180
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A comprehensive guide on screening and selection of a suitable AMP against biofilm-forming bacteria

, , , , &
Received 04 Oct 2023, Accepted 30 Nov 2023, Published online: 15 Dec 2023

References

  • Adams MD, Nickel GC, Bajaksouzian S, Lavender H, Murthy AR, Jacobs MR, Bonomo RA. 2009. Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob Agents Chemother. 53(9):3628–3634. doi: 10.1128/AAC.00284-09.
  • Afrin S, Gupta V. 2023. Pharmaceutical formulation. Treasure Island, FL: StatPearls Publishing.
  • Alav I, Sutton JM, Rahman KM. 2018. Role of bacterial efflux pumps in biofilm formation. J Antimicrob Chemother. 73(8):2003–2020. doi: 10.1093/jac/dky042.
  • Andersson DI, Hughes D, Kubicek-Sutherland JZ. 2016. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat. 26:43–57. doi: 10.1016/j.drup.2016.04.002.
  • Asma ST, Imre K, Morar A, Herman V, Acaroz U, Mukhtar H, Arslan-Acaroz D, Shah SR, Gerlach R. 2022. An overview of biofilm formation–combating strategies and mechanisms of action of antibiofilm agents. Life. 12(8):1110. doi: 10.3390/life12081110.
  • Assoni L, Milani B, Carvalho MR, Nepomuceno LN, Waz NT, Guerra ME, Converso TR, Darrieux M. 2020. Resistance mechanisms to antimicrobial peptides in gram-positive bacteria. Front Microbiol. 11:593215. doi: 10.3389/fmicb.2020.593215.
  • Aulin LBS, Liakopoulos A, van der Graaf PH, Rozen DE, van Hasselt JGC. 2021. Design principles of collateral sensitivity-based dosing strategies. Nat Commun. 12(1):5691. doi: 10.1038/s41467-021-25927-3.
  • Bastos P, Trindade F, da Costa J, Ferreira R, Vitorino R. 2018. Human antimicrobial peptides in bodily fluids: current knowledge and therapeutic perspectives in the postantibiotic era. Med Res Rev. 38(1):101–146. doi: 10.1002/med.21435.
  • Bayer AS, Prasad R, Chandra J, Koul A, Smriti M, Varma A, Skurray RA, Firth N, Brown MH, Koo SP, et al. 2000. In vitro resistance of Staphylococcus aureus to thrombin-induced platelet microbicidal protein is associated with alterations in cytoplasmic membrane fluidity. Infect Immun. 68(6):3548–3553. doi: 10.1128/IAI.68.6.3548-3553.2000.
  • Bechinger B, Gorr SU. 2017. Antimicrobial peptides: mechanisms of action and resistance. J Dent Res. 96(3):254–260. doi: 10.1177/0022034516679973.
  • Bengtsson T, Lönn J, Khalaf H, Palm E. 2018. The lantibiotic gallidermin acts bactericidal against Staphylococcus epidermidis and Staphylococcus aureus and antagonizes the bacteria-induced proinflammatory responses in dermal fibroblasts. Microbiologyopen. 7(6):e00606. doi: 10.1002/mbo3.606.
  • Benítez-Chao DF, León-Buitimea A, Lerma-Escalera JA, Morones-Ramírez JR. 2021. Bacteriocins: an overview of antimicrobial, toxicity, and biosafety assessment by in vivo models. Front Microbiol. 12:630695. doi: 10.3389/fmicb.2021.630695.
  • Bhadra P, Yan J, Li J, Fong S, Siu SW. 2018. AmPEP: sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest. Sci Rep. 8(1):1697. doi: 10.1038/s41598-018-19752-w.
  • Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y. 2021. Antimicrobial peptides: an update on classifications and databases. Int J Mol Sci. 22(21):11691. doi: 10.3390/ijms222111691.
  • Bose B, Downey T, Ramasubramanian AK, Anastasiu DC. 2021. Identification of distinct characteristics of antibiofilm peptides and prospection of diverse sources for efficacious sequences. Front Microbiol. 12:783284. doi: 10.3389/fmicb.2021.783284.
  • Campos MA, Vargas MA, Regueiro V, Llompart CM, Albertí S, Bengoechea JA. 2004. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun. 72(12):7107–7114. doi: 10.1128/IAI.72.12.7107-7114.2004.
  • Casciaro B, Moros M, Rivera-Fernández S, Bellelli A, de la Fuente JM, Mangoni ML. 2017. Gold-nanoparticles coated with the antimicrobial peptide esculentin-1a(1-21)NH2 as a reliable strategy for antipseudomonal drugs. Acta Biomater. 47:170–181. doi: 10.1016/j.actbio.2016.09.041.
  • Chaudhary K, Kumar R, Singh S, Tuknait A, Gautam A, Mathur D, Anand P, Varshney GC, Raghava GP. 2016. A web server and mobile app for computing hemolytic potency of peptides. Sci Rep. 6(1):22843. doi: 10.1038/srep22843.
  • Chen CH, Lu TK. 2020. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics. 9(1):24. doi: 10.3390/antibiotics9010024.
  • Christaki E, Marcou M, Tofarides A. 2020. Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J Mol Evol. 88(1):26–40. doi: 10.1007/s00239-019-09914-3.
  • Deore AB, Dhumane JR, Wagh R, Sonawane R. 2019. The stages of drug discovery and development process. Asian J Pharm Res Dev. 7(6):62–67. doi: 10.22270/ajprd.v7i6.616.
  • Deshayes C, Arafath MN, Apaire-Marchais V, Roger E. 2021. Drug delivery systems for the oral administration of antimicrobial peptides: promising tools to treat infectious diseases. Front Med Technol. 3:778645. doi: 10.3389/fmedt.2021.778645.
  • Deshayes S, Lee MW, Schmidt NW, Xian W, Kasko A, Wong GC. 2016. How to teach old antibiotics new tricks. In: Epand R, editor. Host defense peptides and their potential as therapeutic agents. Cham, Heidelberg: Springer. doi: 10.1007/978-3-319-32949-9_10
  • Di Luca M, Maccari G, Maisetta G, Batoni G. 2015. BaAMPs: the database of biofilm-active antimicrobial peptides. Biofouling. 31(2):193–199. doi: 10.1080/08927014.2015.1021340.
  • Díaz-Puertas R, Álvarez-Martínez FJ, Falco A, Barrajón-Catalán E, Mallavia R. 2023. Phytochemical-based nanomaterials against antibiotic-resistant bacteria: an updated review. Polymers. 15(6):1392. doi: 10.3390/polym15061392.
  • Dunsing V, Irmscher T, Barbirz S, Chiantia S. 2019. Purely polysaccharide-based biofilm matrix provides size-selective diffusion barriers for nanoparticles and bacteriophages. Biomacromolecules. 20(10):3842–3854. doi: 10.1021/acs.biomac.9b00938.
  • Ferdous Z, Nemmar A. 2020. Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci. 21(7):2375. doi: 10.3390/ijms21072375.
  • Findlay B, Zhanel GG, Schweizer F. 2010. Cationic amphiphiles, a new generation of antimicrobials inspired by the natural antimicrobial peptide scaffold. Antimicrob Agents Chemother. 54(10):4049–4058. doi: 10.1128/AAC.00530-10.
  • Fleming D, Rumbaugh KP. 2017. Approaches to dispersing medical biofilms. Microorganisms. 5(2):15. doi: 10.3390/microorganisms5020015.
  • Forbes J, Krishnamurthy K. 2023. Biochemistry, peptide. In: StatPearls. Treasure Island, FL: StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK562260/
  • Foster TJ, Geoghegan JA, Ganesh VK, Höök M. 2014. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol. 12(1):49–62. doi: 10.1038/nrmicro3161.
  • Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR. 2021. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev. 50(13):7820–7880. doi: 10.1039/d0cs00729c.
  • Gautam A, Chaudhary K, Kumar R, Raghava GP. 2015. Computer-aided virtual screening and designing of cell-penetrating peptides. In: Langel Ü, editor. Cell-penetrating peptides. Methods in molecular biology, vol. 1324. New York: Humana Press. doi: 10.1007/978-1-4939-2806-4_4.
  • Gautam A, Chaudhary K, Kumar R, Sharma A, Kapoor P, Tyagi A, Raghava GP. 2013. In silico approaches for designing highly effective cell penetrating peptides. J Transl Med. 11(1):74. doi: 10.1186/1479-5876-11-74.
  • Gautier R, Douguet D, Antonny B, Drin G. 2008. HELIQUEST: a web server to screen sequences with specific alpha-helical properties. Bioinformatics. 24(18):2101–2102. doi: 10.1093/bioinformatics/btn392.
  • Gawde U, Chakraborty S, Waghu FH, Barai RS, Khanderkar A, Indraguru R, Shirsat T, Idicula-Thomas S. 2023. CAMPR4: a database of natural and synthetic antimicrobial peptides. Nucleic Acids Res. 51(D1):D377–D383. doi: 10.1093/nar/gkac933.
  • Gebhard S, Fang C, Shaaly A, Leslie DJ, Weimar MR, Kalamorz F, Carne A, Cook GM. 2014. Identification and characterization of a bacitracin resistance network in Enterococcus faecalis. Antimicrob Agents Chemother. 58(3):1425–1433. doi: 10.1128/AAC.02111-13.
  • Gera S, Kankuri E, Kogermann K. 2022. Antimicrobial peptides – unleashing their therapeutic potential using nanotechnology. Pharmacol Ther. 232:107990. doi: 10.1016/j.pharmthera.2021.107990.
  • Gooderham WJ, Gellatly SL, Sanschagrin F, McPhee JB, Bains M, Cosseau C, Levesque RC, Hancock REW. 2009. The sensor kinase PhoQ mediates virulence in Pseudomonas aeruginosa. Microbiology. 155(Pt 3):699–711. doi: 10.1099/mic.0.024554-0.
  • Gottler LM, Ramamoorthy A. 2009. Structure, membrane orientation, mechanism, and function of pexiganan – a highly potent antimicrobial peptide designed from magainin. Biochim Biophys Acta. 1788(8):1680–1686. doi: 10.1016/j.bbamem.2008.10.009.
  • Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GP. 2013. In silico approach for predicting toxicity of peptides and proteins. PLOS One. 8(9):e73957. doi: 10.1371/journal.pone.0073957.
  • Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GP. 2015. Peptide toxicity prediction. In: Zhou P and Huang J, editors. Computational peptidology. Methods in molecular biology, vol. 1268. New York, NY: Humana Press. https://doi.org/10.1007/978-1-4939-2285-7_7.
  • Hammami R, Zouhir A, Ben Hamida J, Fliss I. 2007. BACTIBASE: a new web-accessible database for bacteriocin characterization. BMC Microbiol. 7(1):89. doi: 10.1186/1471-2180-7-89.
  • Hernando-Amado S, Coque TM, Baquero F, Martínez JL. 2019. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat Microbiol. 4(9):1432–1442. doi: 10.1038/s41564-019-0503-9.
  • Hoelscher MP, Forner J, Calderone S, Krämer C, Taylor Z, Loiacono FV, Agrawal S, Karcher D, Moratti F, Kroop X, et al. 2022. Expression strategies for the efficient synthesis of antimicrobial peptides in plastids. Nat Commun. 13(1):5856. doi: 10.1038/s41467-022-33516-1.
  • Huan Y, Kong Q, Mou H, Yi H. 2020. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol. 11:582779. doi: 10.3389/fmicb.2020.582779.
  • Jain P, Hirst JD. 2010. Automatic structure classification of small proteins using random forest. BMC Bioinformatics. 11(1):364. doi: 10.1186/1471-2105-11-364.
  • Jhong JH, Yao L, Pang Y, Li Z, Chung CR, Wang R, Li S, Li W, Luo M, Ma R, et al. 2022. dbAMP 2.0: updated resource for antimicrobial peptides with an enhanced scanning method for genomic and proteomic data. Nucleic Acids Res. 50(D1):D460–D470. doi: 10.1093/nar/gkab1080.
  • Joo H-S, Fu C-I, Otto M. 2016. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci. 371(1695):20150292. doi: 10.1098/rstb.2015.0292.
  • Joseph S, Karnik S, Nilawe P, Jayaraman VK, Idicula-Thomas S. 2012. ClassAMP: a prediction tool for classification of antimicrobial peptides. IEEE/ACM Trans Comput Biol Bioinform. 9(5):1535–1538. doi: 10.1109/TCBB.2012.89.
  • Kandaswamy K, Liew TH, Wang CY, Huston-Warren E, Meyer-Hoffert U, Hultenby K, Schröder JM, Caparon MG, Normark S, Henriques-Normark B, et al. 2013. Focal targeting by human β-defensin 2 disrupts localized virulence factor assembly sites in Enterococcus faecalis. Proc Natl Acad Sci U S A. 110(50):20230–20235. doi: 10.1073/pnas.1319066110.
  • Karas JA, Chen F, Schneider-Futschik EK, Kang Z, Hussein M, Swarbrick J, Hoyer D, Giltrap AM, Payne RJ, Li J, et al. 2020. Synthesis and structure–activity relationships of teixobactin. Ann N Y Acad Sci. 1459(1):86–105. doi: 10.1111/nyas.14282.
  • Khan A, Davlieva M, Panesso D, Rincon S, Miller WR, Diaz L, Reyes J, Cruz MR, Pemberton O, Nguyen AH, et al. 2019. Antimicrobial sensing coupled with cell membrane remodeling mediates antibiotic resistance and virulence in Enterococcus faecalis. Proc Natl Acad Sci U S A. 116(52):26925–26932. doi: 10.1073/pnas.1916037116.
  • Kim MK, Kang N, Ko SJ, Park J, Park E, Shin DW, Kim SH, Lee SA, Lee JI, Lee SH, et al. 2018. Antibacterial and antibiofilm activity and mode of action of magainin 2 against drug-resistant Acinetobacter baumannii. Int J Mol Sci. 19(10):3041. doi: 10.3390/ijms19103041.
  • Kintses B, Jangir PK, Fekete G, Számel M, Méhi O, Spohn R, Daruka L, Martins A, Hosseinnia A, Gagarinova A, et al. 2019. Chemical-genetic profiling reveals limited cross-resistance between antimicrobial peptides with different modes of action. Nat Commun. 10(1):5731. doi: 10.1038/s41467-019-13618-z.
  • Lai Z, Yuan X, Chen H, Zhu Y, Dong N, Shan A. 2022. Strategies employed in the design of antimicrobial peptides with enhanced proteolytic stability. Biotechnol Adv. 59:107962. doi: 10.1016/j.biotechadv.2022.107962.
  • Lainson JC, Daly SM, Triplett K, Johnston SA, Hall PR, Diehnelt CW. 2017. Synthetic antibacterial peptide exhibits synergy with oxacillin against MRSA. ACS Med Chem Lett. 8(8):853–857. doi: 10.1021/acsmedchemlett.7b00200.
  • Langendonk RF, Neill DR, Fothergill JL. 2021. The building blocks of antimicrobial resistance in Pseudomonas aeruginosa: implications for current resistance-breaking therapies. Front Cell Infect Microbiol. 11:665759. doi: 10.3389/fcimb.2021.665759.
  • Lata S, Sharma BK, Raghava GP. 2007. Analysis and prediction of antibacterial peptides. BMC Bioinformatics. 8(1):263. doi: 10.1186/1471-2105-8-263.
  • Lázár V, Martins A, Spohn R, Daruka L, Grézal G, Fekete G, Számel M, Jangir PK, Kintses B, Csörgő B, et al. 2018. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nat Microbiol. 3(6):718–731. doi: 10.1038/s41564-018-0164-0.
  • Lee HT, Lee CC, Yang JR, Lai JZ, Chang KY. 2015. A large-scale structural classification of antimicrobial peptides. Biomed Res Int. 2015:475062. doi: 10.1155/2015/475062.
  • Lei J, Sun L, Huang S, Zhu C, Li P, He J, Mackey V, Coy DH, He Q. 2019. The antimicrobial peptides and their potential clinical applications. Am J Transl Res. 11(7):3919–3931.
  • Li J, Koh J-J, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW. 2017. Membrane active antimicrobial peptides: translating mechanistic insights to design. Front Neurosci. 11:73. doi: 10.3389/fnins.2017.00073.
  • Li W, Separovic F, O’Brien-Simpson NM, Wade JD. 2021. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem Soc Rev. 50(8):4932–4973. doi: 10.1039/d0cs01026j.
  • Liang W, Enée E, Andre-Vallee C, Falcone M, Sun J, Diana J. 2022. Intestinal cathelicidin antimicrobial peptide shapes a protective neonatal gut microbiota against pancreatic autoimmunity. Gastroenterology. 162(4):1288–1302.e16. doi: 10.1053/j.gastro.2021.12.272.
  • Libardo MD, Bahar AA, Ma B, Fu R, McCormick LE, Zhao J, McCallum SA, Nussinov R, Ren D, Angeles-Boza AM, et al. 2017. Nuclease activity gives an edge to host-defense peptide piscidin 3 over piscidin 1, rendering it more effective against persisters and biofilms. FEBS J. 284(21):3662–3683. doi: 10.1111/febs.14263.
  • Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, et al. 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 16(2):161–168. doi: 10.1016/S1473-3099(15)00424-7.
  • Llobet E, Tomás JM, Bengoechea JA. 2008. Capsule polysaccharide is a bacterial decoy for antimicrobial peptides. Microbiology. 154(Pt 12):3877–3886. doi: 10.1099/mic.0.2008/022301-0.
  • Łoboda D, Kozłowski H, Rowińska-Żyrek M. 2018. Antimicrobial peptide–metal ion interactions – a potential way of activity enhancement. New J Chem. 42(10):7560–7568. doi: 10.1039/C7NJ04709F.
  • López GD, Suesca E, Álvarez-Rivera G, Rosato A, Ibáñez E, Cifuentes A, Leidy C, Carazzone C. 2020. Carotenogenesis of Staphylococcus aureus new insights and impact on membrane biophysical properties. bioRxiv. 2020.07.19.210609.
  • Luong HX, Thanh TT, Tran TH. 2020. Antimicrobial peptides – advances in development of therapeutic applications. Life Sci. 260:118407. doi: 10.1016/j.lfs.2020.118407.
  • Manna M, Mukhopadhyay C. 2009. Cause and effect of melittin-induced pore formation: a computational approach. Langmuir. 25(20):12235–12242. doi: 10.1021/la902660q.
  • Martínez-García S, Chávez-Cabrera C, Quintana ET, Marsch-Moreno R, Ibáñez-Hernández MA, Zenteno JC, Cruz-Aguilar M, Velázquez-Guadarrama N, Betanzos-Cabrera G, Rodríguez-Martínez S, et al. 2019. Differential expression of the apsXRS system by antimicrobial peptide LL-37 in commensal and clinical Staphylococcus epidermidis isolates. Indian J Microbiol. 59(3):295–303. doi: 10.1007/s12088-019-00800-6.
  • Matthyssen T, Li W, Holden JA, Lenzo JC, Hadjigol S, O’Brien-Simpson NM. 2021. The potential of modified and multimeric antimicrobial peptide materials as superbug killers. Front Chem. 9:795433. doi: 10.3389/fchem.2021.795433.
  • McPhee JB, Lewenza S, Hancock REW. 2003. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA–PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa: PmrA–PmrB of Pseudomonas aeruginosa. Mol Microbiol. 50(1):205–217. doi: 10.1046/j.1365-2958.2003.03673.x.
  • Mirzaei R, Mohammadzadeh R, Alikhani MY, Shokri Moghadam M, Karampoor S, Kazemi S, Barfipoursalar A, Yousefimashouf R. 2020. The biofilm-associated bacterial infections unrelated to indwelling devices. IUBMB Life. 72(7):1271–1285. doi: 10.1002/iub.2266.
  • Moffatt JH, Harper M, Harrison P, Hale JDF, Vinogradov E, Seemann T, Henry R, Crane B, St Michael F, Cox AD, et al. 2010. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother. 54(12):4971–4977. doi: 10.1128/AAC.00834-10.
  • Mondal RA, Sen D, Arya A, Samanta SK. 2023. Developing anti‑microbial peptide database version 1 to provide comprehensive and exhaustive resource of manually curated AMPs. Sci Rep. 13(1):17843. doi: 10.1038/s41598-023-45016-3.
  • Moreira Brito JC, Carvalho LR, Neves de Souza A, Carneiro G, Magalhães PP, Farias LM, Guimarães NR, Verly RM, Resende JM, Elena de Lima M. 2022. PEGylation of the antimicrobial peptide LyeTx I-b maintains structure-related biological properties and improves selectivity. Front Mol Biosci. 9:1001508. doi: 10.3389/fmolb.2022.1001508.
  • Naskar A, Kim KS. 2023. Friends against the Foe: synergistic photothermal and photodynamic therapy against bacterial infections. Pharmaceutics. 15(4):1116. doi: 10.3390/pharmaceutics15041116.
  • Negut I, Bita B, Groza A. 2022. Polymeric coatings and antimicrobial peptides as efficient systems for treating implantable medical devices associated-infections. Polymers. 14(8):1611. doi: 10.3390/polym14081611.
  • Nešuta O, Budešínský M, Hadravová R, Monincová L, Humpolicková J, Cerovský V. 2017. How proteases from Enterococcus faecalis contribute to its resistance to short α-helical antimicrobial peptides. Pathog Dis. 75(7):ftx091. doi: 10.1093/femspd/ftx091.
  • Nicolas M, Beito B, Oliveira M, Tudela Martins M, Gallas B, Salmain M, Boujday S, Humblot V. 2021. Strategies for antimicrobial peptides immobilization on surfaces to prevent biofilm growth on biomedical devices. Antibiotics. 11(1):13. doi: 10.3390/antibiotics11010013.
  • Nie B, Long T, Ao H, Zhou J, Tang T, Yue B. 2017. Covalent immobilization of enoxacin onto titanium implant surfaces for inhibiting multiple bacterial species infection and in vivo methicillin-resistant Staphylococcus aureus infection prophylaxis. Antimicrob Agents Chemother. 61(1):e01766-16. doi: 10.1128/AAC.01766-16.
  • Nuri R, Shprung T, Shai Y. 2015. Defensive remodeling: how bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides. Biochim Biophys Acta. 1848(11 Pt B):3089–3100. doi: 10.1016/j.bbamem.2015.05.022.
  • Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE. 2008. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun. 76(9):4176–4182. doi: 10.1128/IAI.00318-08.
  • Pandey R, Mishra SK, Shrestha A. 2021. Characterisation of ESKAPE pathogens with special reference to multidrug resistance and biofilm production in a Nepalese hospital. Infect Drug Resist. 14:2201–2212. doi: 10.2147/IDR.S306688.
  • Patamia V, Zagni C, Fiorenza R, Dattilo S, Riccobene PM, Floresta G, Rescifina A. 2023. Total bio-based material to fight cancer through antimicrobial activity. doi: 10.20944/preprints202306.0502.v1.
  • Patrulea V, Borchard G, Jordan O. 2020. An update on antimicrobial peptides (AMPs) and their delivery strategies for wound infections. Pharmaceutics. 12(9):840. doi: 10.3390/pharmaceutics12090840.
  • Pirtskhalava M, Amstrong AA, Grigolava M, Chubinidze M, Alimbarashvili E, Vishnepolsky B, Gabrielian A, Rosenthal A, Hurt DE, Tartakovsky M. 2021. DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res. 49(D1):D288–D297. doi: 10.1093/nar/gkaa991.
  • Pletzer D, Coleman SR, Hancock RE. 2016. Anti-biofilm peptides as a new weapon in antimicrobial warfare. Curr Opin Microbiol. 33:35–40. doi: 10.1016/j.mib.2016.05.016.
  • Prot-pi. 2023. [accessed 2023 Aug 21]. https://www.protpi.ch/Calculator/ProteinTool.
  • Quilès F, Saadi S, Francius G, Bacharouche J, Humbert F. 2016. In situ and real time investigation of the evolution of a Pseudomonas fluorescens nascent biofilm in the presence of an antimicrobial peptide. Biochim Biophys Acta. 1858(1):75–84. doi: 10.1016/j.bbamem.2015.10.015.
  • Rai A, Pinto S, Velho TR, Ferreira AF, Moita C, Trivedi U, Evangelista M, Comune M, Rumbaugh KP, Simões PN, et al. 2016. One-step synthesis of high-density peptide-conjugated gold nanoparticles with antimicrobial efficacy in a systemic infection model. Biomaterials. 85:99–110. doi: 10.1016/j.biomaterials.2016.01.051.
  • Rampioni G, Pillai CR, Longo F, Bondì R, Baldelli V, Messina M, Imperi F, Visca P, Leoni L. 2017. Effect of efflux pump inhibition on Pseudomonas aeruginosa transcriptome and virulence. Sci Rep. 7(1):11392. doi: 10.1038/s41598-017-11892-9.
  • Reygaert WC. 2018. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 4(3):482–501.
  • Römling U, Galperin MY, Gomelsky M. 2013. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev. 77(1):1–52. doi: 10.1128/MMBR.00043-12.
  • Roy R, Tiwari M, Donelli G, Tiwari V. 2018. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 9(1):522–554. doi: 10.1080/21505594.2017.1313372.
  • Seo S, Jung J, Kim CY, Kang H, Lee IH. 2021. Antimicrobial peptides encounter resistance of aureolysin during their action on Staphylococcus aureus biofilm. Biotechnol Bioprocess Eng. 26(2):216–222. doi: 10.1007/s12257-020-0384-z.
  • Shang D, Han X, Du W, Kou Z, Jiang F. 2021. Trp-containing antibacterial peptides impair quorum sensing and biofilm development in multidrug-resistant Pseudomonas aeruginosa and exhibit synergistic effects with antibiotics. Front Microbiol. 12:611009. doi: 10.3389/fmicb.2021.611009.
  • Sharma A, Gupta P, Kumar R, Bhardwaj A. 2016. dPABBs: a novel in silico approach for predicting and designing anti-biofilm peptides. Sci Rep. 6(1):21839. doi: 10.1038/srep21839.
  • Sharma A, Singla D, Rashid M, Raghava GP. 2014. Designing of peptides with desired half-life in intestine-like environment. BMC Bioinformatics. 15(1):282. doi: 10.1186/1471-2105-15-282.
  • Sharma D, Misba L, Khan AU. 2019. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control. 8(1):76. doi: 10.1186/s13756-019-0533-3.
  • Shi G, Kang X, Dong F, Liu Y, Zhu N, Hu Y, Xu H, Lao X, Zheng H. 2022. DRAMP 3.0: an enhanced comprehensive data repository of antimicrobial peptides. Nucleic Acids Res. 50(D1):D488–D496. doi: 10.1093/nar/gkab651.
  • Shireen T, Singh M, Das T, Mukhopadhyay K. 2013. Differential adaptive responses of Staphylococcus aureus to in vitro selection with different antimicrobial peptides. Antimicrob Agents Chemother. 57(10):5134–5137. doi: 10.1128/AAC.00780-13.
  • Simanski M, Gläser R, Köten B, Meyer-Hoffert U, Wanner S, Weidenmaier C, Peschel A, Harder J. 2013. Staphylococcus aureus subverts cutaneous defense by d-alanylation of teichoic acids. Exp Dermatol. 22(4):294–296. doi: 10.1111/exd.12114.
  • Singh A, Amod A, Mulpuru V, Mishra N, Sahoo AK, Samanta SK. 2023. Finding novel AMPs secreted from the human microbiome as potent antibacterial and antibiofilm agents and studying their synergistic activity with Ag NCs. ACS Appl Bio Mater. 6(9):3674–3682. doi: 10.1021/acsabm.3c00302.
  • Singh A, Amod A, Pandey P, Bose P, Pingali MS, Shivalkar S, Varadwaj PK, Sahoo AK, Samanta SK. 2022. Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies. Biomed Mater. 17(2):022003. doi: 10.1088/1748-605X/ac50f6.
  • Singh A, Gautam PK, Verma A, Singh V, Pingali MS, Shivalkar S, Sahoo AK, Samanta SK. 2020. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: a review. Biotechnol Rep. 25:e00427. doi: 10.1016/j.btre.2020.e00427.
  • Singh A, Rani K, Tandon V, Sahoo AK, Samanta SK. 2022. Ag NCs as a potent antibiofilm agent against pathogenic Pseudomonas aeruginosa and Acinetobacter baumannii and drug-resistant Bacillus subtilis by affecting chemotaxis and flagellar assembly pathway genes. Biomater Sci. 10(23):6778–6790. doi: 10.1039/d2bm01399a.
  • Singh A, Verma A, Singh R, Sahoo AK, Samanta SK. 2020. Combination therapy of biogenic C-dots and lysozyme for enhanced antibacterial and antibiofilm activity. Nanotechnology. 32(8):085104. doi: 10.1088/1361-6528/abc2ed.
  • Souza PFN, Marques LSM, Oliveira JTA, Lima PG, Dias LP, Neto NAS, Lopes FES, Sousa JS, Silva AFB, Caneiro RF, et al. 2020. Synthetic antimicrobial peptides: from choice of the best sequences to action mechanisms. Biochimie. 175:132–145. doi: 10.1016/j.biochi.2020.05.016.
  • Spohn R, Daruka L, Lázár V, Martins A, Vidovics F, Grézal G, Méhi O, Kintses B, Számel M, Jangir PK, et al. 2019. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat Commun. 10(1):4538. doi: 10.1038/s41467-019-12364-6.
  • Starr CG, Ghimire J, Guha S, Hoffmann JP, Wang Y, Sun L, Landreneau BN, Kolansky ZD, Kilanowski-Doroh IM, Sammarco MC, et al. 2020. Synthetic molecular evolution of host cell-compatible, antimicrobial peptides effective against drug-resistant, biofilm-forming bacteria. Proc Natl Acad Sci U S A. 117(15):8437–8448. doi: 10.1073/pnas.1918427117.
  • Sun T, Zhan B, Zhang W, Qin D, Xia G, Zhang H, Peng M, Li S-A, Zhang Y, Gao Y, et al. 2018. Carboxymethyl chitosan nanoparticles loaded with bioactive peptide OH-CATH30 benefit nonscar wound healing. Int J Nanomedicine. 13:5771–5786. doi: 10.2147/IJN.S156206.
  • Tan R, Wang M, Xu H, Qin L, Wang J, Cui P, Ru S. 2021. Improving the activity of antimicrobial peptides against aquatic pathogen bacteria by amino acid substitutions and changing the ratio of hydrophobic residues. Front Microbiol. 12:773076. doi: 10.3389/fmicb.2021.773076.
  • Tang Z, Ma Q, Chen X, Chen T, Ying Y, Xi X, Wang L, Ma C, Shaw C, Zhou M. 2021. Recent advances and challenges in nanodelivery systems for antimicrobial peptides (AMPs). Antibiotics. 10(8):990. doi: 10.3390/antibiotics10080990.
  • Tariq M, Singh A, Varshney N, Samanta SK, Sk MP. 2022. Biomass-derived carbon dots as an emergent antibacterial agent. Mater Today Commun. 33:104347. doi: 10.1016/j.mtcomm.2022.104347.
  • Teixeira MC, Carbone C, Sousa MC, Espina M, Garcia ML, Sanchez-Lopez E, Souto EB. 2020. Nanomedicines for the delivery of antimicrobial peptides (AMPs). Nanomaterials. 10(3):560. doi: 10.3390/nano10030560.
  • Thapa RK, Diep DB, Tønnesen HH. 2021. Nanomedicine-based antimicrobial peptide delivery for bacterial infections: recent advances and future prospects. J Pharm Investig. 51(4):377–398. doi: 10.1007/s40005-021-00525-z.
  • Thomas VM, Brown RM, Ashcraft DS, Pankey GA. 2019. Synergistic effect between nisin and polymyxin B against pandrug-resistant and extensively drug-resistant Acinetobacter baumannii. Int J Antimicrob Agents. 53(5):663–668. doi: 10.1016/j.ijantimicag.2019.03.009.
  • Upert G, Luther A, Obrecht D, Ermert P. 2021. Emerging peptide antibiotics with therapeutic potential. Med Drug Discov. 9:100078. doi: 10.1016/j.medidd.2020.100078.
  • van Gent ME, Ali M, Nibbering PH, Kłodzińska SN. 2021. Current advances in lipid and polymeric antimicrobial peptide delivery systems and coatings for the prevention and treatment of bacterial infections. Pharmaceutics. 13(11):1840. doi: 10.3390/pharmaceutics13111840.
  • Verma A, Shivalkar S, Sk MP, Samanta SK, Sahoo AK. 2020. Nanocomposite of Ag NPs and catalytic fluorescent C-dots for synergistic bactericidal activity through enhanced ROS generation. Nanotechnology. 31(40):405704. doi: 10.1088/1361-6528/ab996f.
  • Verma A, Singh A, Shukla N, Samanta SK, Sahoo AK. 2022. Synthesis of highly stable luminescent silver nanoclusters in metal–organic framework for heightened antibacterial activity. Appl Phys A. 128(4):292. doi: 10.1007/s00339-022-05431-1.
  • Wadhwani P, Heidenreich N, Podeyn B, Bürck J, Ulrich AS. 2017. Antibiotic gold: tethering of antimicrobial peptides to gold nanoparticles maintains conformational flexibility of peptides and improves trypsin susceptibility. Biomater Sci. 5(4):817–827. doi: 10.1039/c7bm00069c.
  • Waghu FH, Idicula-Thomas S. 2020. Collection of antimicrobial peptides database and its derivatives: applications and beyond. Protein Sci. 29(1):36–42. doi: 10.1002/pro.3714.
  • Wang G, Li X, Wang Z. 2009. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res. 37:D933–D937. doi: 10.1093/nar/gkn823.
  • Wang G, Li X, Wang Z. 2016. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 44(D1):D1087–D1093. doi: 10.1093/nar/gkv1278.
  • Wang Z, Wang G. 2004. APD: the antimicrobial peptide database. Nucleic Acids Res. 32:D590–D592. doi: 10.1093/nar/gkh025.
  • Wang Z-X, Wang Z, Wu F-G. 2022. Carbon dots as drug delivery vehicles for antimicrobial applications: a minireview. ChemMedChem. 17(13):e202200003. doi: 10.1002/cmdc.202200003.
  • Wu L, Luo Y. 2021. Bacterial quorum-sensing systems and their role in intestinal bacteria–host crosstalk. Front Microbiol. 12:611413. doi: 10.3389/fmicb.2021.611413.
  • Xuan J, Feng W, Wang J, Wang R, Zhang B, Bo L, Chen ZS, Yang H, Sun L. 2023. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist Updat. 68:100954. doi: 10.1016/j.drup.2023.100954.
  • Yadav PK, Chandra S, Kumar V, Kumar D, Hasan SH. 2023. Carbon quantum dots: synthesis, structure, properties, and catalytic applications for organic synthesis. Catalysts. 13(2):422. doi: 10.3390/catal13020422.
  • Yasir M, Willcox MDP, Dutta D. 2018. Action of antimicrobial peptides against bacterial biofilms. Materials. 11(12):2468. doi: 10.3390/ma11122468.
  • You Y, Liu H, Zhu Y, Zheng H. 2023. Rational design of stapled antimicrobial peptides. Amino Acids. 55(4):421–442. doi: 10.1007/s00726-023-03245-w.
  • Zhang LJ, Gallo RL. 2016. Antimicrobial peptides. Curr Biol. 26(1):R14–R19. doi: 10.1016/j.cub.2015.11.017.
  • Zhang Q-Y, Yan Z-B, Meng Y-M, Hong X-Y, Shao G, Ma J-J, Cheng XR, Liu J, Kang J, Fu C-Y. 2021. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res. 8(1):48. doi: 10.1186/s40779-021-00343-2.
  • Zhang Y, Davis DA, AboulFotouh K, Wang J, Williams D, Bhambhani A, Zakrewsky M, Maniruzzaman M, Cui Z, Williams ROIII. 2021. Novel formulations and drug delivery systems to administer biological solids. Adv Drug Deliv Rev. 172:183–210. doi: 10.1016/j.addr.2021.02.011.
  • Zhou W, Bai T, Wang L, Cheng Y, Xia D, Yu S, Zheng Y. 2023. Biomimetic AgNPs@antimicrobial peptide/silk fibroin coating for infection-trigger antibacterial capability and enhanced osseointegration. Bioact Mater. 20:64–80. doi: 10.1016/j.bioactmat.2022.05.015.
  • Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, Durazzo A, Lucarini M, Eder P, Silva AM, et al. 2020. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 25(16):3731. doi: 10.3390/molecules25163731.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.