298
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Microparticles and nanoparticles-based approaches to improve oral treatment of Helicobacter pylori infection

, , , , , , , & show all
Received 05 Jan 2023, Accepted 17 Oct 2023, Published online: 28 Oct 2023

References

  • Abadi ATB. 2017a. Resistance to clarithromycin and gastroenterologist’s persistence roles in nomination for Helicobacter pylori as high priority pathogen by World Health Organization. World J Gastroenterol. 23(35):6379–6384. doi: 10.3748/wjg.v23.i35.6379.
  • Abadi ATB. 2017b. Strategies used by Helicobacter pylori to establish persistent infection. World J Gastroenterol. 23:2870–2882. doi: 10.3748/wjg.v23.i16.2870.
  • Abdelghany A, El-Desouky MA, Shemis M. 2021. Synthesis and characterization of amoxicillin-loaded polymeric nanocapsules as a drug delivery system targeting Helicobacter pylori. Arab J Gastroenterol. 22(4):278–284. doi: 10.1016/j.ajg.2021.06.002.
  • Adebisi AO, Conway BR. 2014. Lectin-conjugated microspheres for eradication of Helicobacter pylori infection and interaction with mucus. Int J Pharm. 470(1-2):28–40. doi: 10.1016/j.ijpharm.2014.04.070.
  • Angsantikul P, Thamphiwatana S, Zhang Q, Spiekermann K, Zhuang J, Fang RH, Gao W, Obonyo M, Zhang L. 2018. Coating nanoparticles with gastric epithelial cell membrane for targeted antibiotic delivery against Helicobacter pylori infection. Adv Ther. 1(2):1800016. doi: 10.1002/adtp.201800016.
  • Anton N, Jakhmola A, Vandamme TF. 2012. Trojan microparticles for drug delivery. Pharmaceutics. 4(1):1–25. doi: 10.3390/pharmaceutics4010001.
  • Ardisson JS, Gonçalves RdC, Rodrigues RP, Kitagawa RR. 2018. Antitumour, Immunomodulatory activity and in silico studies of naphthopyranones targeting iNOS, a relevant target for the treatment of Helicobacter pylori infection. Biomed Pharmacother. 107:1160–1165. doi: 10.1016/j.biopha.2018.08.098.
  • Askari P, Karbalaei M, Ghazvini K, Keikha M. 2021. Severe clinical outcomes of infection with babA2-positive Helicobacter pylori strains in the Iranian population: a systematic review and meta-analysis. Meta Gene. 29:100911. doi: 10.1016/j.mgene.2021.100911.
  • Bagheri N, Azadegan-Dehkordi F, Rafieian-Kopaei M, Rahimian G, Asadi-Samani M, Shirzad H. 2016. Clinical relevance of Helicobacter pylori virulence factors in Iranian patients with gastrointestinal diseases. Microb Pathog. 100:154–162. doi: 10.1016/j.micpath.2016.09.016.
  • Baj J, Forma A, Flieger W, Morawska I, Michalski A, Buszewicz G, Sitarz E, Portincasa P, Garruti G, Flieger M, et al. 2021. Helicobacter pylori infection and extragastric diseases—a focus on the central nervous system. Cells. 10(9):2191. doi: 10.3390/cells10092191.
  • Banga Ndzouboukou JL, Lei Q, Ullah N, Zhang Y, Hao L, Fan X. 2021. Helicobacter pylori adhesins: hpaA a potential antigen in experimental vaccines for H. pylori, Helicobacter. 26(1):e12758. doi: 10.1111/hel.12758.
  • Bergsson G, Lafur Steingrímsson O, Thormar H. 2002. Bactericidal effects of fatty acids and monoglycerides on Helicobacter pylori. Int J Antimicrob Agents. 20(4):258–262. www.isochem.org. doi: 10.1016/s0924-8579(02)00205-4.
  • Bimbo LM, Mäkilä E, Laaksonen T, Lehto V-P, Salonen J, Hirvonen J, Santos HA. 2011. Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials. 32(10):2625–2633. doi: 10.1016/j.biomaterials.2010.12.011.
  • Bochicchio S, Lamberti G, Barba AA. 2021. Polymer–lipid pharmaceutical nanocarriers: innovations by new formulations and production technologies. Pharmaceutics. 13(2):198. doi: 10.3390/pharmaceutics13020198.
  • Bonacorsi C, da Fonseca LM, Raddi MSG, Kitagawa RR, Vilegas W. 2013. Comparison of Brazilian plants used to treat gastritis on the oxidative burst of Helicobacter pylori -stimulated neutrophil. Evid Based Complement Alternat Med. 2013:851621–851628. doi: 10.1155/2013/851621.
  • Cai J, Huang H, Song W, Hu H, Chen J, Zhang L, Li P, Wu R, Wu C. 2015. Preparation and evaluation of lipid polymer nanoparticles for eradicating H. pylori biofilm and impairing antibacterial resistance in vitro. Int J Pharm. 495(2):728–737. doi: 10.1016/j.ijpharm.2015.09.055.
  • Campos E, Branquinho J, Carreira AS, Carvalho A, Coimbra P, Ferreira P, Gil MH. 2013. Designing polymeric microparticles for biomedical and industrial applications, in. Eur Polym J. 49(8):2005–2021. doi: 10.1016/j.eurpolymj.2013.04.033.
  • Caputo F, Arnould A, Bacia M, Ling WL, Rustique E, Texier I, Mello AP, Couffin AC. 2019. Measuring particle size distribution by asymmetric flow field flow fractionation: a powerful method for the preclinical characterization of lipid-based nanoparticles. Mol Pharm. 16(2):756–767. doi: 10.1021/acs.molpharmaceut.8b01033.
  • Chakraborti S, Bhattacharya S, Chowdhury R, Chakrabarti P. 2013. The molecular basis of inactivation of metronidazole-resistant Helicobacter pylori using polyethyleneimine functionalized zinc oxide nanoparticles. PLoS One. 8(8):e70776. doi: 10.1371/journal.pone.0070776.
  • Chakraborty S, Shukla D, Mishra B, Singh S. 2009. Lipid - an emerging platform for oral delivery of drugs with poor bioavailability. Eur J Pharm Biopharm. 73(1):1–15. doi: 10.1016/j.ejpb.2009.06.001.
  • Chang WL, Yeh YC, Sheu BS. 2018. The impacts of H. pylori virulence factors on the development of gastroduodenal diseases. J Biomed Sci. 25(1):68. doi: 10.1186/s12929-018-0466-9.
  • Charitos IA, D’Agostino D, Topi S, Bottalico L. 2021. 40 Years of Helicobacter pylori: a revolution in biomedical thought. Gastroenterol Insights. 12(2):111–135. doi: 10.3390/gastroent12020011.
  • Charman WN, Rogge MC, Boddy AW, Berger BM. 1993. Effect of food and a monoglyceride emulsion formulation on danazol bioavailability. J Clin Pharmacol. 33(4):381–386. doi: 10.1002/j.1552-4604.1993.tb04673.x.
  • Chauhan N, Tay ACY, Marshall BJ, Jain U. 2019. Helicobacter pylori VacA, a distinct toxin exerts diverse functionalities in numerous cells: an overview. Helicobacter. 24(1):e12544. doi: 10.1111/hel.12544.
  • Chen M-C, Wong H-S, Lin K-J, Chen H-L, Wey S-P, Sonaje K, Lin Y-H, Chu C-Y, Sung H-W. 2009. The characteristics, biodistribution and bioavailability of a chitosan-based nanoparticulate system for the oral delivery of heparin. Biomaterials. 30(34):6629–6637. doi: 10.1016/j.biomaterials.2009.08.030.
  • Chew Y, Chung H-Y, Lin P-Y, Wu D-C, Huang S-K, Kao M-C. 2021. Outer membrane vesicle production by Helicobacter pylori represents an approach for the delivery of virulence factors CagA, VacA and UreA into human gastric adenocarcinoma (AGS) cells. Int J Mol Sci. 22(8):3942. doi: 10.3390/ijms22083942.
  • Chorilli M, Calixto G, Rimério TC, Scarpa MV. 2013. Caffeine encapsulated in small unilamellar liposomes: characerization and in vitro release profile. J Dispers Sci Technol. 34(10):1465–1470. doi: 10.1080/01932691.2012.739535.
  • Cone RA. 2009. Barrier properties of mucus. Adv Drug Deliv Rev. 61(2):75–85. doi: 10.1016/j.addr.2008.09.008.
  • Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari M. 2018. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 10(2):57. doi: 10.3390/pharmaceutics10020057.
  • Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. 2016. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol. 44(1):381–391. doi: 10.3109/21691401.2014.953633.
  • de Brito BB, da Silva FAF, Soares AS, Pereira VA, Cordeiro Santos ML, Sampaio MM, Moreira Neves PH, de Melo FF. 2019. Pathogenesis and clinical management of Helicobacter pylori gastric infection. World J Gastroenterol. 25(37):5578–5589. doi: 10.3748/wjg.v25.i37.5578.
  • de Camargo BAF, Soares Silva DE, Noronha da Silva A, Campos DL, Machado Ribeiro TR, Mieli MJ, Borges Teixeira Zanatta M, Bento da Silva P, Pavan FR, Gallina Moreira C, et al. 2020. New silver(I) coordination compound loaded into polymeric nanoparticles as a strategy to improve in vitro anti-Helicobacter pylori activity. Mol Pharm. 17(7):2287–2298. doi: 10.1021/acs.molpharmaceut.9b01264.
  • de Lima Silva LL, Oliveira AKS, Gama AR, Ramos AFPL, Silva AMTC, Blanco AJV, Vieira JDG, Rasmussem LT, Carneiro LC, Barbosa MS. 2021. Helicobacter pylori virulence dupA gene: risk factor or protective factor? Braz J Microbiol. 52(4):1921–1927. doi: 10.1007/s42770-021-00553-9.
  • de Souza MPC, de Camargo BAF, Spósito L, Fortunato GC, Carvalho GC, Marena GD, Meneguin AB, Bauab TM, Chorilli M. 2021. Highlighting the use of micro and nanoparticles based-drug delivery systems for the treatment of Helicobacter pylori infections. Crit Rev Microbiol. 47(4):435–460. doi: 10.1080/1040841X.2021.1895721.
  • Demetzos C, Pippa N. 2014. Advanced drug delivery nanosystems (aDDnSs): a mini-review. Drug Deliv. 21(4):250–257. doi: 10.3109/10717544.2013.844745.
  • Díaz P, Valderrama MV, Bravo J, Quest AFG. 2018. Helicobacter pylori and gastric cancer: adaptive cellular mechanisms involved in disease progression. Front Microbiol. 9:5. doi: 10.3389/fmicb.2018.00005.
  • dos Santos AM, Carvalho SG, Meneguin AB, Sábio RM, Gremião MPD, Chorilli M. 2021. Oral delivery of micro/nanoparticulate systems based on natural polysaccharides for intestinal diseases therapy: challenges, advances and future perspectives. J Control Release. 334:353–366. doi: 10.1016/j.jconrel.2021.04.026.
  • Durán-Lobato M, Niu Z, Alonso MJ. 2020. Oral delivery of biologics for precision medicine. Adv Mater. 32(13):1901935. doi: 10.1002/adma.201901935.
  • Dutta AK, Phull PS. 2021. Treatment of Helicobacter pylori infection in the presence of penicillin allergy. World J Gastroenterol. 27(44):7661–7668. doi: 10.3748/wjg.v27.i44.7661.
  • Edmond MP, Mostafa NM, El-Shazly M, Singab ANB. 2021. Two clerodane diterpenes isolated from Polyalthia longifolia leaves: comparative structural features, anti-histaminic and anti-Helicobacter pylori activities. Nat Prod Res. 35(23):5282–5286. doi: 10.1080/14786419.2020.1753048.
  • Ejaz S, Ejaz S, Shahid R, Noor T, Shabbir S, Imran M. 2022. Chitosan-curcumin complexation to develop functionalized nanosystems with enhanced antimicrobial activity against hetero-resistant gastric pathogen. Int J Biol Macromol. 204:540–554. doi: 10.1016/j.ijbiomac.2022.02.039.
  • Ensign LM, Cone R, Hanes J. 2012. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 64(6):557–570. doi: 10.1016/j.addr.2011.12.009.
  • Eto H, Suzuki S, Kusano C, Ikehara H, Ichijima R, Ito H, Kawabe K, Kawamura M, Yoda Y, Nakahara M, et al. 2021. Impact of body size on first-line Helicobacter pylori eradication success using vonoprazan and amoxicillin dual therapy. Helicobacter. 26(2):e12788. doi: 10.1111/hel.12788.
  • Fagni Njoya ZL, Mbiantcha M, Djuichou Nguemnang SF, Matah Marthe VM, Yousseu Nana W, Madjo Kouam YK, Ngoufack Azanze E, Tsafack EG, Ateufack G. 2022. Anti-Helicobacter pylori, anti-inflammatory, and antioxidant activities of trunk bark of Alstonia boonei (Apocynaceae). Biomed Res Int. 2022:9022135–9022115. doi: 10.1155/2022/9022135.
  • Fang C-L, A. Al-Suwayeh S, Fang J-Y. 2012. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. NANOTEC. 7(1):41–55. doi: 10.2174/1872210511307010041.
  • Farsimadan M, Heravi FS, Emamvirdizadeh A, Moradi S, Iranpour H, Tabasi E, Eskandarion MR, Azizian R, Tabasi M. 2022. Evaluation of Helicobacter pylori genotypes in obese patients with gastric ulcer, duodenal ulcer, and gastric cancer: an observational study. Dig Dis. 40(3):355–361. doi: 10.1159/000517262.
  • Fauzia KA, Miftahussurur M, Syam AF, Waskito LA, Doohan D, Rezkitha YAA, Matsumoto T, Tuan VP, Akada J, Yonezawa H, et al. 2020. Biofilm formation and antibiotic resistance phenotype of Helicobacter pylori clinical isolates. Toxins. 12(8):473. doi: 10.3390/toxins12080473.
  • Fontana G, Licciardi M, Mansueto S, Schillaci D, Giammona G. 2001. Amoxicillin-loaded polyethylcyanoacrylate nanoparticles: influence of PEG coating on the particle size, drug release rate and phagocytic uptake. Biomaterials. 22(21):2857–2865. doi: 10.1016/S0142-9612(01)00030-8.
  • Fonte P, Araújo F, Silva C, Pereira C, Reis S, Santos HA, Sarmento B. 2015. Polymer-based nanoparticles for oral insulin delivery: revisited approaches. Biotechnol Adv. 33(6 Pt 3):1342–1354. doi: 10.1016/j.biotechadv.2015.02.010.
  • Gao W, Chen Y, Zhang Y, Zhang Q, Zhang L. 2018. Nanoparticle-based local antimicrobial drug delivery. Adv Drug Deliv Rev. 127:46–57. doi: 10.1016/j.addr.2017.09.015.
  • Gatti THH, Eloy JO, Ferreira LMB, da Silva IC, Pavan FR, Gremião MPD, Chorilli M. 2018. Insulin-loaded polymeric mucoadhesive nanoparticles: development, characterization and cytotoxicity evaluation. Braz. J. Pharm. Sci. 54(1):e17314 doi: 10.1590/s2175-97902018000117314.
  • Ghobadi E, Ghanbarimasir Z, Emami S. 2021. A review on the structures and biological activities of anti-Helicobacter pylori agents. Eur J Med Chem. 223:113669. doi: 10.1016/j.ejmech.2021.113669.
  • Gisbert JP. 2020. Rifabutin for the treatment of Helicobacter pylori infection: a review. Pathogens. 10(1):15. doi: 10.3390/pathogens10010015.
  • Gonçalves IC, Magalhães A, Costa AMS, Oliveira JR, Henriques PC, Gomes P, Reis CA, Martins MCL. 2016. Bacteria-targeted biomaterials: glycan-coated microspheres to bind Helicobacter pylori. Acta Biomater. 33:40–50. doi: 10.1016/j.actbio.2016.01.029.
  • Gong Y, Yuan Y. 2018. Resistance mechanisms of Helicobacter pylori and its dual target precise therapy. Crit Rev Microbiol. 44(3):371–392. doi: 10.1080/1040841X.2017.1418285.
  • Gopinath V, Priyadarshini S, MubarakAli D, Loke MF, Thajuddin N, Alharbi NS, Yadavalli T, Alagiri M, Vadivelu J. 2019. Anti-Helicobacter pylori, cytotoxicity and catalytic activity of biosynthesized gold nanoparticles: multifaceted application. Arabian J Chem. 12(1):33–40. doi: 10.1016/j.arabjc.2016.02.005.
  • Gottesmann M, Goycoolea FM, Steinbacher T, Menogni T, Hensel A. 2020. Smart drug delivery against Helicobacter pylori: pectin-coated, mucoadhesive liposomes with antiadhesive activity and antibiotic cargo. Appl Microbiol Biotechnol. 104(13):5943–5957. doi: 10.1007/s00253-020-10647-3.
  • Graham DY, Lu H, Shiotani A. 2021. Vonoprazan-containing Helicobacter pylori triple therapies contribution to global antimicrobial resistance. J Gastroenterol Hepatol. 36(5):1159–1163. doi: 10.1111/jgh.15252.
  • Grosso R, Benito E, Carbajo-Gordillo AI, García-Martín MG, Perez-Puyana V, Sánchez-Cid P, de-Paz M-V. 2023. Biodegradable guar-gum-based super-porous matrices for gastroretentive controlled drug release in the treatment of Helicobacter pylori: a proof of concept. Int J Mol Sci. 24(3):2281. doi: 10.3390/ijms24032281.
  • Gu H. 2017. Role of flagella in the pathogenesis of Helicobacter pylori. Curr Microbiol. 74(7):863–869. doi: 10.1007/s00284-017-1256-4.
  • Guay DR, Gustavson LE, Devcich KJ, Zhang J, Cao G, Olson CA. 2001. Pharmacokinetics and tolerability of extended-release clarithromycin. Clin Ther. 23:566–577.
  • Guo B, Cao NW, Zhou HY, Chu XJ, Li BZ. 2021. Efficacy and safety of bismuth-containing quadruple treatment and concomitant treatment for first-line Helicobacter pylori eradication: a systematic review and meta-analysis. Microb Pathog. 152:104661. doi: 10.1016/j.micpath.2020.104661.
  • Haiser HJ, Turnbaugh PJ. 2013. Developing a metagenomic view of xenobiotic metabolism. Pharmacol Res. 69(1):21–31. doi: 10.1016/j.phrs.2012.07.009.
  • Hathroubi S, Servetas SL, Windham I, Merrell DS, Ottemann KM. 2018. Helicobacter pylori biofilm formation and its potential role in pathogenesis. Microbiol Mol Biol Rev. 82(2):e00001-18. doi: 10.1128/MMBR.
  • He XJ, Zeng XP, Jiang CS, Liu G, Li DZ, Wang W. 2021. Antofloxacin-based bismuth quadruple therapy is safe and effective in Helicobacter pylori eradication: a prospective, open-label, randomized trial. Arab J Gastroenterol. 22(1):47–51. doi: 10.1016/j.ajg.2020.09.005.
  • Henriques PC, Costa LM, Seabra CL, Antunes B, Silva-Carvalho R, Junqueira-Neto S, Maia AF, Oliveira P, Magalhães A, Reis CA, et al. 2020. Orally administrated chitosan microspheres bind Helicobacter pylori and decrease gastric infection in mice. Acta Biomater. 114:206–220. doi: 10.1016/j.actbio.2020.06.035.
  • Hooi JKY, Lai WY, Ng WK, Suen MMY, Underwood FE, Tanyingoh D, Malfertheiner P, Graham DY, Wong VWS, Wu JCY, et al. 2017. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology. 153(2):420–429. doi: 10.1053/j.gastro.2017.04.022.
  • Huang Y, Hang X, Jiang X, Zeng L, Jia J, Xie Y, Li F, Bi H. 2019. In vitro and in vivo activities of zinc linolenate, a selective antibacterial agent against Helicobacter pylori. Antimicrob Agents Chemother. 63(6):e00004-19. doi: 10.1128/AAC.00004-19.
  • Huang Y, Li R, Dai Y, Qin C, He J, Yang S, Wang T, Su Y, Jia L, Zhao W. 2022. Rhamnolipid-assisted black phosphorus nanosheets with efficient isolinderalactone loading against drug resistant Helicobacter pylori. Mater Des. 216:110536. doi: 10.1016/j.matdes.2022.110536.
  • Huang Y, Wang QL, Cheng DD, Xu WT, Lu NH. 2016. Adhesion and invasion of gastric mucosa epithelial cells by Helicobacter pylori. Front Cell Infect Microbiol. 6:159. doi: 10.3389/fcimb.2016.00159.
  • IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 1994. Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, Lyon.
  • Jain P, Jain S, Prasad KN, Jain SK, Vyas SP. 2009. Polyelectrolyte coated multilayered liposomes (Nanocapsules) for the treatment of Helicobacter pylori infection. Mol Pharm. 6(2):593–603. doi: 10.1021/mp8002539.
  • Jesorka A, Orwar O. 2008. Liposomes: technologies and analytical applications. Annu Rev Anal Chem. 1(1):801–832. doi: 10.1146/annurev.anchem.1.031207.112747.
  • Ji J, Yang H. 2020. Using probiotics as supplementation for Helicobacter pylori antibiotic therapy. Int J Mol Sci. 21(3):1136. doi: 10.3390/ijms21031136.
  • Jubair N, Rajagopal M, Chinnappan S, Abdullah NB, Fatima A. 2021. Review on the antibacterial mechanism of plant-derived compounds against multidrug-resistant bacteria (MDR). Evid Based Complement Alternat Med. 2021:3663315–3663330. doi: 10.1155/2021/3663315.
  • Jung SW, Thamphiwatana S, Zhang L, Obonyo M. 2015. Mechanism of antibacterial activity of liposomal linolenic acid against Helicobacter pylori. PLoS One. 10(3):e0116519. doi: 10.1371/journal.pone.0116519.
  • Kalepu S, Manthina M, Padavala V. 2013. Oral lipid-based drug delivery systems – an overview. Acta Pharm Sin B. 3(6):361–372. doi: 10.1016/j.apsb.2013.10.001.
  • Karavolos M, Holban A. 2016. Nanosized drug delivery systems in gastrointestinal targeting: interactions with microbiota. Pharmaceuticals. 9(4):62. doi: 10.3390/ph9040062.
  • Keikha M, Karbalaei M. 2021. Correlation between the geographical origin of Helicobacter pylori homB-positive strains and their clinical outcomes: a systematic review and meta-analysis. BMC Gastroenterol. 21(1):181. doi: 10.1186/s12876-021-01764-y.
  • Keilberg D, Ottemann KM. 2016. How Helicobacter pylori senses, targets and interacts with the gastric epithelium. Environ Microbiol. 18(3):791–806. doi: 10.1111/1462-2920.13222.
  • Kim CS, Tonga GY, Solfiell D, Rotello VM. 2013. Inorganic nanosystems for therapeutic delivery: status and prospects. Adv Drug Deliv Rev. 65(1):93–99. doi: 10.1016/j.addr.2012.08.011.
  • Kim J, Gong EJ, Seo M, Il Seo H, Park JK, Lee SJ, Han KH, Jeong WJ, Kim YD, Cheon GJ. 2022. Efficacy of twice a day bismuth quadruple therapy for second-line treatment of Helicobacter pylori infection. J Pers Med. 12(1):56. doi: 10.3390/jpm12010056.
  • Kim Y, Chung WC, Kim DB. 2021. Efficacy of bismuth added to standard triple therapy as the first-line eradication regimen for Helicobacter pylori infection. Helicobacter. 26(3):e12792. doi: 10.1111/hel.12792.
  • Kotilea K, Cadranel S, Salame A, Nguyen J, Mahler T, Miendje Deyi VY, Verset L, Bontems P. 2021. Efficacy and safety of bismuth-based quadruple therapy for Helicobacter pylori eradication in children. Helicobacter. 26(4):e12825. doi: 10.1111/hel.12825.
  • Kreuter J. 2001. Nanoparticulate systems for brain delivery of drugs. Available from: www.elsevier.com/locate/drugdeliv.
  • Lal S, Jana U, Manna PK, Mohanta GP, Manavalan R, Pal SL. 2011. Nanoparticle: an overview of preparation and characterization. J Appl Pharm Sci. 01:228–234.
  • Li H, Peng F, Yan X, Mao C, Ma X, Wilson DA, He Q, Tu Y. 2023. Medical micro- and nanomotors in the body. Acta Pharm Sin B. 13(2):517–541. doi: 10.1016/j.apsb.2022.10.010.
  • Li P, Chen X, Shen Y, Li H, Zou Y, Yuan G, Hu P, Hu H. 2019. Mucus penetration enhanced lipid polymer nanoparticles improve the eradication rate of Helicobacter pylori biofilm. J Control Release. 300:52–63. doi: 10.1016/j.jconrel.2019.02.039.
  • Li XX, Shi S, Rong L, Feng MQ, Zhong L. 2018. The impact of liposomal linolenic acid on gastrointestinal microbiota in mice. Int J Nanomedicine. 13:1399–1409. doi: 10.2147/IJN.S151825.
  • Liao B-L, Pan Y-J, Zhang W, Pan L-W. 2018. Four natural compounds separated from folium isatidis: crystal structures and antibacterial activity. Chem Biodivers. 15(7):e1800152. doi: 10.1002/cbdv.201800152.
  • Lim SB, Banerjee A, Önyüksel H. 2012. Improvement of drug safety by the use of lipid-based nanocarriers. J Control Release. 163(1):34–45. doi: 10.1016/j.jconrel.2012.06.002.
  • Lin Y-H, Chang C-H, Wu Y-S, Hsu Y-M, Chiou S-F, Chen Y-J. 2009. Development of pH-responsive chitosan/heparin nanoparticles for stomach-specific anti-Helicobacter pylori therapy. Biomaterials. 30(19):3332–3342. doi: 10.1016/j.biomaterials.2009.02.036.
  • Lin YH, Lin JH, Chou SC, Chang SJ, Chung CC, Chen YS, Chang CH. 2015. Berberine-loaded targeted nanoparticles as specific Helicobacter pylori eradication therapy: in vitro and in vivo study. Nanomedicine. 10(1):57–71. doi: 10.2217/nnm.14.76.
  • Lin YH, Tsai SC, Lai CH, Lee CH, He ZS, Tseng GC. 2013. Genipin-cross-linked fucose-chitosan/heparin nanoparticles for the eradication of Helicobacter pylori. Biomaterials. 34(18):4466–4479. doi: 10.1016/j.biomaterials.2013.02.028.
  • Liu M, Chen M, Yang Z. 2017. Design of amphotericin B oral formulation for antifungal therapy. Drug Deliv. 24(1):1–9. doi: 10.1080/10717544.2016.1225852.
  • Lopes CM, Bettencourt C, Rossi A, Buttini F, Barata P. 2016. Overview on gastroretentive drug delivery systems for improving drug bioavailability. Int J Pharm. 510(1):144–158. doi: 10.1016/j.ijpharm.2016.05.016.
  • Lu Z, Wang X, Zhang T, Zhang L, Yang J, Li Y, Shen J, Wang J, Niu Y, Xiao Z, et al. 2020. Cationic and temperature-sensitive liposomes loaded with eugenol for the application to silk. Chin Chem Lett. 31(12):3139–3142. doi: 10.1016/j.cclet.2020.07.013.
  • Luo M, Jia YY, Jing ZW, Li C, Zhou SY, Mei QB, Zhang B l 2018. Construction and optimization of pH-sensitive nanoparticle delivery system containing PLGA and UCCs-2 for targeted treatment of Helicobacter pylori. Colloids Surf B Biointerfaces. 164:11–19. doi: 10.1016/j.colsurfb.2018.01.008.
  • Luo M, Tang L, Dong Y, Huang H, Deng Z, Sun Y. 2021. Antibacterial natural products lobophorin L and M from the marine-derived Streptomyces sp. 4506. Nat Prod Res. 35(24):5581–5587. doi: 10.1080/14786419.2020.1797730.
  • Manda V, Avula B, Ali Z, Wong Y-H, Smillie T, Khan I, Khan S. 2013. Characterization of in vitro ADME properties of diosgenin and dioscin from Dioscorea villosa. Planta Med. 79(15):1421–1428. doi: 10.1055/s-0033-1350699.
  • Mansuri S, Kesharwani P, Jain K, Tekade RK, Jain NK. 2016. Mucoadhesion: a promising approach in drug delivery system. React Funct Polym. 100:151–172. doi: 10.1016/j.reactfunctpolym.2016.01.011.
  • Menchicchi B, Hensel A, Goycoolea FM. 2015. Polysaccharides as bacterial antiadhesive agents and “smart” constituents for improved drug delivery systems against Helicobacter pylori infection. Curr Pharm Des. 21(33):4888–4906.
  • Menchicchi B, Savvaidou E, Thöle C, Hensel A, Goycoolea FM. 2019. Low-molecular-weight dextran sulfate nanocapsules inhibit the adhesion of Helicobacter pylori to gastric cells. ACS Appl Bio Mater. 2(11):4777–4789. doi: 10.1021/acsabm.9b00523.
  • Merck. 2007. Index, The Merck Index: An encyclopedia of chemicals, drugs, and biologicals. J Am Chem Soc. 129:2197–2197. doi: 10.1021/ja069838y.
  • Miao R, Jin F, Wang Z, Lu W, Liu J, Li X, Zhang RX. 2022. Oral delivery of decanoic acid conjugated plant protein shell incorporating hybrid nanosystem leverage intestinal absorption of polyphenols. Biomaterials. 281:121373. doi: 10.1016/j.biomaterials.2022.121373.
  • Mirza AZ, Siddiqui FA. 2014. Nanomedicine and drug delivery: a mini review. Int Nano Lett. 4(1):94 doi: 10.1007/s40089-014-0094-7.
  • Mohammadi G, Nokhodchi A, Barzegar-Jalali M, Lotfipour F, Adibkia K, Ehyaei N, Valizadeh H. 2011. Physicochemical and anti-bacterial performance characterization of clarithromycin nanoparticles as colloidal drug delivery system. Colloids Surf B Biointerfaces. 88(1):39–44. doi: 10.1016/j.colsurfb.2011.05.050.
  • Montoto SS, Muraca G, Ruiz ME. 2020. Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Front Mol Biosci. 7:587997. doi: 10.3389/fmolb.2020.587997.
  • Moraes TdM, Rodrigues CM, Kushima H, Bauab TM, Villegas W, Pellizzon CH, Brito ARMS, Hiruma-Lima CA. 2008. Hancornia speciosa: indications of gastroprotective, healing and anti-Helicobacter pylori actions. J Ethnopharmacol. 120(2):161–168. doi: 10.1016/j.jep.2008.08.001.
  • Müller C, Perera G, König V, Bernkop-Schnürch A. 2014. Development and in vivo evaluation of papain-functionalized nanoparticles. Eur J Pharm Biopharm. 87(1):125–131. doi: 10.1016/j.ejpb.2013.12.012.
  • Nakajima S, Inoue H, Satake H, Chatani R, Ohara M, Tsubakimoto Y, Fujii M, Hasegawa H, Takahashi K, Hayafuji K, et al. 2022. Two-dimension tailor-made therapy: a new salvage therapy after multiple eradication failures for Helicobacter pylori infection. Gastro Hep Adv. 1(2):210–222. doi: 10.1016/j.gastha.2021.11.006.
  • National Center for Biotechnology Information. 2022. PubChem compound summary for CID 62883, Amoxicillin trihydrate, Bethesda (MD): National Center for Biotechnology Information. [accessed 2022 Jul 20]. https://pubchem.ncbi.nlm.nih.gov/compound/Amoxicillin-trihydrate.
  • Nejati S, Karkhah A, Darvish H, Validi M, Ebrahimpour S, Nouri HR. 2018. Influence of Helicobacter pylori virulence factors CagA and VacA on pathogenesis of gastrointestinal disorders. Microb Pathog. 117:43–48. doi: 10.1016/j.micpath.2018.02.016.
  • Neu HC. 1991. The development of macrolides: clarithromycin in perspective, http://jac.oxfordjournals.org/. doi: 10.1093/jac/27.suppl_a.1.
  • Newman DJ, Cragg GM. 2020. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 83(3):770–803. doi: 10.1021/acs.jnatprod.9b01285.
  • Öztekin M, Yılmaz B, Ağagündüz D, Capasso R. 2021. Overview of Helicobacter pylori infection: clinical features, treatment, and nutritional aspects. Diseases. 9(4):66. doi: 10.3390/diseases9040066.
  • Palacios-Espinosa JF, Núñez-Aragón PN, Gomez-Chang E, Linares E, Bye R, Romero I. 2021. Anti-Helicobacter pylori activity of Artemisia ludoviciana subsp. Mexicana and two of its bioactive components, estafiatin and eupatilin. Molecules. 26(12):3654. doi: 10.3390/molecules26123654.
  • Paliwal R, Paliwal SR, Kenwat R, Kurmi BD, Sahu MK. 2020. Expert opinion on therapeutic patents solid lipid nanoparticles: a review on recent perspectives and patents. Expert Opin Ther Pat. 30(3):179–194. doi: 10.1080/13543776.2020.1720649.
  • Pompilio A, Scocchi M, Mangoni ML, Shirooie S, Serio A, Ferreira Garcia da Costa Y, Alves MS, Şeker Karatoprak G, Süntar I, Khan H, et al. 2023. Bioactive compounds: a goldmine for defining new strategies against pathogenic bacterial biofilms? Crit Rev Microbiol. 49(1):117–149. doi: 10.1080/1040841X.2022.2038082.
  • Qin Y, Lao YH, Wang H, Zhang J, Yi K, Chen Z, Han J, Song W, Tao Y, Li M. 2021. Combatting Helicobacter pylori with oral nanomedicines. J Mater Chem B. 9(48):9826–9838. doi: 10.1039/d1tb02038b.
  • Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. 2015. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem. 7(4):493–512. doi: 10.4155/fmc.15.6.
  • Rahman N, Ajmal A, Ali F, Rastrelli L. 2020. Core proteome mediated therapeutic target mining and multi-epitope vaccine design for Helicobacter pylori. Genomics. 112(5):3473–3483. doi: 10.1016/j.ygeno.2020.06.026.
  • Rai A, Pinto S, Velho TR, Ferreira AF, Moita C, Trivedi U, Evangelista M, Comune M, Rumbaugh KP, Simões PN, et al. 2016. One-step synthesis of high-density peptide-conjugated gold nanoparticles with antimicrobial efficacy in a systemic infection model. Biomaterials. 85:99–110. doi: 10.1016/j.biomaterials.2016.01.051.
  • Rodrigues AD, Roberts EM, Mulford DJ, Yao Y, Ouellet D. 1997. Oxidative metabolism of clarithromycin in the presence of human liver microsomes major role for the cytochrome P4503A (CYP3A). Drug Metab Dispos. 25(5):623–630. https://dmd.aspetjournals.org/content/25/5/623.
  • Rossiter SE, Fletcher MH, Wuest WM. 2017. Natural products as platforms to overcome antibiotic resistance. Chem Rev. 117(19):12415–12474. doi: 10.1021/acs.chemrev.7b00283.
  • Roszczenko-Jasińska P, Wojtyś MI, Jagusztyn-Krynicka EK. 2020. Helicobacter pylori treatment in the post-antibiotics era-searching for new drug targets. Appl Microbiol Biotechnol. 104(23):9891–9905. doi: 10.1007/s00253-020-10945-w/Published.
  • Rozza AL, Moraes TDM, Kushima H, Tanimoto A, Marques MOM, Bauab TM, Hiruma-Lima CA, Pellizzon CH. 2011. Gastroprotective mechanisms of Citrus lemon (Rutaceae) essential oil and its majority compounds limonene and β-pinene: involvement of heat-shock protein-70, vasoactive intestinal peptide, glutathione, sulfhydryl compounds, nitric oxide and prostaglandin E2. Chem Biol Interact. 189(1–2):82–89. doi: 10.1016/j.cbi.2010.09.031.
  • Rozza AL, Pellizzon CH. 2013. Essential oils from medicinal and aromatic plants: a review of the gastroprotective and ulcer-healing activities. Fundam Clin Pharmacol. 27(1):51–63. doi: 10.1111/j.1472-8206.2012.01067.x.
  • Salvi VR, Pawar P. 2019. Nanostructured lipid carriers (NLC) system: a novel drug targeting carrier. J Drug Deliv Sci Technol. 51:255–267. doi: 10.1016/j.jddst.2019.02.017.
  • Santos RS, Dakwar GR, Zagato E, Brans T, Figueiredo C, Raemdonck K, Azevedo NF, de Smedt SC, Braeckmans K. 2017. Intracellular delivery of oligonucleotides in Helicobacter pylori by fusogenic liposomes in the presence of gastric mucus. Biomaterials. 138:1–12. doi: 10.1016/j.biomaterials.2017.05.029.
  • Sarparanta MP, Bimbo LM, Mäkilä EM, Salonen JJ, Laaksonen PH, Helariutta AMK, Linder MB, Hirvonen JT, Laaksonen TJ, Santos HA, et al. 2012. The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials. 33(11):3353–3362. doi: 10.1016/j.biomaterials.2012.01.029.
  • Seaberg J, Montazerian H, Hossen MN, Bhattacharya R, Khademhosseini A, Mukherjee P. 2021. Hybrid nanosystems for biomedical applications. ACS Nano. 15(2):2099–2142. doi: 10.1021/acsnano.0c09382.
  • Seabra CL, Nunes C, Brás M, Gomez-Lazaro M, Reis CA, Gonçalves IC, Reis S, Martins MCL. 2018. Lipid nanoparticles to counteract gastric infection without affecting gut microbiota. Eur J Pharm Biopharm. 127:378–386. doi: 10.1016/j.ejpb.2018.02.030.
  • Sharaf M, Arif M, Khan S, Abdalla M, Shabana S, Chi Z, Liu C. 2021. Co-delivery of hesperidin and clarithromycin in a nanostructured lipid carrier for the eradication of Helicobacter pylori in vitro. Bioorg Chem. 112:104896. doi: 10.1016/j.bioorg.2021.104896.
  • Shen Y, Zou Y, Chen X, Li P, Rao Y, Yang X, Sun Y, Hu H. 2020. Antibacterial self-assembled nanodrugs composed of berberine derivatives and rhamnolipids against Helicobacter pylori. J Control Release. 328:575–586. doi: 10.1016/j.jconrel.2020.09.025.
  • Shi LL, Xie H, Lu J, Cao Y, Liu JY, Zhang XX, Zhang H, Cui JH, Cao QR. 2016. Positively charged surface-modified solid lipid nanoparticles promote the intestinal transport of docetaxel through multifunctional mechanisms in rats. Mol Pharm. 13(8):2667–2676. doi: 10.1021/acs.molpharmaceut.6b00226.
  • Silambarasan S, Vangnai AS. 2016. Biodegradation of 4-nitroaniline by plant-growth promoting Acinetobacter sp. AVLB2 and toxicological analysis of its biodegradation metabolites. J Hazard Mater. 302:426–436. doi: 10.1016/j.jhazmat.2015.10.010.
  • Singh S. 2010. Nanomedicine–nanoscale drugs and delivery systems. J Nanosci Nanotechnol. 10(12):7906–7918. doi: 10.1166/jnn.2010.3617.
  • Sonaje K, Lin K-J, Tseng MT, Wey S-P, Su F-Y, Chuang E-Y, Hsu C-W, Chen C-T, Sung H-W. 2011. Effects of chitosan-nanoparticle-mediated tight junction opening on the oral absorption of endotoxins. Biomaterials. 32(33):8712–8721. doi: 10.1016/j.biomaterials.2011.07.086.
  • Sousa C, Ferreira R, Azevedo NF, Oleastro M, Azeredo J, Figueiredo C, Melo LDR. 2022. Helicobacter pylori infection: from standard to alternative treatment strategies. Crit Rev Microbiol. 48(3):376–396. doi: 10.1080/1040841X.2021.1975643.
  • Souto EB, Doktorovova S, Boonme P. 2011. Lipid-based colloidal systems (nanoparticles, microemulsions) for drug delivery to the skin: materials and end-product formulations. J Drug Deliv Sci Technol. 21(1):43–54. doi: 10.1016/S1773-2247(11)50005-X.
  • Spiegel M, Krzyżek P, Dworniczek E, Adamski R, Sroka Z. 2021. In silico screening and in vitro assessment of natural products with anti-virulence activity against Helicobacter pylori. Molecules. 27(1):10. doi: 10.3390/molecules27010020.
  • Spósito L, Fortunato GC, de Camargo BAF, Ramos MdS, Souza M d, Meneguin AB, Bauab TM, Chorilli M. 2021. Exploiting drug delivery systems for oral route in the peptic ulcer disease treatment. J Drug Target. 29(10):1029–1047. doi: 10.1080/1061186X.2021.1904249.
  • Spósito L, Oda FB, Vieira JH, Carvalho FA, dos Santos Ramos MA, de Castro RC, Crevelin EJ, Crotti AEM, Santos AG, da Silva PB, et al. 2019. In vitro and in vivo anti-Helicobacter pylori activity of Casearia sylvestris leaf derivatives. J Ethnopharmacol. 233:1–12. doi: 10.1016/j.jep.2018.12.032.
  • Sturgill MG, Rapp RP. 1992. Clarithromycin: review of a new macrolide antibiotic with improved microbiologic spectrum and favorable pharmacokinetic and adverse effect profiles. Ann Pharmacother. 26(9):1099–1108. doi: 10.1177/106002809202600912.
  • Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. 2016. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 99(Pt A):28–51. doi: 10.1016/j.addr.2015.09.012.
  • Sun M, Wang T, Li L, Li X, Zhai Y, Zhang J, Li W. 2021. The application of inorganic nanoparticles in molecular targeted cancer therapy: EGFR targeting. Front Pharmacol. 12:702445. doi: 10.3389/fphar.2021.702445.
  • Suzuki S, Esaki M, Kusano C, Ikehara H, Gotoda T. 2019. Development of Helicobacter pylori treatment: how do we manage antimicrobial resistance? World J Gastroenterol. 25(16):1907–1912. doi: 10.3748/wjg.v25.i16.1907.
  • Tan SLJ, Billa N. 2021. Improved bioavailability of poorly soluble drugs through gastrointestinal muco-adhesion of lipid nanoparticles. Pharmaceutics. 13(11):1817. doi: 10.3390/pharmaceutics13111817.
  • Tayseer I, Aburjai T, Abu-Qatouseh L, Al-Karabieh N, Ahmed W, Al-Samydai A. 2020. In vitro anti-Helicobacter pylori activity of capsaicin. J. Pure Appl. Microbiol. 14(1):279–286. doi: 10.22207/JPAM.14.1.29.
  • Thamphiwatana S, Fu V, Zhu J, Lu D, Gao W, Zhang L. 2013. Nanoparticle-stabilized liposomes for pH-responsive gastric drug delivery. Langmuir. 29(39):12228–12233. doi: 10.1021/la402695c.
  • Thamphiwatana S, Gao W, Obonyo M, Zhang L. 2014. In vivo treatment of Helicobacter pylori infection with liposomal linolenic acid reduces colonization andameliorates inflammation. Proc Natl Acad Sci U S A. 111(49):17600–17605. doi: 10.1073/pnas.1418230111.
  • Vieira Júnior GM, da Rocha CQ, de Souza Rodrigues T, Hiruma-Lima CA, Vilegas W. 2015. New steroidal saponins and antiulcer activity from Solanum paniculatum L. Food Chem. 186:160–167. doi: 10.1016/j.foodchem.2014.08.005.
  • Vlachopoulos A, Karlioti G, Balla E, Daniilidis V, Kalamas T, Stefanidou M, Bikiaris ND, Christodoulou E, Koumentakou I, Karavas E, et al. 2022. Poly(lactic acid)-based microparticles for drug delivery applications: an overview of recent advances. Pharmaceutics. 14(2):359. doi: 10.3390/pharmaceutics14020359.
  • Vukomanović M, Škapin SD, Poljanšek I, Žagar E, Kralj B, Ignjatović N, Uskoković D. 2011. Poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanosphere. Part 2: simultaneous release of a drug and a prodrug (clindamycin and clindamycin phosphate. Colloids Surf B Biointerfaces. 82(2):414–421. doi: 10.1016/j.colsurfb.2010.09.012.
  • Wagner AM, Knipe JM, Orive G, Peppas NA. 2019. Quantum dots in biomedical applications. Acta Biomater. 94:44–63. doi: 10.1016/j.actbio.2019.05.022.
  • Wang F, Meng W, Wang B, Qiao L. 2014. Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett. 345(2):196–202. doi: 10.1016/j.canlet.2013.08.016.
  • Wang R, Song C, Gao A, Liu Q, Guan W, Mei J, Ma L, Cui D. 2022. Antibody-conjugated liposomes loaded with indocyanine green for oral targeted photoacoustic imaging-guided sonodynamic therapy of Helicobacter pylori infection. Acta Biomater. 143:418–427. doi: 10.1016/j.actbio.2022.02.031.
  • Witten J, Ribbeck K. 2017. The particle in the spider’s web: transport through biological hydrogels. Nanoscale. 9(24):8080–8095. doi: 10.1039/c6nr09736g.
  • Wong CY, Al-Salami H, Dass CR. 2018. Microparticles, microcapsules and microspheres: a review of recent developments and prospects for oral delivery of insulin. Int J Pharm. 537(1–2):223–244. doi: 10.1016/j.ijpharm.2017.12.036.
  • Wong HL, Wu XY, Bendayan R. 2012. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev. 64(7):686–700. doi: 10.1016/j.addr.2011.10.007.
  • Wu Y, Song Z, Deng G, Jiang K, Wang H, Zhang X, Han H. 2021. Gastric acid powered nanomotors release antibiotics for in vivo treatment of Helicobacter pylori infection. Small. 17(11):e2006877. doi: 10.1002/smll.202006877.
  • Yamada T. 1994. Helicobacter pylori in peptic ulcer disease. JAMA. 272(1):65. doi: 10.1001/jama.1994.03520010077036.
  • Yan J, Peng C, Chen P, Zhang W, Jiang C, Sang S, Zhu W, Yuan Y, Hong Y, Yao M. 2022. In-vitro anti-Helicobacter pylori activity and preliminary mechanism of action of Canarium album Raeusch. fruit extracts. J Ethnopharmacol. 283:114578. doi: 10.1016/j.jep.2021.114578.
  • Yuan H, Chen CY, Chai GH, Du YZ, Hu FQ. 2013. Improved transport and absorption through gastrointestinal tract by pegylated solid lipid nanoparticles. Mol Pharm. 10(5):1865–1873. doi: 10.1021/mp300649z.
  • Yuan Y, Liu Y, He Y, Zhang B, Zhao L, Tian S, Wang Q, Chen S, Li Z, Liang S, et al. 2022. Intestinal-targeted nanotubes-in-microgels composite carriers for capsaicin delivery and their effect for alleviation of Salmonella induced enteritis. Biomaterials. 287:121613. doi: 10.1016/j.biomaterials.2022.121613.
  • Zhang Q, Wu W, Zhang J, Xia X. 2020. Eradication of Helicobacter pylori: the power of nanosized formulations. Nanomedicine. 15(5):527–542. doi: 10.2217/nnm-2019-0329.
  • Zhang RX, Ahmed T, Li LY, Li J, Abbasi AZ, Wu XY. 2017. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. Nanoscale. 9(4):1334–1355. doi: 10.1039/C6NR08486A.
  • Zhang S, Asghar S, Yu F, Chen Z, Hu Z, Ping Q, Shao F, Xiao Y. 2019. BSA nanoparticles modified with N-acetylcysteine for improving the stability and mucoadhesion of curcumin in the gastrointestinal tract. J Agric Food Chem. 67(33):9371–9381. doi: 10.1021/acs.jafc.9b02272.
  • Zhang Z, Tan S, Feng SS. 2012. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials. 33(19):4889–4906. doi: 10.1016/j.biomaterials.2012.03.046.
  • Zhi X, Liu Y, Lin L, Yang M, Zhang L, Zhang L, Liu Y, Alfranca G, Ma L, Zhang Q, et al. 2019. Oral pH sensitive GNS@ab nanoprobes for targeted therapy of Helicobacter pylori without disturbance gut microbiome. Nanomedicine. 20:102019. doi: 10.1016/j.nano.2019.102019.
  • Zhong J, Xia B, Shan S, Zheng A, Zhang S, Chen J, Liang X-J. 2021. High-quality milk exosomes as oral drug delivery system. Biomaterials. 277:121126. doi: 10.1016/j.biomaterials.2021.121126.
  • Zhou Y, Ye Z, Wang Y, Huang Z, Zheng C, Shi J, Tang W, Zhang P, Wang S, Huang Y. 2021. Long-term changes in the gut microbiota after triple therapy, sequential therapy, bismuth quadruple therapy and concomitant therapy for Helicobacter pylori eradication in Chinese children. Helicobacter. 26(4):e12809. doi: 10.1111/hel.12809.
  • Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, Durazzo A, Lucarini M, Eder P, Silva AM, et al. 2020. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 25(16):3731. doi: 10.3390/molecules25163731.
  • Zuckerman JM. 2004. Macrolides and ketolides: azithromycin, clarithromycin, telithromycin. Infect Dis Clin North Am. 18(3):621–649. doi: 10.1016/j.idc.2004.04.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.