930
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Type IV pili are involved in phenotypes associated with Clostridioides difficile pathogenesis

, , , &
Received 13 Mar 2023, Accepted 05 Jul 2023, Published online: 15 Jul 2023

References

  • Abt MC, McKenney PT, Pamer EG. 2016. Clostridium difficile colitis: pathogenesis and host defence. Nat Rev Microbiol. 14(10):609–620. doi: 10.1038/nrmicro.2016.108.
  • Antunes A, Camiade E, Monot M, Courtois E, Barbut F, Sernova NV, Rodionov DA, Martin-Verstraete I, Dupuy B. 2012. Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile. Nucleic Acids Res. 40(21):10701–10718. doi: 10.1093/nar/gks864.
  • Attridge SR, Wallerstrom G, Qadri F, Svennerholm AM. 2004. Detection of antibodies to toxin-coregulated pili in sera from cholera patients. Infect Immun. 72(3):1824–1827. doi: 10.1128/IAI.72.3.1824-1827.2004.
  • Baban ST, Kuehne SA, Barketi-Klai A, Cartman ST, Kelly ML, Hardie KR, Kansau I, Collignon A, Minton NP. 2013. The role of flagella in Clostridium difficile pathogenesis: comparison between a non-epidemic and an epidemic strain. PLOS One. 8(9):e73026. doi: 10.1371/journal.pone.0073026.
  • Balasingham SV, Collins RF, Assalkhou R, Homberset H, Frye SA, Derrick JP, Tønjum T. 2007. Interactions between the lipoprotein PilP and the secretin PilQ in Neisseria meningitidis. J Bacteriol. 189(15):5716–5727. doi: 10.1128/JB.00060-07.
  • Bordeleau E, Fortier LC, Malouin F, Burrus V. 2011. c-di-GMP turn-over in Clostridium difficile is controlled by a plethora of diguanylate cyclases and phosphodiesterases. PLOS Genet. 7(3):e1002039. doi: 10.1371/journal.pgen.1002039.
  • Bordeleau E, Purcell EB, Lafontaine DA, Fortier LC, Tamayo R, Burrus V. 2015. Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile. J Bacteriol. 197(5):819–832. doi: 10.1128/JB.02340-14.
  • Chandra H, Sharma KK, Tuovinen OH, Sun X, Shukla P. 2021. Pathobionts: mechanisms of survival, expansion, and interaction with host with a focus on Clostridioides difficile. Gut Microbes. 13(1):1979882. doi: 10.1080/19490976.2021.1979882.
  • Chandrasekaran R, Lacy DB. 2017. The role of toxins in Clostridium difficile infection. FEMS Microbiol Rev. 41(6):723–750. doi: 10.1093/femsre/fux048.
  • Davey ME, ‘O’Toole GA. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 64(4):847–867. doi: 10.1128/MMBR.64.4.847-867.2000.
  • Deakin LJ, Clare S, Fagan RP, Dawson LF, Pickard DJ, West MR, Wren BW, Fairweather NF, Dougan G, Lawley TD, et al. 2012. The Clostridium difficile spo0A gene is a persistence and transmission factor. Infect Immun. 80(8):2704–2711. doi: 10.1128/IAI.00147-12.
  • Dingle TC, Mulvey GL, Armstrong GD. 2011. Mutagenic analysis of the Clostridium difficile flagellar proteins, FliC and FliD, and their contribution to virulence in hamsters. Infect Immun. 79(10):4061–4067. doi: 10.1128/IAI.05305-11.
  • Dupuy B, Govind R, Antunes A, Matamouros S. 2008. Clostridium difficile toxin synthesis is negatively regulated by TcdC. J Med Microbiol. 57(Pt 6):685–689. doi: 10.1099/jmm.0.47775-0.
  • Fernandes PJ, Guo Q, Waag DM, Donnenberg MS. 2007. The type IV pilin of Burkholderia mallei is highly immunogenic but fails to protect against lethal aerosol challenge in a murine model. Infect Immun. 75(6):3027–3032. doi: 10.1128/IAI.00150-07.
  • Fletcher JR, Pike CM, Parsons RJ, Rivera AJ, Foley MH, McLaren MR, Montgomery SA, Theriot CM. 2021. Clostridioides difficile exploits toxin-mediated inflammation to alter the host nutritional landscape and exclude competitors from the gut microbiota. Nat Commun. 12(1):462. doi: 10.1038/s41467-020-20746-4.
  • Gerding DN, Johnson S, Rupnik M, Aktories K. 2014. Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut Microbes. 5(1):15–27. doi: 10.4161/gmic.26854.
  • Jenal U, Reinders A, Lori C. 2017. Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol. 15(5):271–284. doi: 10.1038/nrmicro.2016.190.
  • Kevorkian Y, Shirley DJ, Shen A. 2016. Regulation of Clostridium difficile spore germination by the CspA pseudoprotease domain. Biochimie. 122:243–254. doi: 10.1016/j.biochi.2015.07.023.
  • Lebeaux D, Ghigo JM, Beloin C. 2014. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 78(3):510–543. doi: 10.1128/MMBR.00013-14.
  • Maldarelli GA, De Masi L, von Rosenvinge EC, Carter M, Donnenberg MS. 2014. Identification, immunogenicity, and cross-reactivity of type IV pilin and pilin-like proteins from Clostridium difficile. Pathog Dis. 71(3):302–314. doi: 10.1111/2049-632X.12137.
  • Maldarelli GA, Matz H, Gao S, Chen K, Hamza T, Yfantis HG, Feng H, Donnenberg MS. 2016. Pilin vaccination stimulates weak antibody responses and provides no protection in a C57Bl/6 murine model of acute Clostridium difficile infection. J Vaccines Vaccin. 7(3):321. doi: 10.4172/2157-7560.1000321.
  • Maldarelli GA, Piepenbrink KH, Scott AJ, Freiberg JA, Song Y, Achermann Y, Ernst RK, Shirtliff ME, Sundberg EJ, Donnenberg MS, et al. 2016. Type IV pili promote early biofilm formation by Clostridium difficile. Pathog. Dis. 74(6):ftw061. doi: 10.1093/femspd/ftw061.
  • McKee RW, Aleksanyan N, Garrett EM, Tamayo R. 2018. Type IV pili promote Clostridium difficile adherence and persistence in a mouse model of infection. Infect Immun. 86(5):e00943-17. doi: 10.1128/IAI.00943-17.
  • Melville S, Craig L. 2013. Type IV pili in gram-positive bacteria. Microbiol Mol Biol Rev. 77(3):323–341. doi: 10.1128/MMBR.00063-12.
  • Mori N, Takahashi T. 2018. Characteristics and immunological roles of surface layer proteins in Clostridium difficile. Ann Lab Med. 38(3):189–195. doi: 10.3343/alm.2018.38.3.189.
  • Nawrocki KL, Edwards AN, Daou N, Bouillaut L, McBride SM. 2016. CodY-dependent regulation of sporulation in Clostridium difficile. J Bacteriol. 198(15):2113–2130. doi: 10.1128/JB.00220-16.
  • Piepenbrink KH, Maldarelli GA, de la Peña CFM, Mulvey GL, Snyder GA, De Masi L, von Rosenvinge EC, Günther S, Armstrong GD, Donnenberg MS, et al. 2014. Structure of Clostridium difficile PilJ exhibits unprecedented divergence from known type IV pilins. J Biol Chem. 289(7):4334–4345. doi: 10.1074/jbc.M113.534404.
  • Piepenbrink KH, Maldarelli GA, Martinez de la Peña CF, Dingle TC, Mulvey GL, Lee A, von Rosenvinge E, Armstrong GD, Donnenberg MS, Sundberg EJ, et al. 2015. Structural and evolutionary analyses show unique stabilization strategies in the type IV pili of Clostridium difficile. Structure. 23(2):385–396. doi: 10.1016/j.str.2014.11.018.
  • Proft T, Baker EN. 2009. Pili in gram-negative and gram-positive bacteria – structure, assembly and their role in disease. Cell Mol Life Sci. 66(4):613–635. doi: 10.1007/s00018-008-8477-4.
  • Purcell EB. 2022. Second messenger signaling in Clostridioides difficile. Curr Opin Microbiol. 65:138–144. doi: 10.1016/j.mib.2021.11.006.
  • Purcell EB, McKee RW, Bordeleau E, Burrus V, Tamayo R. 2016. Regulation of type IV pili contributes to surface behaviors of historical and epidemic strains of Clostridium difficile. J Bacteriol. 198(3):565–577. doi: 10.1128/JB.00816-15.
  • Purcell EB, McKee RW, McBride SM, Waters CM, Tamayo R. 2012. Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile. J Bacteriol. 194(13):3307–3316. doi: 10.1128/JB.00100-12.
  • Rahmoun LA, Azrad M, Peretz A. 2021. Antibiotic resistance and biofilm production capacity in Clostridioides difficile. Front Cell Infect Microbiol. 11:683464. doi: 10.3389/fcimb.2021.683464.
  • Rohlfing AE, Eckenroth BE, Forster ER, Kevorkian Y, Donnelly ML, Benito de la Puebla H, Doublié S, Shen A. 2019. The CspC pseudoprotease regulates germination of Clostridioides difficile spores in response to multiple environmental signals. PLoS Genet. 15(7):e1008224. doi: 10.1371/journal.pgen.1008224.
  • Romling U, Galperin MY, Gomelsky M. 2013. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev. 77(1):1–52. doi: 10.1128/MMBR.00043-12.
  • Ronish LA, Sidner B, Yu Y, Piepenbrink KH. 2022. Recognition of extracellular DNA by type IV pili promotes biofilm formation by Clostridioides difficile. J Biol Chem. 298(10):102449. doi: 10.1016/j.jbc.2022.102449.
  • Sandhu BK, McBride SM. 2018. Clostridioides difficile. Trends Microbiol. 26(12):1049–1050. doi: 10.1016/j.tim.2018.09.004.
  • Stabler RA, He M, Dawson L, Martin M, Valiente E, Corton C, Lawley TD, Sebaihia M, Quail MA, Rose G, et al. 2009. Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol. 10(9):R102. doi: 10.1186/gb-2009-10-9-r102.
  • Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN, Link KH, Breaker RR. 2008. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science. 321(5887):411–413. doi: 10.1126/science.1159519.
  • Tammam S, Sampaleanu LM, Koo J, Manoharan K, Daubaras M, Burrows LL, Howell PL. 2013. PilMNOPQ from the Pseudomonas aeruginosa type IV pilus system form a transenvelope protein interaction network that interacts with PilA. J Bacteriol. 195(10):2126–2135. doi: 10.1128/JB.00032-13.
  • Tremblay YDN, Durand BAR, Hamiot A, Martin-Verstraete I, Oberkampf M, Monot M, Dupuy B. 2021. Metabolic adaption to extracellular pyruvate triggers biofilm formation in Clostridioides difficile. ISME J. 15(12):3623–3635. doi: 10.1038/s41396-021-01042-5.
  • Varga JJ, Nguyen V, O’Brien DK, Rodgers K, Walker RA, Melville SB. 2006. Type IV pili-dependent gliding motility in the gram-positive pathogen Clostridium perfringens and other clostridia. Mol Microbiol. 62(3):680–694. doi: 10.1111/j.1365-2958.2006.05414.x.
  • Zhou Q, Rao F, Chen Z, Cheng Y, Zhang Q, Zhang J, Guan Z, He Y, Yu W, Cui G, et al. 2022. The cwp66 gene affects cell adhesion, stress tolerance, and antibiotic resistance in Clostridioides difficile. Microbiol Spectr. 10(2):e270421. doi: 10.1128/spectrum.02704-21.