308
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Transformation of colitis and colorectal cancer: a tale of gut microbiota

, , , , , , & show all
Received 24 May 2023, Accepted 28 Aug 2023, Published online: 06 Sep 2023

References

  • Abdulla MH, Agarwal D, Singh JK, Traiki TB, Pandey MK, Ahmad R, Srivastava SK. 2021. Association of the microbiome with colorectal cancer development (Review). Int J Oncol. 58(5):17. doi: 10.3892/ijo.2021.5197.
  • Abreu MT. 2010. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol. 10(2):131–144. doi: 10.1038/nri2707.
  • Allegretti JR, Mullish BH, Kelly C, Fischer M. 2019. The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet. 394(10196):420–431. doi: 10.1016/S0140-6736(19)31266-8.
  • Ananthakrishnan AN, Cagan A, Cai T, Gainer VS, Shaw SY, Churchill S, Karlson EW, Murphy SN, Kohane I, Liao KP. 2015. Colonoscopy is associated with a reduced risk for colon cancer and mortality in patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol. 13(2):322–329.e1. doi: 10.1016/j.cgh.2014.07.018.
  • Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB, et al. 2012. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 338(6103):120–123. doi: 10.1126/science.1224820.
  • Baker AM, Cross W, Curtius K, Al Bakir I, Choi CR, Davis HL, Temko D, Biswas S, Martinez P, Williams MJ, et al. 2019. Evolutionary history of human colitis-associated colorectal cancer. Gut. 68(6):985–995. doi: 10.1136/gutjnl-2018-316191.
  • Benninghoff AD, Hintze KJ, Monsanto SP, Rodriguez DM, Hunter AH, Phatak S, Pestka JJ, Wettere AJV, Ward RE. 2020. Consumption of the total Western diet promotes colitis and inflammation-associated colorectal cancer in mice. Nutrients. 12(2):544. doi: 10.3390/nu12020544.
  • Biancone L, Armuzzi A, Scribano ML, Castiglione F, D'Incà R, Orlando A, Papi C, Daperno M, Vecchi M, Riegler G, et al. 2020. Cancer risk in inflammatory bowel disease: a 6-year prospective multicenter nested case-control IG-IBD study. Inflamm Bowel Dis. 26(3):450–459. doi: 10.1093/ibd/izz155.
  • Birch RJ, Burr N, Subramanian V, Tiernan JP, Hull MA, Finan P, Rose A, Rutter M, Valori R, Downing A, et al. 2022. Inflammatory bowel disease-associated colorectal cancer epidemiology and outcomes: an English population-based study. Am J Gastroenterol. 117(11):1858–1870. doi: 10.14309/ajg.0000000000001941.
  • Brennan CA, Garrett WS. 2019. Fusobacterium nucleatum – symbiont, opportunist and oncobacterium. Nat Rev Microbiol. 17(3):156–166. doi: 10.1038/s41579-018-0129-6.
  • Cai J, Sun L, Gonzalez FJ. 2022. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe. 30(3):289–300. doi: 10.1016/j.chom.2022.02.004.
  • Cao Y, Oh J, Xue M, Huh WJ, Wang J, Gonzalez-Hernandez JA, Rice TA, Martin AL, Song D, Crawford JM, et al. 2022. Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science. 378(6618):eabm3233. doi: 10.1126/science.abm3233.
  • Cao Y, Wang Z, Yan Y, Ji L, He J, Xuan B, Shen C, Ma Y, Jiang S, Ma D, et al. 2021. Enterotoxigenic Bacteroides fragilis promotes intestinal inflammation and malignancy by inhibiting exosome-packaged miR-149-3p. Gastroenterology. 161(5):1552–1566.e12. doi: 10.1053/j.gastro.2021.08.003.
  • Casasanta MA, Yoo CC, Udayasuryan B, Sanders BE, Umaña A, Zhang Y, Peng H, Duncan AJ, Wang Y, Li L, et al. 2020. Fusobacterium nucleatum host-cell binding and invasion induces IL-8 and CXCL1 secretion that drives colorectal cancer cell migration. Sci Signal. 13(641):1–30. doi: 10.1126/scisignal.aba9157.
  • Chen J, Pitmon E, Wang K. 2017. Microbiome, inflammation and colorectal cancer. Semin Immunol. 32:43–53. doi: 10.1016/j.smim.2017.09.006.
  • Chen Y, Chen YX. 2021. Microbiota-associated metabolites and related immunoregulation in colorectal cancer. Cancers. 13(16):4054. doi: 10.3390/cancers13164054.
  • Chiang MK, Hsiao PY, Liu YY, Tang HL, Chiou CS, Lu MC, Lai YC. 2021. Two ST11 Klebsiella pneumoniae strains exacerbate colorectal tumorigenesis in a colitis-associated mouse model. Gut Microbes. 13(1):1980348. doi: 10.1080/19490976.2021.1980348.
  • Chung Y, Ryu Y, An BC, Yoon YS, Choi O, Kim TY, Yoon J, Ahn JY, Park HJ, Kwon SK, et al. 2021. A synthetic probiotic engineered for colorectal cancer therapy modulates gut microbiota. Microbiome. 9(1):122. doi: 10.1186/s40168-021-01071-4.
  • Costello SP, Hughes PA, Waters O, Bryant RV, Vincent AD, Blatchford P, Katsikeros R, Makanyanga J, Campaniello MA, Mavrangelos C, et al. 2019. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial. J Am Med Assoc. 321(2):156–164. doi: 10.1001/jama.2018.20046.
  • Denk D, Greten FR. 2022. Inflammation: the incubator of the tumor microenvironment. Trends Cancer. 8(11):901–914. doi: 10.1016/j.trecan.2022.07.002.
  • Eaden JA, Abrams KR, Mayberry JF. 2001. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut. 48(4):526–535. doi: 10.1136/gut.48.4.526.
  • Fernandes MR, Aggarwal P, Costa RGF, Cole AM, Trinchieri G. 2022. Targeting the gut microbiota for cancer therapy. Nat Rev Cancer. 22(12):703–722. doi: 10.1038/s41568-022-00513-x.
  • Fong W, Li Q, Yu J. 2020. Gut microbiota modulation: a novel strategy for prevention and treatment of colorectal cancer. Oncogene. 39(26):4925–4943. doi: 10.1038/s41388-020-1341-1.
  • Garrett WS, Gallini CA, Yatsunenko T, Michaud M, DuBois A, Delaney ML, Punit S, Karlsson M, Bry L, Glickman JN, et al. 2010. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe. 8(3):292–300. doi: 10.1016/j.chom.2010.08.004.
  • Garrett WS. 2019. The gut microbiota and colon cancer. Science. 364(6446):1133–1135. doi: 10.1126/science.aaw2367.
  • Gatsios A, Kim CS, Crawford JM. 2021. Escherichia coli small molecule metabolism at the host-microorganism interface. Nat Chem Biol. 17(10):1016–1026. doi: 10.1038/s41589-021-00807-5.
  • Gomes S, Baltazar F, Silva E, Preto A. 2022. Microbiota-derived short-chain fatty acids: new road in colorectal cancer therapy. Pharmaceutics. 14(11):2359. doi: 10.3390/pharmaceutics14112359.
  • Gomes SD, Oliveira CS, Azevedo-Silva J, Casanova MR, Barreto J, Pereira H, Chaves SR, Rodrigues LR, Casal M, Côrte-Real M, et al. 2020. The role of diet related short-chain fatty acids in colorectal cancer metabolism and survival: prevention and therapeutic implications. Curr Med Chem. 27(24):4087–4108. doi: 10.2174/0929867325666180530102050.
  • Górska A, Przystupski D, Niemczura MJ, Kulbacka J. 2019. Probiotic bacteria: a promising tool in cancer prevention and therapy. Curr Microbiol. 76(8):939–949. doi: 10.1007/s00284-019-01679-8.
  • Gröschel C, Prinz-Wohlgenannt M, Mesteri I, Karuthedom George S, Trawnicek L, Heiden D, Aggarwal A, Tennakoon S, Baumgartner M, Gasche C, et al. 2019. Switching to a healthy diet prevents the detrimental effects of Western diet in a colitis-associated colorectal cancer model. Nutrients. 12(1):45. doi: 10.3390/nu12010045.
  • Guo S, Peng Y, Lou Y, Cao L, Liu J, Lin N, Cai S, Kang Y, Zeng S, Yu L. 2022. Downregulation of the farnesoid X receptor promotes colorectal tumorigenesis by facilitating enterotoxigenic Bacteroides fragilis colonization. Pharmacol Res. 177:106101. doi: 10.1016/j.phrs.2022.106101.
  • Hirsch D, Hardt J, Sauer C, Heselmeyer-Hadded K, Witt SH, Kienle P, Ried T, Gaiser T. 2021. Molecular characterization of ulcerative colitis-associated colorectal carcinomas. Mod Pathol. 34(6):1153–1166. doi: 10.1038/s41379-020-00722-5.
  • Hofer U. 2022. Fusobacterium orchestrates oral biofilms. Nat Rev Microbiol. 20(10):576. doi: 10.1038/s41579-022-00787-w.
  • Hou H, Chen D, Zhang K, Zhang W, Liu T, Wang S, Dai X, Wang B, Zhong W, Cao H. 2022. Gut microbiota-derived short-chain fatty acids and colorectal cancer: ready for clinical translation? Cancer Lett. 526:225–235. doi: 10.1016/j.canlet.2021.11.027.
  • Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, Brown J, Becker CA, Fleshner PR, Dubinsky M, et al. 2012. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science. 336(6086):1314–1317. doi: 10.1126/science.1221789.
  • Irrazabal T, Thakur BK, Kang M, Malaise Y, Streutker C, Wong EOY, Copeland J, Gryfe R, Guttman DS, Navarre WW, et al. 2020. Limiting oxidative DNA damage reduces microbe-induced colitis-associated colorectal cancer. Nat Commun. 11(1):1802. doi: 10.1038/s41467-020-15549-6.
  • Jackson DN, Theiss AL. 2020. Gut bacteria signaling to mitochondria in intestinal inflammation and cancer. Gut Microbes. 11(3):285–304. doi: 10.1080/19490976.2019.1592421.
  • Jia W, Xie G, Jia W. 2018. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 15(2):111–128. doi: 10.1038/nrgastro.2017.119.
  • Kadosh E, Snir-Alkalay I, Venkatachalam A, May S, Lasry A, Elyada E, Zinger A, Shaham M, Vaalani G, Mernberger M, et al. 2020. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. Nature. 586(7827):133–138. doi: 10.1038/s41586-020-2541-0.
  • Karpiński TM, Ożarowski M, Stasiewicz M. 2022. Carcinogenic microbiota and its role in colorectal cancer development. Semin Cancer Biol. 86(Pt 3):420–430. doi: 10.1016/j.semcancer.2022.01.004.
  • Khoruts A, Staley C, Sadowsky MJ. 2021. Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology. Nat Rev Gastroenterol Hepatol. 18(1):67–80. doi: 10.1038/s41575-020-0350-4.
  • Kostic AD, Chun E, Meyerson M, Garrett WS. 2013. Microbes and inflammation in colorectal cancer. Cancer Immunol Res. 1(3):150–157. doi: 10.1158/2326-6066.CIR-13-0101.
  • Lai CY, Sung J, Cheng F, Tang W, Wong SH, Chan PKS, Kamm MA, Sung JJY, Kaplan G, Chan FKL, et al. 2019. Systematic review with meta-analysis: review of donor features, procedures and outcomes in 168 clinical studies of faecal microbiota transplantation. Aliment Pharmacol Ther. 49(4):354–363. doi: 10.1111/apt.15116.
  • Lee MH. 2021. Harness the functions of gut microbiome in tumorigenesis for cancer treatment. Cancer Commun. 41(10):937–967. doi: 10.1002/cac2.12200.
  • Lee SY, Lee DY, Kang JH, Kim JH, Jeong JW, Kim HW, Oh DH, Yoon SH, Hur SJ. 2022. Relationship between gut microbiota and colorectal cancer: probiotics as a potential strategy for prevention. Food Res Int. 156:111327. doi: 10.1016/j.foodres.2022.111327.
  • Li C, Wang Y, Liu D, Wong CC, Coker OO, Zhang X, Liu C, Zhou Y, Liu Y, Kang W, et al. 2022. Squalene epoxidase drives cancer cell proliferation and promotes gut dysbiosis to accelerate colorectal carcinogenesis. Gut. 71(11):2253–2265. doi: 10.1136/gutjnl-2021-325851.
  • Li M, Zhang R, Li J, Li J. 2022. The role of C-type lectin receptor signaling in the intestinal microbiota-inflammation-cancer axis. Front Immunol. 13:894445. doi: 10.3389/fimmu.2022.894445.
  • Liang X, Li H, Tian G, Li S. 2014. Dynamic microbe and molecule networks in a mouse model of colitis-associated colorectal cancer. Sci Rep. 4(1):4985. doi: 10.1038/srep04985.
  • Liu J, Wang Y, Heelan WJ, Chen Y, Li Z, Hu Q. 2022. Mucoadhesive probiotic backpacks with ROS nanoscavengers enhance the bacteriotherapy for inflammatory bowel diseases. Sci Adv. 8(45):eabp8798. doi: 10.1126/sciadv.abp8798.
  • Liu M, Xie W, Wan X, Deng T. 2020. Clostridium butyricum modulates gut microbiota and reduces colitis associated colon cancer in mice. Int Immunopharmacol. 88:106862. doi: 10.1016/j.intimp.2020.106862.
  • Louis P, Hold GL, Flint HJ. 2014. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 12(10):661–672. doi: 10.1038/nrmicro3344.
  • Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. 2012. Diversity, stability and resilience of the human gut microbiota. Nature. 489(7415):220–230. doi: 10.1038/nature11550.
  • Lukas M. 2010. Inflammatory bowel disease as a risk factor for colorectal cancer. Dig Dis. 28(4–5):619–624. doi: 10.1159/000320276.
  • Mäki-Nevala S, Ukwattage S, Olkinuora A, Almusa H, Ahtiainen M, Ristimäki A, Seppälä T, Lepistö A, Mecklin JP, Peltomäki P. 2021. Somatic mutation profiles as molecular classifiers of ulcerative colitis-associated colorectal cancer. Int J Cancer. 148(12):2997–3007. doi: 10.1002/ijc.33492.
  • Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y, Nowak JA, Yang J, Dou R, Masugi Y, Song M, et al. 2016. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. 65(12):1973–1980. doi: 10.1136/gutjnl-2015-310101.
  • Mira-Pascual L, Cabrera-Rubio R, Ocon S, Costales P, Parra A, Suarez A, Moris F, Rodrigo L, Mira A, Collado MC. 2015. Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. J Gastroenterol. 50(2):167–179. doi: 10.1007/s00535-014-0963-x.
  • Nadeem MS, Kumar V, Al-Abbasi FA, Kamal MA, Anwar F. 2020. Risk of colorectal cancer in inflammatory bowel diseases. Semin Cancer Biol. 64:51–60. doi: 10.1016/j.semcancer.2019.05.001.
  • Nagao-Kitamoto H, Kitamoto S, Kamada N. 2022. Inflammatory bowel disease and carcinogenesis. Cancer Metastasis Rev. 41(2):301–316. doi: 10.1007/s10555-022-10028-4.
  • Olén O, Erichsen R, Sachs MC, Pedersen L, Halfvarson J, Askling J, Ekbom A, Sørensen HT, Ludvigsson JF. 2020. Colorectal cancer in ulcerative colitis: a Scandinavian population-based cohort study. Lancet. 395(10218):123–131. doi: 10.1016/S0140-6736(19)32545-0.
  • Park EM, Chelvanambi M, Bhutiani N, Kroemer G, Zitvogel L, Wargo JA. 2022. Targeting the gut and tumor microbiota in cancer. Nat Med. 28(4):690–703. doi: 10.1038/s41591-022-01779-2.
  • Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, van Hoeck A, Wood HM, Nomburg J, Gurjao C, Manders F, Dalmasso G, Stege PB, et al. 2020. Mutational signature in colorectal cancer caused by genotoxic pks + E. coli. Nature. 580(7802):269–273. doi: 10.1038/s41586-020-2080-8.
  • Popov J, Caputi V, Nandeesha N, Rodriguez DA, Pai N. 2021. Microbiota-immune interactions in ulcerative colitis and colitis associated cancer and emerging microbiota-based therapies. Int J Mol Sci. 22(21):11365. doi: 10.3390/ijms222111365.
  • Prorok-Hamon M, Friswell MK, Alswied A, Roberts CL, Song F, Flanagan PK, Knight P, Codling C, Marchesi JR, Winstanley C, et al. 2014. Colonic mucosa-associated diffusely adherent afaC + Escherichia coli expressing lpfA and pks are increased in inflammatory bowel disease and colon cancer. Gut. 63(5):761–770. doi: 10.1136/gutjnl-2013-304739.
  • Quaglio AEV, Grillo TG, De Oliveira ECS, Di Stasi LC, Sassaki LY. 2022. Gut microbiota, inflammatory bowel disease and colorectal cancer. World J Gastroenterol. 28(30):4053–4060. doi: 10.3748/wjg.v28.i30.4053.
  • Ray K. 2021. Yeast probiotics for the treatment of IBD. Nat Rev Gastroenterol Hepatol. 18(9):594. doi: 10.1038/s41575-021-00497-3.
  • Ronan V, Yeasin R, Claud EC. 2021. Childhood development and the microbiome-the intestinal microbiota in maintenance of health and development of disease during childhood development. Gastroenterology. 160(2):495–506. doi: 10.1053/j.gastro.2020.08.065.
  • Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. 2013. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 14(2):195–206. doi: 10.1016/j.chom.2013.07.012.
  • Saeed M, Shoaib A, Kandimalla R, Javed S, Almatroudi A, Gupta R, Aqil F. 2022. Microbe-based therapies for colorectal cancer: advantages and limitations. Semin Cancer Biol. 86(Pt 3):652–665. doi: 10.1016/j.semcancer.2021.05.018.
  • Sakai K, De Velasco MA, Kura Y, Nishio K. 2021. Transcriptome profiling and metagenomic analysis help to elucidate interactions in an inflammation-associated cancer mouse model. Cancers. 13(15):3683. doi: 10.3390/cancers13153683.
  • Schmitt M, Greten FR. 2021. The inflammatory pathogenesis of colorectal cancer. Nat Rev Immunol. 21(10):653–667. doi: 10.1038/s41577-021-00534-x.
  • Shah SC, Itzkowitz SH. 2022. Colorectal cancer in inflam­matory bowel disease: mechanisms and management. Gastroenterology. 162(3):715–730.e3. doi: 10.1053/j.gastro.2021.10.035.
  • Shao TY, Ang WXG, Jiang TT, Huang FS, Andersen H, Kinder JM, Pham G, Burg AR, Ruff B, Gonzalez T, et al. 2019. Commensal Candida albicans positively calibrates systemic Th17 immunological responses. Cell Host Microbe. 25(3):404–417.e6. doi: 10.1016/j.chom.2019.02.004.
  • Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA, Jemal A. 2020. Colorectal cancer statistics, 2020. CA Cancer J Clin. 70(3):145–164. doi: 10.3322/caac.21601.
  • Silveira DSC, Veronez LC, Lopes-Júnior LC, Anatriello E, Brunaldi MO, Pereira-da-Silva G. 2020. Lactobacillus bulgaricus inhibits colitis-associated cancer via a negative regulation of intestinal inflammation in azoxymethane/dextran sodium sulfate model. World J Gastroenterol. 26(43):6782–6794. doi: 10.3748/wjg.v26.i43.6782.
  • Stecher B, Denzler R, Maier L, Bernet F, Sanders MJ, Pickard DJ, Barthel M, Westendorf AM, Krogfelt KA, Walker AW, et al. 2012. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. Proc Natl Acad Sci U S A. 109(4):1269–1274. doi: 10.1073/pnas.1113246109.
  • Strauss J, Kaplan GG, Beck PL, Rioux K, Panaccione R, Devinney R, Lynch T, Allen-Vercoe E. 2011. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm Bowel Dis. 17(9):1971–1978. doi: 10.1002/ibd.21606.
  • Tao R, de Zoeten EF, Ozkaynak E, Chen C, Wang L, Porrett PM, Li B, Turka LA, Olson EN, Greene MI, et al. 2007. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med. 13(11):1299–1307. doi: 10.1038/nm1652.
  • Thiele Orberg E, Fan H, Tam AJ, Dejea CM, Destefano Shields CE, Wu S, Chung L, Finard BB, Wu X, Fathi P, et al. 2017. The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunol. 10(2):421–433. doi: 10.1038/mi.2016.53.
  • Ullman TA, Itzkowitz SH. 2011. Intestinal inflammation and cancer. Gastroenterology. 140(6):1807–1816. doi: 10.1053/j.gastro.2011.01.057.
  • Walter L, Canup B, Pujada A, Bui TA, Arbasi B, Laroui H, Merlin D, Garg P. 2020. Matrix metalloproteinase 9 (MMP9) limits reactive oxygen species (ROS) accumulation and DNA damage in colitis-associated cancer. Cell Death Dis. 11(9):767. doi: 10.1038/s41419-020-02959-z.
  • Wang F, Song M, Lu X, Zhu X, Deng J. 2022. Gut microbes in gastrointestinal cancers. Semin Cancer Biol. 86(Pt 2):967–975. doi: 10.1016/j.semcancer.2021.03.037.
  • Wang T, Fan C, Yao A, Xu X, Zheng G, You Y, Jiang C, Zhao X, Hou Y, Hung MC, et al. 2018. The adaptor protein CARD9 protects against colon cancer by restricting mycobiota-mediated expansion of myeloid-derived suppressor cells. Immunity. 49(3):504–514.e4. doi: 10.1016/j.immuni.2018.08.018.
  • Wang T, Wang P, Ge W, Shi C, Xiao G, Wang X, Lü X. 2021. The probiotic Companilactobacillus crustorum MN047 alleviates colitis-associated tumorigenesis via modulating the intestinal microenvironment. Food Funct. 12(22):11331–11342. doi: 10.1039/d1fo01531a.
  • Wang T, Zhang L, Wang P, Liu Y, Wang G, Shan Y, Yi Y, Zhou Y, Liu B, Wang X, et al. 2022. Lactobacillus coryniformis MXJ32 administration ameliorates azoxymethane/dextran sulfate sodium-induced colitis-associated colorectal cancer via reshaping intestinal microenvironment and alleviating inflammatory response. Eur J Nutr. 61(1):85–99. doi: 10.1007/s00394-021-02627-8.
  • Wang T, Zheng J, Dong S, Ismael M, Shan Y, Wang X, Lü X. 2022. Lacticaseibacillus rhamnosus LS8 ameliorates azoxymethane/dextran sulfate sodium-induced colitis-associated tumorigenesis in mice via regulating gut microbiota and inhibiting inflammation. Probiotics Antimicrob Proteins. 14(5):947–959. doi: 10.1007/s12602-022-09967-9.
  • Wang X, Yang Y, Huycke MM. 2017. Microbiome-driven carcinogenesis in colorectal cancer: models and mechanisms. Free Radic Biol Med. 105:3–15. doi: 10.1016/j.freeradbiomed.2016.10.504.
  • Wang Y, Li H. 2022. Gut microbiota modulation: a tool for the management of colorectal cancer. J Transl Med. 20(1):178. doi: 10.1186/s12967-022-03378-8.
  • Wang Y, Ren Y, Huang Y, Yu X, Yang Y, Wang D, Shi L, Tao K, Wang G, Wu K. 2021. Fungal dysbiosis of the gut microbiota is associated with colorectal cancer in Chinese patients. Am J Transl Res. 13:11287–11301.
  • Wijnands AM, de Jong ME, Lutgens MWMD, Hoentjen F, Elias SG, Oldenburg B. 2021. Prognostic factors for advanced colorectal neoplasia in inflammatory bowel disease: systematic review and meta-analysis. Gastroenterology. 160(5):1584–1598. doi: 10.1053/j.gastro.2020.12.036.
  • Wijnands AM, Mahmoud R, Lutgens MWMD, Oldenburg B. 2021. Surveillance and management of colorectal dysplasia and cancer in inflammatory bowel disease: current practice and future perspectives. Eur J Intern Med. 93:35–41. doi: 10.1016/j.ejim.2021.08.010.
  • Wilson MR, Jiang Y, Villalta PW, Stornetta A, Boudreau PD, Carrá A, Brennan CA, Chun E, Ngo L, Samson LD, et al. 2019. The human gut bacterial genotoxin colibactin alkylates DNA. Science. 363(6428):eaar7785. doi: 10.1126/science.aar7785.
  • Wong NA, Herbst H, Herrmann K, Kirchner T, Krajewski AS, Moorghen M, Niedobitek F, Rooney N, Shepherd NA, Niedobitek G. 2003. Epstein-Barr virus infection in colorectal neoplasms associated with inflammatory bowel disease: detection of the virus in lymphomas but not in adenocarcinomas. J Pathol. 201(2):312–318. doi: 10.1002/path.1442.
  • Wozniak H, Beckmann TS, Fröhlich L, Soccorsi T, Le Terrier C, de Watteville A, Schrenzel J, Heidegger CP. 2022. The central and biodynamic role of gut microbiota in critically ill patients. Crit Care. 26(1):250. doi: 10.1186/s13054-022-04127-5.
  • Wu Y, Jha R, Li A, Liu H, Zhang Z, Zhang C, Zhai Q, Zhang J. 2022. Probiotics (Lactobacillus plantarum HNU082) supplementation relieves ulcerative colitis by affecting intestinal barrier functions, immunity-related gene expression, gut microbiota, and metabolic pathways in mice. Microbiol Spectr. 10(6):e0165122. doi: 10.1128/spectrum.01651-22.
  • Xu J, Xu J, Shi T, Zhang Y, Chen F, Yang C, Guo X, Liu G, Shao D, Leong KW, et al. 2023. Probiotic-inspired nanomedicine restores intestinal homeostasis in colitis by regulating redox balance, immune responses, and the gut microbiome. Adv Mater. 35:e2207890.
  • Yang J, Wei H, Zhou Y, Szeto CH, Li C, Lin Y, Coker OO, Lau HCH, Chan AWH, Sung JJY, et al. 2022. High-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolites. Gastroenterology. 162(1):135–149.e2. doi: 10.1053/j.gastro.2021.08.041.
  • Yang J, Yang H. 2023. Recent development in Se-enriched yeast, lactic acid bacteria and bifidobacteria. Crit Rev Food Sci Nutr. 63(3):411–425. doi: 10.1080/10408398.2021.1948818.
  • Yang J, Yu J. 2018. The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get. Protein Cell. 9(5):474–487. doi: 10.1007/s13238-018-0543-6.
  • Yang Y, Gharaibeh RZ, Newsome RC, Jobin C. 2020. Amending microbiota by targeting intestinal inflammation with TNF blockade attenuates development of colorectal cancer. Nat Cancer. 1(7):723–734. doi: 10.1038/s43018-020-0078-7.
  • Yu LC. 2018. Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease and colorectal cancers: exploring a common ground hypothesis. J Biomed Sci. 25(1):79. doi: 10.1186/s12929-018-0483-8.
  • Zhang H, Zhang M, Chen X, Guo M, Zhou R, Lv H, Li Y, Tan B, Li J, Xu H, et al. 2022. Risk of malignancy in patients with inflammatory bowel disease: a population-based cohort study from China. Int J Cancer. 150(11):1770–1778. doi: 10.1002/ijc.33932.
  • Zhou Q, Shen ZF, Wu BS, Xu CB, He ZQ, Chen T, Shang HT, Xie CF, Huang SY, Chen YG, et al. 2019. Risk of colorectal cancer in ulcerative colitis patients: a systematic review and meta-analysis. Gastroenterol Res Pract. 2019:5363261–5363211. doi: 10.1155/2019/5363261.
  • Zhu W, Miyata N, Winter MG, Arenales A, Hughes ER, Spiga L, Kim J, Sifuentes-Dominguez L, Starokadomskyy P, Gopal P, et al. 2019. Editing of the gut microbiota reduces carcinogenesis in mouse models of colitis-associated colorectal cancer. J Exp Med. 216(10):2378–2393. doi: 10.1084/jem.20181939.
  • Zhu Y, Shi T, Lu X, Xu Z, Qu J, Zhang Z, Shi G, Shen S, Hou Y, Chen Y, et al. 2021. Fungal-induced glycolysis in macrophages promotes colon cancer by enhancing innate lymphoid cell secretion of IL-22. Embo J. 40:e105320.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.