316
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Bile acid and its bidirectional interactions with gut microbiota: a review

, , , , , & show all
Received 27 Jun 2023, Accepted 18 Sep 2023, Published online: 27 Sep 2023

References

  • Bhowmik S, Jones DH, Chiu HP, Park IH, Chiu HJ, Axelrod HL, Farr CL, Tien HJ, Agarwalla S, Lesley SA. 2014. Structural and functional characterization of BaiA, an enzyme involved in secondary bile acid synthesis in human gut microbe. Proteins Struct Funct Bioinf. 82(2):216–229. doi: 10.1002/prot.24353.
  • Call L, Molina T, Stoll B, Guthrie G, Chacko S, Plat J, Robinson J, Lin S, Vonderohe C, Mohammad M, et al. 2020. Parenteral lipids shape gut bile acid pools and microbiota profiles in the prevention of cholestasis in preterm pigs. J Lipid Res. 61(7):1038–1051. doi: 10.1194/jlr.RA120000652.
  • Cao Y, Liu H, Qin N, Ren X, Zhu B, Xia X. 2020. Impact of food additives on the composition and function of gut microbiota: a review. Trends Food Sci Technol. 99:295–310. doi: 10.1016/j.tifs.2020.03.006.
  • Chen J, Zhang Y, Guan X, Cao H, Li L, Yu J, Liu H. 2022. Characterization of Saponins from differently colored quinoa cultivars and their in vitro gastrointestinal digestion and fermentation properties. J Agric Food Chem. 70(6):1810–1818. doi: 10.1021/acs.jafc.1c06200.
  • Chen MJ, Liu C, Wan Y, Yang L, Jiang S, Qian DW, Duan JA. 2021. Enterohepatic circulation of bile acids and their emerging roles on glucolipid metabolism. Steroids. 165:108757. doi: 10.1016/j.steroids.2020.108757.
  • Chen Y, Zhu L, Hu W, Wang Y, Wen X, Yang J. 2022. Simiao Wan modulates the gut microbiota and bile acid metabolism during improving type 2 diabetes mellitus in mice. Phytomedicine. 104:154264. doi: 10.1016/j.phymed.2022.154264.
  • Chiang JYL, Ferrell JM. 2018. Bile acid metabolism in liver pathobiology. Gene Expr. 18(2):71–87. doi: 10.3727/105221618X15156018385515.
  • David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 505(7484):559–563. doi: 10.1038/nature12820.
  • de Aguiar Vallim TQ, Tarling EJ, Edwards PA. 2013. Pleiotropic roles of bile acids in metabolism. Cell Metab. 17(5):657–669. doi: 10.1016/j.cmet.2013.03.013.
  • de Boer JF, Verkade E, Mulder NL, de Vries HD, Huijkman N, Koehorst M, Boer T, Wolters JC, Bloks VW, van de Sluis B, et al. 2020. A human-like bile acid pool induced by deletion of hepatic Cyp2c70 modulates effects of FXR activation in mice. J Lipid Res. 61(3):291–305. doi: 10.1194/jlr.RA119000243.
  • Devlin AS, Fischbach MA. 2015. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat Chem Biol. 11(9):685–690. doi: 10.1038/nchembio.1864.
  • Doden HL, Ridlon JM. 2021. Microbial hydroxysteroid dehydrogenases: from alpha to omega. Microorganisms. 9(3):469. doi: 10.3390/microorganisms9030469.
  • Doden HL, Wolf PG, Gaskins HR, Anantharaman K, Alves JMP, Ridlon JM. 2021. Completion of the gut microbial epi-bile acid pathway. Gut Microbes. 13(1):1–20. doi: 10.1080/19490976.2021.1907271.
  • Duan R, Guan X, Huang K, Zhang Y, Li S, Xia JA, Shen M. 2021. Flavonoids from whole-grain oat alleviated high-fat diet-induced hyperlipidemia via regulating bile acid metabolism and gut microbiota in mice. J Agric Food Chem. 69(27):7629–7640. doi: 10.1021/acs.jafc.1c01813.
  • Eyssen H, De Pauw G, Stragier J, Verhulst A. 1983. Cooperative formation of omega-muricholic acid by intestinal microorganisms. Appl Environ Microbiol. 45(1):141–147. doi: 10.1128/aem.45.1.141-147.1983.
  • Fang S, Suh JM, Reilly SM, Yu E, Osborn O, Lackey D, Yoshihara E, Perino A, Jacinto S, Lukasheva Y, et al. 2015. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med. 21(2):159–165. doi: 10.1038/nm.3760.
  • Friedman ES, Li Y, Shen TD, Jiang J, Chau L, Adorini L, Babakhani F, Edwards J, Shapiro D, Zhao C, et al. 2018. FXR-dependent modulation of the human small intestinal microbiome by the bile acid derivative obeticholic acid. Gastroenterology. 155(6):1741–1752.e1745. doi: 10.1053/j.gastro.2018.08.022.-
  • Funabashi M, Grove TL, Wang M, Varma Y, McFadden ME, Brown LC, Guo C, Higginbottom S, Almo SC, Fischbach MA. 2020. A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature. 582(7813):566–570. doi: 10.1038/s41586-020-2396-4.
  • Gaikwad NW. 2020. Bileome: the bile acid metabolome of rat. Biochem Biophys Res Commun. 533(3):458–466. doi: 10.1016/j.bbrc.2020.06.052.
  • Ge YP, Chen WL, Sun M, Zhang L, Liu WB, Li XF. 2022. Molecular characterization of farnesoid X receptor alpha in Megalobrama amblycephala and its potential roles in high-carbohydrate diet-induced alterations of bile acid metabolism. J Steroid Biochem Mol Biol. 219:106065. doi: 10.1016/j.jsbmb.2022.106065.
  • Gómez C, Stücheli S, Kratschmar DV, Bouitbir J, Odermatt A. 2020. Development and validation of a highly sensitive LC-MS/MS method for the analysis of bile acids in serum, plasma, and liver tissue samples. Metabolites. 10(7):282. doi: 10.3390/metabo10070282.
  • Grobe S, Wszołek A, Brundiek H, Fekete M, Bornscheuer UT. 2020. Highly selective bile acid hydroxylation by the multifunctional bacterial P450 monooxygenase CYP107D1 (OleP). Biotechnol Lett. 42(5):819–824. doi: 10.1007/s10529-020-02813-4.
  • Hagey LR, Schteingart CD, Rossi SS, Ton-Nu HT, Hofmann AF. 1998. An N-acyl glycyltaurine conjugate of deoxycholic acid in the biliary bile acids of the rabbit. J Lipid Res. 39(11):2119–2124. doi: 10.1016/S0022-2275(20)32466-4.
  • Harris SC, Devendran S, Alves JMP, Mythen SM, Hylemon PB, Ridlon JM. 2018. Identification of a gene encoding a flavoprotein involved in bile acid metabolism by the human gut bacterium Clostridium scindens ATCC 35704. Biochim Biophys Acta Mol Cell Biol Lipids. 1863(3):276–283. doi: 10.1016/j.bbalip.2017.12.001.
  • Heubi JE, Setchell KDR, Jha P, Buckley D, Zhang W, Rosenthal P, Potter C, Horslen S, Suskind D. 2015. Treatment of bile acid amidation defects with glycocholic acid. Hepatology. 61(1):268–274. doi: 10.1002/hep.27401.
  • Hofmann AF, Hagey LR. 2008. Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci. 65(16):2461–2483. doi: 10.1007/s00018-008-7568-6.
  • Hua YL, Jia YQ, Zhang XS, Yuan ZW, Ji P, Hu JJ, Wei YM. 2021. Baitouweng Tang ameliorates DSS-induced ulcerative colitis through the regulation of the gut microbiota and bile acids via pathways involving FXR and TGR5. Biomed Pharmacother. 137:111320. doi: 10.1016/j.biopha.2021.111320.
  • Huang CC. 2018. Effect of Lotus Seed Resistant Starch on Improvement of Intestinal Function and Metabolism in Rats, Fujian Agriculture and Forestry University. Fujian Agriculture and Forestry University.
  • Huang F, Zheng X, Ma X, Jiang R, Zhou W, Zhou S, Zhang Y, Lei S, Wang S, Kuang J, et al. 2019. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nat Commun. 10(1):4971. doi: 10.1038/s41467-019-12896-x.
  • Jang SI, Fang S, Kim KP, Ko Y, Kim H, Oh J, Hong GY, Lee SY, Kim JM, Noh I, et al. 2019. Combination treatment with n-3 polyunsaturated fatty acids and ursodeoxycholic acid dissolves cholesterol gallstones in mice. Sci Rep. 9(1):12740. doi: 10.1038/s41598-019-49095-z.
  • Jazrawi RP, Pigozzi MG, Galatola G, Lanzini A, Northfield TC. 1992. Optimum bile acid treatment for rapid gall stone dissolution. Gut. 33(3):381–386. doi: 10.1136/gut.33.3.381.
  • Jia W, Xie G, Jia W. 2018. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 15(2):111–128. doi: 10.1038/nrgastro.2017.119.
  • Jiang Z, Zhuo L-B, He Y, Fu Y, Shen L, Xu F, Gou W, Miao Z, Shuai M, Liang Y, et al. 2022. The gut microbiota-bile acid axis links the positive association between chronic insomnia and cardiometabolic diseases. Nat Commun. 13(1):3002. doi: 10.1038/s41467-022-30712-x.
  • Juan C, García-Cañaveras MTD, Castell JV, Lahoz A. 2012. Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC-MRM-MS-validated method. J Lipid Res. 53(10):2231–2241. doi: 10.1194/jlr.D028803.
  • Kang JD, Myers CJ, Harris SC, Kakiyama G, Lee IK, Yun BS, Matsuzaki K, Furukawa M, Min HK, Bajaj JS, et al. 2019. Bile Acid 7α-dehydroxylating gut bacteria secrete antibiotics that inhibit clostridium difficile: role of secondary bile acids. Cell Chem Biol. 26(1):27–34.e4. doi: 10.1016/j.chembiol.2018.10.003.
  • Kübeck R, Bonet-Ripoll C, Hoffmann C, Walker A, Müller VM, Schüppel VL, Lagkouvardos I, Scholz B, Engel KH, Daniel H, et al. 2016. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice. Mol Metab. 5(12):1162–1174. doi: 10.1016/j.molmet.2016.10.001.
  • Kuramoto T, Miyamoto J, Konishi M, Hoshita T, Masul T, Une M. 2000. Bile acids in porcine fetal bile. Biol Pharm Bull. 23(10):1143–1146. doi: 10.1248/bpb.23.1143.
  • Kurdi P, Kawanishi K, Mizutani K, Yokota A. 2006. Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria. J Bacteriol. 188(5):1979–1986. doi: 10.1128/JB.188.5.1979-1986.2006.
  • Lei S, Liu L, Ding L, Zhang Y, Zeng H. 2021. Lotus seed resistant starch affects the conversion of sodium taurocholate by regulating the intestinal microbiota. Int J Biol Macromol. 186(5):227–236. doi: 10.1016/j.ijbiomac.2021.07.031.
  • Li M, Wang S, Li Y, Zhao M, Kuang J, Liang D, Wang J, Wei M, Rajani C, Ma X, et al. 2022. Gut microbiota-bile acid crosstalk contributes to the rebound weight gain after calorie restriction in mice. Nat Commun. 13(1):2060. doi: 10.1038/s41467-022-29589-7.
  • Li T, Chiang JYL. 2014. Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev. 66(4):948–983. doi: 10.1124/pr.113.008201.
  • Li X, Lei S, Liu L, Zhang Y, Zheng B, Zeng H. 2021. Synergistic effect of lotus seed resistant starch and short-chain fatty acids on mice fecal microbiota in vitro. Int J Biol Macromol. 183(3):2272–2281. doi: 10.1016/j.ijbiomac.2021.06.016.
  • Lin H, An Y, Tang H, Wang Y. 2019. Alterations of bile acids and gut microbiota in obesity induced by high fat diet in rat model. J Agric Food Chem. 67(13):3624–3632. doi: 10.1021/acs.jafc.9b00249.
  • Liu J, Wang Y, Xue L, Nie C, Sun J, Fan M, Qian H, Wang L, Li Y. 2021. Novel metabolic regulation of bile acid responses to low cholesterol in whole-grain-diet-fed mice. J Agric Food Chem. 69(30):8440–8447. doi: 10.1021/acs.jafc.1c02662.
  • Liu X, Wang Y. 2019. An overview of bile acid synthesis and its physiological and pathological functions. Yi Chuan. 41(5):365–374.
  • Liu Y, Chen K, Li F, Gu Z, Liu Q, He L, Shao T, Song Q, Zhu F, Zhang L, et al. 2020. Probiotic lactobacillus rhamnosus GG prevents liver fibrosis through inhibiting hepatic bile acid synthesis and enhancing bile acid excretion in mice. Hepatology. 71(6):2050–2066. doi: 10.1002/hep.30975.
  • Lu Q, Jiang Z, Wang Q, Hu H, Zhao G. 2021. The effect of tauroursodeoxycholic acid (TUDCA) and gut microbiota on murine gallbladder stone formation. Ann Hepatol. 23(10):100289. doi: 10.1016/j.aohep.2020.100289.
  • Lundell K, Hansson R, Wikvall K. 2001. Cloning and expression of a pig liver taurochenodeoxycholic acid 6alpha-hydroxylase (CYP4A21): a novel member of the CYP4A subfamily. J Biol Chem. 276(13):9606–9612. doi: 10.1074/jbc.M006584200.
  • Lundell K, Wikvall K. 2008. Species-specific and age-dependent bile acid composition: aspects on CYP8B and CYP4A subfamilies in bile acid biosynthesis. Curr Drug Metab. 9(4):323–331. doi: 10.2174/138920008784220574.
  • MacDonald IA, Rochon YP, Hutchison DM, Holdeman LV. 1982. Formation of ursodeoxycholic acid from chenodeoxycholic acid by a 7 beta-hydroxysteroid dehydrogenase-elaborating Eubacterium aerofaciens strain cocultured with 7 alpha-hydroxysteroid dehydrogenase-elaborating organisms. Appl Environ Microbiol. 44(5):1187–1195. doi: 10.1128/aem.44.5.1187-1195.1982.
  • Macierzanka A, Torcello-Gómez A, Jungnickel C, Maldonado-Valderrama J. 2019. Bile salts in digestion and transport of lipids. Adv Colloid Interface Sci. 274:102045. doi: 10.1016/j.cis.2019.102045.
  • McGlone ER, Bloom SR. 2019. Bile acids and the metabolic syndrome. Ann Clin Biochem. 56(3):326–337. doi: 10.1177/0004563218817798.
  • Molinaro A, Wahlström A, Marschall H-U. 2018. Role of bile acids in metabolic control. Trends Endocrinol Metab. 29(1):31–41. doi: 10.1016/j.tem.2017.11.002.
  • Ndou SP, Kiarie E, Ames N, Nyachoti CM. 2019. Flaxseed meal and oat hulls supplementation: impact on dietary fiber digestibility, and flows of fatty acids and bile acids in growing pigs1. J Anim Sci. 97(1):291–301. doi: 10.1093/jas/sky398.
  • Nicolucci AC, Hume MP, Martínez I, Mayengbam S, Walter J, Reimer RA. 2017. Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterology. 153(3):711–722. doi: 10.1053/j.gastro.2017.05.055.
  • Noh DO, Gilliland SE. 1993. Influence of bile on cellular integrity and beta-galactosidase activity of Lactobacillus acidophilus. J Dairy Sci. 76(5):1253–1259. doi: 10.3168/jds.S0022-0302(93)77454-8.
  • Ocvirk S, O’Keefe SJD. 2021. Dietary fat, bile acid metabolism and colorectal cancer. Semin Cancer Biol. 73:347–355. doi: 10.1016/j.semcancer.2020.10.003.
  • Pathak P, Xie C, Nichols RG, Ferrell JM, Boehme S, Krausz KW, Patterson AD, Gonzalez FJ, Chiang JYL. 2018. Intestine farnesoid X receptor agonist and the gut microbiota activate G‐protein bile acid receptor‐1 signaling to improve metabolism. Hepatology. 68(4):1574–1588. doi: 10.1002/hep.29857.
  • Portincasa P, Di Ciaula A, Garruti G, Vacca M, De Angelis M, Wang DQH. 2020. Bile acids and GPBAR-1: dynamic interaction involving genes, environment and gut microbiome. Nutrients. 12(12):3709. doi: 10.3390/nu12123709.
  • Ramasamy, Sureshkumar, Pundle, Archana, Vishnu, Chand, Deepak, Yadav, Yashpal, Suresh. 2017. Molecular features of bile salt hydrolases and relevance in human health. Biochim Biophys Acta Gen Subj. 1861(1 Pt A):2981–2991. doi: 10.1016/j.bbagen.2016.09.024.
  • Ridlon JM, Harris SC, Bhowmik S, Kang DJ, Hylemon PB. 2016. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes. 7(1):22–39. doi: 10.1080/19490976.2015.1127483.
  • Ridlon JM, Hylemon PB. 2012. Identification and characterization of two bile acid coenzyme A transferases from clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium. J Lipid Res. 53(1):66–76. doi: 10.1194/jlr.M020313.
  • Ridlon JM, Kang DJ, Hylemon PB. 2010. Isolation and characterization of a bile acid inducible 7a-dehydroxylating operon in Clostridium hylemonae TN271. Anaerobe. 16(2):137–146. doi: 10.1016/j.anaerobe.2009.05.004.
  • Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. 2014. Bile acids and the gut microbiome. Curr Opin Gastroenterol. 30(3):332–338. doi: 10.1097/MOG.0000000000000057.
  • Schoeler M, Caesar R. 2019. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord. 20(4):461–472. doi: 10.1007/s11154-019-09512-0.
  • Setchell KD, Rodrigues CM, Clerici C, Solinas A, Morelli A, Gartung C, Boyer J. 1997. Bile acid concentrations in human and rat liver tissue and in hepatocyte nuclei. Gastroen­terology. 112(1):226–235. doi: 10.1016/s0016-5085(97)70239-7.
  • Xie S, Wei D, Tian L, Liu Y. 2021. Dietary supplementation of chenodeoxycholic acid improved the growth performance, immune response and intestinal health of juvenile Penaeus monodon fed a low fish-meal diet. Aquacult Rep. 20:100773. doi: 10.1016/j.aqrep.2021.100773.
  • Short KR,Diavatopoulos DA. 2015. Nasopharyngeal Colonization with Streptococcus pneumoniae: nasopharyngeal colonization with streptococcus pneumoniae. New York, NY: Academic Press. p. 279–291.
  • Staley C, Weingarden AR, Khoruts A, Sadowsky MJ. 2017. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol. 101(1):47–64. doi: 10.1007/s00253-016-8006-6.
  • Stange EF, Scheibner J, Ditschuneit H. 1989. Role of primary and secondary bile acids as feedback inhibitors of bile acid synthesis in the rat in vivo. J Clin Invest. 84(1):173–180. doi: 10.1172/JCI114137.
  • Sun L, Pang Y, Wang X, Wu Q, Liu H, Liu B, Liu G, Ye M, Kong W, Jiang C. 2019. Ablation of gut microbiota alleviates obesity-induced hepatic steatosis and glucose intolerance by modulating bile acid metabolism in hamsters. Acta Pharm Sin B. 9(4):702–710. doi: 10.1016/j.apsb.2019.02.004.
  • Sutherland JD, Macdonald IA. 1982. The metabolism of primary, 7-oxo, and 7 beta-hydroxy bile acids by clostridium absonum. J Lipid Res. 23(5):726–732. doi: 10.1016/S0022-2275(20)38105-0.
  • Takahashi S, Fukami T, Masuo Y, Brocker CN, Xie C, Krausz KW, Wolf CR, Henderson CJ, Gonzalez FJ. 2016. Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans. J Lipid Res. 57(12):2130–2137. doi: 10.1194/jlr.M071183.
  • Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. 2008. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov. 7(8):678–693. doi: 10.1038/nrd2619.
  • Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. 2019. Intestinal absorption of bile acids in health and disease. Compr Physiol. 10(1):21–56.
  • Tomkin GH, Owens D. 2016. Obesity diabetes and the role of bile acids in metabolism. J Transl Int Med. 4(2):73–80. doi: 10.1515/jtim-2016-0018.
  • Valdez G, Martos G, Taranto MP, Lorca GL, Oliver G, Holgado A. 1997. Influence of bile on beta-galactosidase activity and cell viability of Lactobacillus reuteri when subjected to freeze-drying. J Dairy Sci. 80(9):1955–1958. doi: 10.3168/jds.S0022-0302(97)76137-X.
  • Wahlström A, Sayin SI, Marschall HU, Bäckhed F. 2016. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24(1):41–50. doi: 10.1016/j.cmet.2016.05.005.
  • Wan Y, Yuan J, Li J, Li H, Zhang J, Tang J, Ni Y, Huang T, Wang F, Zhao F, et al. 2020. Unconjugated and secondary bile acid profiles in response to higher-fat, lower-carbohydrate diet and associated with related gut microbiota: a 6-month randomized controlled-feeding trial. Clin Nutr. 39(2):395–404. doi: 10.1016/j.clnu.2019.02.037.
  • Wang DQ, Tazuma S. 2002. Effect of beta-muricholic acid on the prevention and dissolution of cholesterol gallstones in C57L/J mice. J Lipid Res. 43(11):1960–1968. doi: 10.1194/jlr.m200297-jlr200.
  • Wang K, Peng X, Yang A, Huang Y, Tan Y, Qian Y, Lv F, Si H. 2022. Effects of diets with different protein levels on lipid metabolism and gut microbes in the host of different genders. Front Nutr. 9:940217. doi: 10.3389/fnut.2022.940217.
  • Wang N, Wang J, Zhang T, Huang L, Yan W, Lu L, Jia J, Tao Y, Cai W, Wang Y. 2021. Alterations of gut microbiota and serum bile acids are associated with parenteral nutrition-associated liver disease. J Pediatr Surg. 56(4):738–744. doi: 10.1016/j.jpedsurg.2020.06.035.
  • Wang Q, Hao C, Yao W, Zhu D, Lu H, Li L, Ma B, Sun B, Xue D, Zhang W. 2020. Intestinal flora imbalance affects bile acid metabolism and is associated with gallstone formation. BMC Gastroenterol. 20(1):59. doi: 10.1186/s12876-020-01195-1.
  • Watanabe K, Igarashi M, Li X, Nakatani A, Miyamoto J, Inaba Y, Sutou A, Saito T, Sato T, Tachibana N, et al. 2018. Dietary soybean protein ameliorates high-fat diet-induced obesity by modifying the gut microbiota-dependent biotransformation of bile acids. PLoS One. 13(8):e0202083.,. doi: 10.1371/journal.pone.0202083.
  • Wei HC, Xing SJ, Chen P, Wu XF, Gu X, Luo L, Liang XF, Xue M. 2020. Plant protein diet-induced hypoimmunity by affecting the spiral valve intestinal microbiota and bile acid enterohepatic circulation in Amur sturgeon (Acipenser schrenckii). Fish Shellfish Immunol. 106:421–430. doi: 10.1016/j.fsi.2020.08.025.
  • Winston JA, Theriot CM. 2020. Diversification of host bile acids by members of the gut microbiota. Gut Microbes. 11(2):158–171. doi: 10.1080/19490976.2019.1674124.
  • Wu J, Zhu X, Lin H, Chen Z, Tang H, Wang Y. 2020. Gender differences in the bile acid profiles of APP/PS1 transgenic AD mice. Brain Res Bull. 161:116–126. doi: 10.1016/j.brainresbull.2020.05.003.
  • Zheng X, Cheng T, Jiang R, Zhao A, Wu Q, Kuang J, Sun D, Ren Z, Li M, Zhao M, et al. 2021. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab. 33(4):791–803.e797. doi: 10.1016/j.cmet.2020.11.017.
  • Yokota A, Fukiya S, Islam KB, Ooka T, Ogura Y, Hayashi T, Hagio M, Ishizuka S. 2012. Is bile acid a determinant of the gut microbiota on a high-fat diet? Gut Microbes. 3(5):455–459. doi: 10.4161/gmic.21216.
  • Yoshitsugu R, Kikuchi K, Iwaya H, Fujii N, Hori S, Lee DG, Ishizuka S. 2019. Alteration of bile acid metabolism by a high-fat diet is associated with plasma transaminase activities and glucose intolerance in rats. J Nutr Sci Vitaminol. 65(1):45–51. doi: 10.3177/jnsv.65.45.
  • Zhuang Q, Ye X, Shen S, Cheng J, Shi Y, Wu S, Xia J, Ning M, Dong Z, Wan X. 2021. Astragalus polysaccharides ameliorate diet-induced gallstone formation by modulating synthesis of bile acids and the gut microbiota. Front Pharmacol. 12:701003. doi: 10.3389/fphar.2021.701003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.