulases, CelA and CelC, from the polycentric anaerobic fungus Orpinomyces strain PC-2 contain N-terminal docking domains for a cellulase-hemicellulase complex. Appl Environ Microbiol. 63(12):4721–4728. doi: 10.1128/aem.63.12.4721-4728.1997.
  • Lowe SE, Theodorou MK, Trinci APJ, Hespell RB. 1985. Growth of anaerobic rumen fungi on defined and semi-defined media lacking rumen fluid. J Gen Microbiol. 131(9):2225–2229. doi: 10.1099/00221287-131-9-2225.
  • Lueders T, Friedrich MW. 2003. Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Appl Environ Microbiol. 69(1):320–326. doi: 10.1128/AEM.69.1.320-326.2003.
  • Lueders T, Manefield M, Friedrich MW. 2004. Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopynic centrifugation gradients. Environ Microbiol. 6(1):73–78. doi: 10.1046/j.1462-2920.2003.00536.x.
  • McCabe BK, Kuek C, Gordon GL, Phillips MW. 2001. Immobilization of monocentric and polycentric types of anaerobic chytrid fungi in Ca-alginate. Enzyme Microb Tech. 29(2-3):144–149. doi: 10.1016/S0141-0229(01)00367-2.
  • Morrison JM, Elshahed MS, Youssef N. 2016. A multifunctional GH39 glycoside hydrolase from the anaerobic gut fungus Orpinomyces sp. Strain C1A. PeerJ. 4:e2289. doi: 10.7717/peerj.2289.
  • Morvan B, Rieu-Lesme F, Fonty G, Gouet P. 1996. In vitro interactions between rumen H2-producing cellulolytic microorganisms and H2-utilizing acetogenic and sulfate-reducing bacteria. Anaerobe. 2(3):175–180. doi: 10.1006/anae.1996.0023.
  • Munn EA. 1994. The ultrastructure of anaerobic fungi. In: Orpin CG, Mountfort DO, editors. The anaerobic fungi. New York (NY): Marcel Dekker; p. 47–105.
  • Nesbitt WE, Doyle RJ, Taylor KG, Staat RH, Arnold RR. 1982. Positive cooperativity in the binding of Streptococcus sanguis to hydroxyapatite. Infect Immun. 35(1):157–165. doi: 10.1128/iai.35.1.157-165.1982.
  • Orsi WD, Biddle JF, Edgcomb V. 2013a. Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. PLoS One. 8(2):e56335. doi: 10.1371/journal.pone.0056335.
  • Orsi WD, Edgcomb VP, Christman GD, Biddle JF. 2013b. Gene expression in the deep biosphere. Nature. 499(7457):205–208. doi: 10.1038/nature12230.
  • Orsi WD, Richards TA, Santoro AE. 2015. Cellular maintenance processes that potentially underpin the survival of subseafloor fungi over geological timescales. Estuarine Coastal Shelf Sci. 164: A1–A9. doi: 10.1016/j.ecss.2015.04.009.
  • Orsi WD, Vuillemin A, Coskun ÖK, Rodriguez P, Oertel Y, Niggemann J, Mohrholz V, Gomez-Saez GV. 2022. Carbon assimilating fungi from surface ocean to subseafloor revealed by coupled phylogenetic and stable isotope analysis. ISME J. 16(5):1245–1261. doi: 10.1038/s41396-021-01169-5.
  • Ortega-Arbulú A-S, Pichler M, Vuillemin A, Orsi WD. 2019. Effects of organic matter and low oxygen on the mycobenthos in a coastal lagoon. Environ Microbiol. 21(1):374–388. doi: 10.1111/1462-2920.14469.
  • Phillips MW, Gordon GLR. 1988. Sugar and polysaccharide fermentation by rumen anaerobic fungi from Australia, Britain and New Zealand. Biosystems. 21(3-4):377–383. doi: 10.1016/0303-2647(88)90036-6.
  • Phillips MW, Gordon GLR. 1989. Growth characteristics on cellobiose of three different anaerobic fungi isolated from the bovine rumen. Appl Environ Microbiol. 55(7):1695–1702. doi: 10.1128/aem.55.7.1695-1702.1989.
  • Qiu X, Selinger B, Yanke L, Cheng K. 2000. Isolation and analysis of two cellulase cDNAs from Orpinomyces joyonii. Gene. 245(1):119–126. doi: 10.1016/s0378-1119(00)00028-7.
  • Rabinovich ML, Melnik MS, Bolobova AV. 2002. Microbial cellulases (review). Appl Biochem Microbiol. 38(4):305–322. doi: 10.1023/A:1016264219885.
  • Saye LMG, Navaratna TA, Chong JPJ, O’Malley MA, Theodorou MK, Reilly M. 2021. The anaerobic fungi: challenges and opportunities for industrial lignocellulosic biofuel production. Microorganisms. 9(4):694. doi: 10.3390/microorganisms9040694.
  • Schumann G, Manz W, Reitner J, Lustrino M. 2004. Ancient fungal life in North Pacific Eocene oceanic crust. Geomicrobiol J. 21(4):241–246. doi: 10.1080/01490450490438748.
  • Schütt P, Blaschke H, Hoque E, Koch W, Lang KJ, Schuck HJ. 1983. Erste Ergebnisse einer botanischen Inventur des „Fichtensterbens“. Forstw Cbl. 102(1):158–166. doi: 10.1007/BF02741848.
  • Schütte UME, Abdo Z, Bent SJ, Shyu C, Williams CJ, Pierson JD, Forney LJ. 2008. Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol. 80(3):365–380. doi: 10.1007/s00253-008-1565-4.
  • Snyder JC, Bolduc B, Young MJ. 2015. 40 years of archaeal virology: expanding viral diversity. Virology. 479-480:369–378. doi: 10.1016/j.virol.2015.03.031.
  • Steenbakkers PJM, Freelove A, Van Cranenbroek B, Sweegers BMC, Harhangi HR, Vogels GD, Hazlewood GP, Gilbert HJ, Op den Camp HJM. 2002. The major component of the cellulosomes of anaerobic fungi from the genus Piromyces is a family 48 glycoside hydrolase. DNA Seq. 13(6):313–320. doi: 10.1080/1042517021000024191.
  • Steenbakkers PJM, Harhangi HR, Bosscher MW, van der Hooft MMC, Keltjens JT, van der Drift C, Vogels GD, Op den Camp HJM. 2003. Beta-glucosidase in cellulosome of the anaerobic fungus Piromyces sp strain E2 is a family 3 glycoside hydrolase. Biochem J. 370(Pt 3):963–970. doi: 10.1042/BJ20021767.
  • Steenbakkers PJM, Li XL, Ximenes EA, Arts JG, Chen H, Ljungdahl LG, Op Den Camp HJ. 2001. Noncatalytic docking domains of cellulosomes of anaerobic fungi. J Bacteriol. 183(18):5325–5333. doi: 10.1128/JB.183.18.5325-5333.2001.
  • Steenbakkers PJM, Ubhayasekera W, Goossen HJAM, van Lierop EMHM, van der Drift C, Vogels GD, Mowbray SL, Op den Camp HJM. 2002. An intron-containing glycoside hydrolase family 9 cellulase gene encodes the dominant 90 kDa component of the cellulosome of the anaerobic fungus Piromyces sp strain E2. Biochem J. 365(Pt 1):193–204. doi: 10.1042/BJ20011866.
  • Tesche M. 1978. Gehölze unter Streßbedingungen. Wissenschaftliche Tagung der Sekt. Dresden: Forstwirtschaft.
  • Teunissen MJ, Op den Camp HU. 1993. Anaerobic fungi and their cellulolytic and xylanolytic enzymes. Antonie Van Leeuwenhoek. 63(1):63–76. doi: 10.1007/BF00871733.
  • Tsai CF, Qiu X, Liu JH. 2003. A comparative analysis of two cDNA clones of the cellulase gene family from anaerobic fungus Piromyces rhizinflata. Anaerobe. 9(3):131–140. doi: 10.1016/S1075-9964(03)00087-8.
  • van der Giezen M, Sjollema KA, Artz RR, Alkema W, Prins RA. 1997. Hydrogenosomes in the anaerobic fungus Neocallimastix frontalis have a double membrane but lack an associated organelle genome. FEBS Lett. 408(2):147–150. doi: 10.1016/s0014-5793(97)00409-2.
  • Wang YT, Xue YR, Liu CH. 2015. A brief review of bioactive metabolites derived from deep-sea fungi. Mar Drugs. 13(8):4594–4616. doi: 10.3390/md13084594.
  • Wolin MJ, Miller TL. 1988. Microbe-microbe interactions. In: Hobson PN, editor. The rumen microbial ecosystem. London: Elsevier Applied Science; p. 343–359.
  • Williams V, Fletcher M. 1996. Pseudomonas fluorescens adhesion and transport through porous media are affected by lipopolysaccharide composition. Appl Environ Microbiol. 62(1):100–104. doi: 10.1128/aem.62.1.100-104.1996.
  • Wubah DA, Fuller MS, Akin DE. 1991. Neocallimastix: a comparative morphological study. Can J Bot. 69(4):835–843. doi: 10.1139/b91-109.
  • Wubah DA, Kim DSH. 1996. Chemoattraction of anaerobic ruminal fungi zoospores to selected phenolic acids. Microbiol Res. 151(3):257–262. doi: 10.1016/s0944-5013(96)80022-x.
  • Yanke LJ, Selinger LB, Lynn JR, Cheng K-J. 1996. Comparison of the influence of carbon substrates on the fibrolytic activities of anaerobic rumen fungi. Anaerobe. 2(6):373–378. doi: 10.1006/anae.1996.0047.
  • Ye XY, Ng TB, Cheng KJ. 2001. Purification and characterization of a cellulase from the ruminal fungus Orpinomyces joyonii cloned in Escherichia coli. Int J Biochem Cell Biol. 33(1):87–94. doi: 10.1016/s1357-2725(00)00068-6.
  • Zhang X-y, Tang G-l, Xu X-y, Nong X-h, Qi S-h. 2014. Insights into deep-sea sediment fungal communities from the East Indian Ocean using targeted environmental sequencing combined traditional cultivation. PLoS One. 9(10):e109118. doi: 10.1371/journal.pone.0109118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.