923
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Antibiotic resistance: a global crisis, problems and solutions

, , , , , , , , & show all
Received 11 Oct 2023, Accepted 28 Jan 2024, Published online: 21 Feb 2024

References

  • Afroza S. 2006. Neonatal sepsis–a global problem: an overview. Mymensingh Med J. 15(1):108–114. doi:10.3329/mmj.v15i1.2.
  • Ahmad M, Khan AU. 2019. Global economic impact of antibiotic resistance: a review. J Glob Antimicrob Resist. 19:313–316. doi:10.1016/j.jgar.2019.05.024.
  • Ahmadian L, Haghshenas MR, Mirzaei B, Khalili Y, Goli HR. 2023. Role of MexAB-OprM efflux pump in the emergence of multidrug-resistant clinical isolates of Pseudomonas aeruginosa in Mazandaran province of Iran. Mol Biol Rep. 50(3):2603–2609. doi:10.1007/s11033-022-08230-2.
  • Ahmadzai MA, Shinwari Q, Al-Rasheed AA, Garba B. 2022. Armed conflict and the proliferation of antimicrobial resistance: the situation in war–ravaged Afghanistan. Int J One Health. 8(1):43–47. doi:10.14202/IJOH.2022.43-47.
  • Akova M. 2016. Epidemiology of antimicrobial resistance in bloodstream infections. Virulence. 7(3):252–266. doi:10.1080/21505594.2016.1159366.
  • Alikhan N-F, Moreno LZ, Castellanos LR, Chattaway MA, McLauchlin J, Lodge M, O’Grady J, Zamudio R, Doughty E, Petrovska L, et al. 2022. Dynamics of Salmonella enterica and antimicrobial resistance in the Brazilian poultry industry and global impacts on public health. PLoS Genet. 18(6):e1010174. doi:10.1371/journal.pgen.1010174.
  • AlMatar M, Albarri O, Makky EA, Köksal F. 2021. Efflux pump inhibitors: new updates. Pharmacol Rep. 73(1):1–16. doi:10.1007/s43440–020–00160–9.
  • AlSheikh HM, Sultan I, Kumar V, et al. 2020. Plant–based phytochemicals as possible alternative to antibiotics in combating bacterial drug resistance. Antibiotics. 9(8):480. doi:10.3390/antibiotics9080480.
  • Anand A, Sharma A, Ravins M, Biswas D, Ambalavanan P, Lim KXZ, Tan RYM, Johri AK, Tirosh B, Hanski E, et al. 2021. Unfolded protein response inhibitors cure group A streptococcal necrotizing fasciitis by modulating host asparagine. Sci Transl Med. 13(605):eabd7465. doi:10.1126/scitranslmed.abd7465.
  • Annunziato G. 2019. Strategies to overcome antimicrobial resistance (AMR) making use of non–essential target inhibitors: a review. Int J Mol Sci. 20(23):5844. doi:10.3390/ijms20235844.
  • Antimicrobial resistance through the looking–GLASS. 2023. Editorial. Lancet Infect Dis. 23(2):131. doi:10.1016/S1473-3099(23)00012-9.
  • Anwar M, Iqbal Q, Saleem F. 2020. Improper disposal of unused antibiotics: an often overlooked driver of antimicrobial resistance. Expert Rev anti Infect Ther. 18(8):697–699. doi:10.1080/14787210.2020.1754797.
  • Argimón S, David S, Underwood A, Abrudan M, Wheeler NE, Kekre M, Abudahab K, Yeats CA, Goater R, Taylor B, et al. 2021. Rapid genomic characterization and global surveillance of Klebsiella using pathogenwatch. Clin Infect Dis. 73(Suppl_4):S325–S335. doi:10.1101/2021.06.22.448967.
  • Argimón S, Nagaraj G, Shamanna V, Sravani D, Vasanth AK, Prasanna A, Poojary A, Bari AK, Underwood A, Kekre M, et al. 2022. Circulation of third–generation cephalosporin resistant Salmonella typhi in Mumbai, India. Clin Infect Dis. 74(12):2234–2237. doi:10.1093/cid/ciab897.
  • Argimón S, Yeats CA, Goater RJ, Abudahab K, Taylor B, Underwood A, Sánchez-Busó L, Wong VK, Dyson ZA, Nair S, et al. 2021. A global resource for genomic predictions of antimicrobial resistance and surveillance of Salmonella typhi at pathogenwatch. Nat Commun. 12(1):2879. doi:10.1101/2020.07.03.186692.
  • Ashwath P, Sannejal AD. 2022. The action of efflux pump genes in conferring drug resistance to Klebsiella Species and their inhibition. J. health Allied Sci. NU. 12(01):24–31. doi:10.1055/s-0041-1731914.
  • Askoura M, Mottawea W, Abujamel T, Taher I. 2011. Efflux pump inhibitors (EPIs) as new antimicrobial agents against Pseudomonas aeruginosa. Libyan J Med. 6(1):5870. doi:10.3402/ljm.v6i0.5870.
  • Aslam B, Rasool M, Idris A, et al. 2020. CRISPR–Cas system: a potential alternative tool to cope antibiotic resistance. Antimicrob Resist Infect. 9(1):1–3. doi:10.1186/s13756–020–00795–6.
  • Aslan AT, Akova M, Paterson DL. 2022. Next-generation polymyxin class of antibiotics: a ray of hope illuminating a dark road. Antibiotics (Basel). 11(12):1711. doi:10.3390/antibiotics11121711.
  • Barcelos VT, Silva CT, Fernandes SF, et al. 2022. Spread of multidrug–resistant Acinetobacter baumannii isolates belonging to IC1 and IC5 major clones in Rondônia state. Brazilian J. Microbiol. 53(2):795–799. doi:10.1007/s42770–022–00706–4.
  • Bartoszko JJ, Mitchell R, Katz K, Mulvey M, Mataseje L, Canadian Nosocomial Infection Surveillance Program (CNISP) Carbapenemase-Producing Organisms (CPO) Working Group. 2022. Characterization of Extensively drug–resistant (XDR) Carbapenemase–producing Enterobacterales (CPE) in Canada from 2019 to 2020. Microbiol Spectr. 10(4):e00975–22. doi:10.1128/spectrum.00975–22.
  • Benigno TG, Ribeiro Junior HL, Azevedo OG, et al. 2022. Clarithromycin–resistant H. pylori primary strains and virulence genotypes in the northeastern region of Brazil. Rev Inst Med Trop São Paulo. 64:1–9. doi:10.1590/S1678–9946202264047.
  • Blair JM, Richmond GE, Piddock LJ. 2014. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol. 9(10):1165–1177. doi:10.2217/fmb.14.66.
  • Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. 2015. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 13(1):42–51. doi:10.1038/nrmicro3380.
  • Bloemberg GV, Keller PM, Stucki D, Trauner A, Borrell S, Latshang T, Coscolla M, Rothe T, Hömke R, Ritter C, et al. 2015. Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N Engl J Med. 373(20):1986–1988. doi:10.1056/NEJMc1505196.
  • Bouvet PJ, Grimont PA. 1986. Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int J Syst Evol Microbiol. 36(2):228–240. doi:10.1099/00207713-36-2-228.
  • Brahma U, Suresh A, Murthy S, Bhandari V, Sharma P. 2022. Antibiotic resistance and molecular profiling of the clinical isolates of Staphylococcus aureus causing bovine mastitis from India. Microorganisms. 10(4):833. doi:10.3390/microorganisms10040833.
  • Brandelli A, Ritter AC, Veras FF. 2017. Antimicrobial activities of metal nanoparticles. In Metal nanoparticles in pharma. Cham: Springer. p. 337–363. doi:10.1007/978–3–319–63790–7_15.
  • Breijyeh Z, Jubeh B, Karaman R. 2020. Resistance of gram–negative bacteria to current antibacterial agents and approaches to resolve it. Molecules. 25(6):1340. doi:10.3390/molecules25061340.
  • Butnariu M, Quispe C, Herrera-Bravo J, Sharifi-Rad J, Singh L, Aborehab NM, Bouyahya A, Venditti A, Sen S, Acharya K, et al. 2022. The pharmacological activities of Crocus sativus L.: a review based on the mechanisms and therapeutic opportunities of its phytoconstituents. Oxid Med Cell Longev. 2022:8214821–8214829. Article ID 8214821. doi:10.1155/2022/8214821.
  • Carapetis JR, Steer AC, Mulholland EK, Weber M. 2005. The global burden of group A streptococcal diseases. Lancet Infect Dis. 5(11):685–694. doi:10.1016/S1473-3099(05)70267-X.
  • Carradori S, Chimenti P, Fazzari M, Granese A, Angiolella L. 2016. Antimicrobial activity, synergism and inhibition of germ tube formation by Crocus sativus–derived compounds against Candida spp. J Enzyme Inhib Med Chem. 31(sup2):189–193. doi:10.1080/14756366.2016.1180596.
  • CastañedaBarba S, Top EM, Stalder T. 2023. Plasmids, a molecular cornerstone of antimicrobial resistance in the One Health era. Nat Rev Microbiol. 22(1):18–32. doi:10.1038/s41579-023-00926-x.
  • Cattoir V. 2016. Streptococcus pyogenes Basic biology to clinical manifestations (Ferretti JJ, Stevens DL, Fischetti VA, editors). Oklahoma City: University of Oklahoma Health Sciences Center Library. p. 1–24
  • Chavan R, Zope V, Chavan N, Patil K, Yeole R, Bhagwat S, Patel M. 2021. Assessment of the in vitro cytochrome P450 (CYP) inhibition potential of nafithromycin, a next generation lactone ketolide antibiotic. Xenobiotica. 51(3):251–261. doi:10.1080/00498254.2020.1839983.
  • Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. 2020. Selective organ targeting (SORT) nanoparticles for tissue–specific mRNA delivery and CRISPR–Cas gene editing. Nat Nanotechnol. 15(4):313–320. doi:10.1038/s41565–020–0669–6.
  • Chevalier J, Atifi S, Eyraud A, Mahamoud A, Barbe J, Pagès JM. 2001. New pyridoquinoline derivatives as potential inhibitors of the fluoroquinolone efflux pump in resistant Enterobacter aerogenes strains. J Med Chem. 44(23):4023–4026. doi:10.1021/jm010911z.
  • Clinical Drug Experience Knowledgebase. 2023. Intrapulmonary Pharmacokinetics of XNW4107, Imipenem and Cilastatin in Healthy Subjects. https://www.cdek.liu.edu/trial/NCT04802863/
  • ClinicalTrials 2023. A first in human study of the safety and tolerability of single and multiple doses of BWC0977 in healthy volunteers. ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT05088421
  • Cools P, Nemec A, Kämpfer P, et al. 2019. Acinetobacter, Chryseobacterium, Moraxella, and other nonfermentative Gram-negative rods. In: Manual of clinical microbiology. ASM Press. p. 829–857. doi:10.1128/9781555817381.ch44.
  • CortezCordova J, Kumar A. 2011. Activity of the efflux pump inhibitor phenylalanine-arginine β-naphthylamide against the AdeFGH pump of Acinetobacter baumannii. Int J Antimicrob Agents. 37(5):420–424. doi:10.1016/j.ijantimicag.2011.01.006.
  • Cristina ML, Spagnolo AM, Sartini M, Carbone A, Oliva M, Schinca E, Boni S, Pontali E. 2023. An overview on Candida auris in healthcare settings. J Fungi (Basel). 9(9):913. doi:10.3390/jof9090913.
  • da Silva RAG, Wong JJ, Antypas H, Choo PY, Goh K, Jolly S, Liang C, Tay Kwan Sing L, Veleba M, Hu G, et al. 2023. Mitoxantrone targets both host and bacteria to overcome vancomycin resistance in Enterococcus faecalis. Sci Adv. 9(8):eadd9280. doi:10.1126/sciadv.add9280.
  • Dai W, Zhang Y, Zhang J, Xue C, Yan J, Li X, Zheng X, Dong R, Bai J, Su Y, et al. 2021. Analysis of antibiotic–induced drug resistance of Salmonella enteritidis and its biofilm formation mechanism. Bioengineered. 12(2):10254–10263. doi:10.1080/21655979.2021.1988251.
  • Darby EM, Trampari E, Siasat P, Gaya MS, Alav I, Webber MA, Blair JMA. 2023. Molecular mechanisms of antibiotic resistance revisited. Nat Rev Microbiol. 21(5):280–295. doi:10.1038/s41579-022-00820-y.
  • David S, Reuter S, Harris SR, Glasner C, Feltwell T, Argimon S, Abudahab K, Goater R, Giani T, Errico G, et al. 2019. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol. 4(11):1919–1929. doi:10.1038/s41564-019-0492-8.
  • D’Cunha N, Moniruzzaman M, Haynes K, Malloci G, Cooper CJ, Margiotta E, Vargiu AV, Uddin MR, Leus IV, Cao F, et al. 2021. Mechanistic duality of bacterial efflux substrates and inhibitors: example of simple substituted cinnamoyl and naphthyl amides. ACS Infect Dis. 7(9):2650–2665. doi:10.1021/acsinfecdis.1c00100.
  • De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. 2020. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev. 33(3):10–128. doi:10.1128/cmr.00181-19.
  • De Sordi L, Khanna V, Debarbieux L. 2017. The gut microbiota facilitates drifts in the genetic diversity and infectivity of bacterial viruses. Cell Host Microbe. 22(6):801–808.e3. doi:10.1016/j.chom.2017.10.010.
  • Drawz SM, Bonomo RA. 2010. Three decades of β–lactamase inhibitors. Clin Microbiol Rev. 23(1):160–201. doi:10.1128/cmr.00037–09.
  • Durand GA, Raoult D, Dubourg G. 2019. Antibiotic discovery: history, methods and perspectives. Int J Antimicrob Agents. 53(4):371–382. doi:10.1016/j.ijantimicag.2018.11.010.
  • Eldholm V, Balloux F. 2016. Antimicrobial resistance in Mycobacterium tuberculosis: the odd one out. Trends Microbiol. 24(8):637–648. doi:10.1016/j.tim.2016.03.007.
  • Farhat N, Gupta D, Ali A, Kumar Y, Akhtar F, Kulanthaivel S, Mishra P, Khan F, Khan AU. 2022. Broad–spectrum inhibitors against class A, B, and C type β–lactamases to block the hydrolysis against antibiotics: kinetics and structural characterization. Microbiol Spectr. 10(5):e00450–22. doi:10.1128/spectrum.00450-22.
  • Farhat N, Khan AU. 2020. Evolving trends of New Delhi Metallo–betalactamse (NDM) variants: a threat to antimicrobial resistance. Infect Genet Evol. 86:104588. doi:10.1016/j.meegid.2020.104588.
  • Farrag HA, Abdallah N, Shehata MMK, Awad EM. 2019. Natural outer membrane permeabilizers boost antibiotic action against irradiated resistant bacteria. J Biomed Sci. 26(1):69. doi:10.1186/s12929–019–0561–6.
  • Fowler PD, Sharma S, Pant DK, Singh S, Wilkins MJ. 2021. Antimicrobial–resistant non–typhoidal Salmonella enterica prevalence among poultry farms and slaughterhouses in Chitwan, Nepal. Vet World. 14(2):437–445. doi:10.14202/vetworld.2021.437-445.
  • Gaiarsa S, Batisti Biffignandi G, Esposito EP, Castelli M, Jolley KA, Brisse S, Sassera D, Zarrilli R. 2019. Comparative analysis of the two Acinetobacter baumannii multilocus sequence typing (MLST) schemes. Front Microbiol. 10:930. doi:10.3389/fmicb.2019.00930.
  • Gill EE, Franco OL, Hancock RE. 2015. Antibiotic adjuvants: diverse strategies for controlling drug‐resistant pathogens. Chem Biol Drug Des. 85(1):56–78. doi:10.1111/cbdd.12478.
  • Gillespie EJ, Ho C-LC, Balaji K, Clemens DL, Deng G, Wang YE, Elsaesser HJ, Tamilselvam B, Gargi A, Dixon SD, et al. 2013. Selective inhibitor of endosomal trafficking pathways exploited by multiple toxins and viruses. Proc Natl Acad Sci U S A. 110(50):E4904–12. doi:10.1073/pnas.1302334110.
  • Gu D, Dong N, Zheng Z, Lin D, Huang M, Wang L, Chan EW-C, Shu L, Yu J, Zhang R, et al. 2018. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis. 18(1):37–46. doi:10.1016/s1473-3099(17)30489-9.
  • Gundi VAKB, Dijkshoorn L, Burignat S, Raoult D, La Scola B. 2009. Validation of partial rpoB gene sequence analysis for the identification of clinically important and emerging Acinetobacter species. Microbiology (Reading). 155(Pt 7):2333–2341. doi:10.1099/mic.0.026054-0.
  • Hamidian M, Nigro SJ. 2019. Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii. Microb Genom. 5(10):e000306. doi:10.1099/mgen.0.000306.
  • Hsu J. 2020. How covid–19 is accelerating the threat of antimicrobial resistance. BMJ. 369:m1983. doi:10.1136/bmj.m1983.
  • Huff WE, Huff GR, Rath NC, Balog JM, Donoghue AM. 2004. Therapeutic efficacy of bacteriophage and baytril (enrofloxacin) individually and in combination to treat colibacillosis in broilers. Poult Sci. 83(12):1944–1947. doi:10.1093/ps/83.12.1944.
  • Huynh B-T, Passet V, Rakotondrasoa A, Diallo T, Kerleguer A, Hennart M, Lauzanne AD, Herindrainy P, Seck A, Bercion R, et al. 2020. Klebsiella pneumoniae carriage in low-income countries: antimicrobial resistance, genomic diversity and risk factors. Gut Microbes. 11(5):1287–1299. doi:10.1080/19490976.2020.1748257.
  • Indian Council of Medical Research. 2022. Annual Report Antimicrobial Resistance Research and Surveillance Network. https://main.icmr.nic.in/sites/default/files/upload_documents/AMRSN_Annual_Report_2022.pdf
  • Javaid N, Olwagen C, Nzenze S, Hawkins P, Gladstone R, McGee L, Breiman RF, Bentley SD, Madhi SA, Lo S, et al. 2022. Population genomics of pneumococcal carriage in South Africa following the introduction of the 13–valent pneumococcal conjugate vaccine (PCV13) immunization. Microb Genom. 8(6):000831. doi:10.1099/mgen.0.000831.
  • Jeannot K, Bolard A, Plésiat P. 2017. Resistance to polymyxins in Gram-negative organisms. Int J Antimicrob Agents. 49(5):526–535. doi:10.1016/j.ijantimicag.2016.11.029.
  • Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C, Colles FM, Wimalarathna H, Harrison OB, Sheppard SK, Cody AJ, et al. 2012. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology. 158(4):1005–1015. doi:10.1099/mic.0.055459-0.
  • Joya M, Aalemi AK, Baryali AT. 2022. Prevalence and antibiotic susceptibility of the common bacterial uropathogen among UTI patients in French Medical Institute for children. Infect Drug Resist. 15:4291–4297. doi:10.2147/IDR.S353818.
  • Karn RR, Acharya R, Rajbanshi AK, Singh SK, Thakur SK, Shah SK, Singh AK, Shah R, Upadhya Kafle S, Bhattachan M, et al. 2021. Antibiotic resistance in patients with chronic ear discharge awaiting surgery in Nepal. Public Health Action. 11(Suppl 1):1–5. doi:10.5588/pha.21.0029.
  • Kaufmann SHE, Dorhoi A, Hotchkiss RS, Bartenschlager R. 2018. Host-directed therapies for bacterial and viral infections. Nat Rev Drug Discov. 17(1):35–56. doi:10.1038/nrd.2017.162.
  • Khalid S, Ahmad N, Ali SM, Khan AU. 2020. Outbreak of efficiently transferred carbapenem–resistant bla NDM–producing gram–negative bacilli isolated from neonatal intensive care unit of an Indian hospital. Microb Drug Resist. 26(3):284–289. doi:10.1089/mdr.2019.0092.
  • Khan, Asad U, Ali, Abid, Srivastava, Gaurava, Sharma, Ashok, Danishuddin,. 2017. Potential inhibitors designed against NDM–1 type metallo–β–lactamases: an attempt to enhance efficacies of antibiotics against multi–drug–resistant bacteria. Sci Rep 7(1):9207–. doi:10.1038/s41598–017–09588–1.
  • Klobucar K, Côté J-P, French S, Borrillo L, Guo ABY, Serrano-Wu MH, Lee KK, Hubbard B, Johnson JW, Gaulin JL, et al. 2021. Chemical screen for vancomycin antagonism uncovers probes of the gram–negative outer membrane. ACS Chem Biol. 16(5):929–942. doi:10.1021/acschembio.1c00179.
  • Ko W-C, Paterson DL, Sagnimeni AJ, Hansen DS, Von Gottberg A, Mohapatra S, Casellas JM, Goossens H, Mulazimoglu L, Trenholme G, et al. 2002. Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. Emerg Infect Dis. 8(2):160–166. doi:10.3201/eid0802.010025.
  • Komeda T, Shrestha S, Sherchan JB, Tohya M, Hishinuma T, Sherchand JB, Tada T, Kirikae T. 2022. Emergence of a highly colistin–resistant Aeromonas jandaei clinical isolate harbouring four genes encoding phosphoethanolamine transferases in Nepal. Int J Antimicrob Agents. 59(4):106544. doi:10.1016/j.ijantimicag.2022.106544.
  • Kortright KE, Chan BK, Koff JL, Turner PE. 2019. Phage therapy: a renewed approach to combat antibiotic–resistant bacteria. Cell Host Microbe. 25(2):219–232. doi:10.1016/j.chom.2019.01.014.
  • Kumar S, Mehrotra T, Talukdar D, Verma J, Chandra Karmakar B, Paul S, Chaudhuri S, Kumari Pragasam A, Bakshi S, Kumari S, et al. 2022. Region–specific genomic signatures of multidrug–resistant Helicobacter pylori isolated from East and South India. Gene. 847:146857. doi:10.1016/j.gene.2022.146857.
  • Kushwaha A, Pokharel K, Kadel AR. 2021. Antibiotic resistance to Escherichia coli among urine culture–positive patients in a tertiary care hospital in Nepal: a descriptive cross–sectional study. JNMA J Nepal Med Assoc. 59(233):39–41. doi:10.31729/jnma.5545.
  • Larsson DJ, Flach CF. 2022. Antibiotic resistance in the environment. Nat Rev Microbiol. 20(5):257–269. doi:10.1038/s41579–021–00649–x.
  • Laws M, Shaaban A, Rahman KM. 2019. Antibiotic resistance breakers: current approaches and future directions. FEMS Microbiol Rev. 43(5):490–516. doi:10.1093/femsre/fuz014.
  • Le Roux F, Blokesch M. 2018. Eco–evolutionary dynamics linked to horizontal gene transfer in Vibrios. Annu Rev Microbiol. 72(1):89–110. doi:10.1146/annurev–micro–090817–062148.
  • Lenaerts A, Barry ICE, Dartois V. 2015. Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol Rev. 264(1):288–307. doi:10.1111/imr.12252.
  • Leonard AFC, Zhang L, Balfour AJ, Garside R, Hawkey PM, Murray AK, Ukoumunne OC, Gaze WH. 2018. Exposure to and colonisation by antibiotic-resistant E. coli in UK coastal water users: environmental surveillance, exposure assessment, and epidemiological study (Beach Bum Survey). Environ. Int. 114:326–333. doi:10.1016/2016j.envint.2017.11.003.
  • Lepak AJ, Wang W, Andes DR. 2020. Pharmacodynamic evaluation of MRX-8, a novel polymyxin, in the neutropenic mouse thigh and lung infection models against Gram-negative pathogens. Antimicrob Agents Chemother. 64(11):10–128. doi:10.1128/aac.01517-20.
  • Lewis K, Ausubel FM. 2006. Prospects for plant–derived antibacterials. Nat Biotechnol. 24(12):1504–1507. doi:10.1038/nbt1206–1504.
  • Lewis K. 2013. Platforms for antibiotic discovery. Nat Rev Drug Discov. 12(5):371–387. doi:10.1038/nrd3975.
  • Liu B, Trout REL, Chu G-H, McGarry D, Jackson RW, Hamrick JC, Daigle DM, Cusick SM, Pozzi C, De Luca F, et al. 2020. Discovery of taniborbactam (VNRX-5133): a broad-spectrum serine-and metallo-β-lactamase inhibitor for carbapenem-resistant bacterial infections. J Med Chem. 63(6):2789–2801. doi:10.1021/acs.jmedchem.9b01518.
  • Liu C, Zhang L, Liu H, Cheng K. 2017. Delivery strategies of the CRISPR–Cas9 gene–editing system for therapeutic applications. J Control Release. 266:17–26. doi:10.1016/j.jconrel.2017.09.012.
  • Liu Y, Tong Z, Shi J, Li R, Upton M, Wang Z. 2021. Drug repurposing for next–generation combination therapies against multidrug–resistant bacteria. Theranostics. 11(10):4910–4928. doi:10.7150/thno.56205.
  • Lomovskaya O, Tsivkovski R, Sun D, Reddy R, Totrov M, Hecker S, Griffith D, Loutit J, Dudley M. 2021. QPX7728, an ultra-broad-spectrum B-lactamase inhibitor for intravenous and oral therapy: overview of biochemical and microbiological characteristics. Front Microbiol. 12:697180. doi:10.3389/fmicb.2021.697180.
  • Lushniak BD. 2014. Antibiotic resistance: a public health crisis. Public Health Rep. 129(4):314–316. doi:10.1177/003335491412900402.
  • Mahlangu MP, Müller EE, Da Costa Dias B, Venter JME, Kularatne RS. 2022. Molecular characterization and detection of macrolide and fluoroquinolone resistance determinants in Mycoplasma genitalium in South Africa, 2015 to 2018. Sex Transm Dis. 49(7):511–516. doi:10.1097/OLQ.0000000000001631.
  • Mahmudul HM. 2021. Scenario of antibiotic resistance in developing countries. In: Antimicrobial resistance - A one health perspective. London, UK: IntechOpen. doi:10.5772/intechopen.94957.
  • Mahto M, Chaudhary M, Shah A, Show KL, Moses FL, Stewart AG. 2021. High antibiotic resistance and mortality with Acinetobacter species in a tertiary hospital, Nepal. Public Health Action. 11(Suppl 1):13–17. doi:10.5588/pha.21.0036.
  • Malhotra-Kumar S, Xavier BB, Das AJ, Lammens C, Butaye P, Goossens H. 2016. Colistin resistance gene mcr–1 harboured on a multidrug resistant plasmid. Lancet Infect Dis. 16(3):283–284. doi:10.1016/s1473–3099(16)00012–8.
  • Malinga NZZ, Shobo CO, Molechan C, Amoako DG, Zishiri OT, Bester LA. 2022. Molecular surveillance and dissemination of Klebsiella pneumoniae on frequently encountered surfaces in South African Public Hospitals. Microb Drug Resist. 28(3):306–316. doi:10.1089/mdr.2020.0546.
  • Manzoor A, Ul-Haq I, Baig S, et al. 2016. Efficacy of locally isolated lactic acid bacteria against antibiotic–resistant uropathogens. Jundishapur J. Microbiol. 9(1):e18952. doi:10.5812/jjm.18952.
  • Martinez–Bond EA, Soriano BM, Williams AH. 2022. The mechanistic landscape of lytic transglycosylase as targets for antibacterial therapy. Curr Opin Struct Biol. 77:102480. doi:10.1016/j.sbi.2022.102480.
  • MarÝ-Almirall M, Cosgaya C, Higgins PG, et al. 2017. MALDI-TOF/MS identification of species from the Acinetobacter baumannii (Ab) group revisited: inclusion of the novel A. áseifertii and A. ádijkshoorniae species. Clin. Microbiol. Infect. 23(3):210-e1. doi:10.1016/j.cmi.2016.11.020.
  • Maryam L, Ali A, Khalid S, et al. 2020. A mechanistic approach to prove the efficacy of combination therapy against New Delhi metallo–β–lactamases producing bacterial strain: a molecular and biochemical approach. European J. Med. Res. 25:1–2. doi:10.1186/s40001–020–00418–1.
  • Maryam L, Khalid S, Ali A, Khan AU. 2019. Synergistic effect of doripenem in combination with cefoxitin and tetracycline in inhibiting NDM–1 producing bacteria. Future Microbiol. 14(8):671–689. doi:10.2217/fmb–2019–0032.
  • Maryam L, Khan AU. 2016. A mechanism of synergistic effect of streptomycin and cefotaxime on CTX–M–15 type β–lactamase producing strain of E. cloacae: a first report. Front Microbiol. 7:2007. doi:10.3389/fmicb.2016.02007.
  • Maryam L, Khan AU. 2017. Synergistic effect of doripenem and cefotaxime to inhibit CTX–M–15 type β–lactamases: biophysical and microbiological views. Front Pharmacol. 8:449. doi:10.3389/fphar.2017.00449.
  • Maryam L, Khan AU. 2018. Combination of aztreonam and cefotaxime against CTX–M–15 type β–lactamases: a mechanism based effective therapeutic approach. Int J Biol Macromol. 116:1186–1195. doi:10.1016/j.ijbiomac.2018.05.153.
  • Maryam L, Usmani SS, Raghava GP. 2021. Computational resources in the management of antibiotic resistance: speeding up drug discovery. Drug Discov Today. 26(9):2138–2151. doi:10.1016/j.drudis.2021.04.016.
  • Mathers AJ, Crook D, Vaughan A, Barry KE, Vegesana K, Stoesser N, Parikh HI, Sebra R, Kotay S, Walker AS, et al. 2019. Klebsiella quasipneumoniae provides a window into carbapenemase gene transfer, plasmid rearrangements, and patient interactions with the hospital environment. Antimicrob Agents Chemother. 63(6):10–128. doi:10.1128/aac.02513-18.
  • Matsumoto T, Mikamo H, Ohge H, Yanagihara K, Weerdenburg E, Go O, Spiessens B, van Geet G, van den Hoven T, Momose A, et al. 2022. Distribution of extraintestinal pathogenic Escherichia coli O–serotypes and antibiotic resistance in blood isolates collected from patients in a surveillance study in Japan. J Infect Chemother. 28(11):1445–1451. doi:10.1016/j.jiac.2022.07.001.
  • McLeod SM, Moussa SH, Hackel MA, Miller AA. 2020. In vitro activity of sulbactam-durlobactam against Acinetobacter baumannii-calcoaceticus complex isolates collected globally in 2016 and 2017. Antimicrob Agents Chemother. 64(4):10–128. doi:10.1128/aac.02534-19.
  • Meatherall BL, Gregson D, Ross T, Pitout JDD, Laupland KB. 2009. Incidence, risk factors, and outcomes of Klebsiella pneumoniae bacteremia. Am J Med. 122(9):866–873. doi:10.1016/j.amjmed.2009.03.034.
  • Merril CR, Biswas B, Carlton R, Jensen NC, Creed GJ, Zullo S, Adhya S. 1996. Long–circulating bacteriophage as antibacterial agents. Proc Natl Acad Sci U S A. 93(8):3188–3192. doi:10.1073/pnas.93.8.3188.
  • Migliaccio A, Bray J, Intoccia M, Stabile M, Scala G, Jolley KA, Brisse S, Zarrilli R. 2023. Phylogenomics of Acinetobacter species and analysis of antimicrobial resistance genes. Front Microbiol. 14:1264030. doi:10.3389/fmicb.2023.1264030.
  • Miura M, Shigemura K, Osawa K, et al. 2022. Genetic characteristics of azithromycin–resistant Neisseria gonorrhoeae collected in Hyogo, Japan during 2015–2019. J Med Microbiol. 71(6):001533. doi:10.1099/jmm.0.001533.
  • Mobasseri G, Thong KL, Teh CS. 2021. Genomic analysis revealing the resistance mechanisms of extended–spectrum β–lactamase–producing Klebsiella pneumoniae isolated from pig and humans in Malaysia. Int Microbiol. 24(2):243–250. doi:10.1007/s10123–021–00161–5.
  • More N, Kharat K, Kharat A. 2017. Berberine from Argemone mexicana L exhibits a broadspectrum antibacterial activity. Acta Biochim Pol. 64(4):653–660. doi:10.18388/abp.2017_1621.
  • Moreno-Gamez S, Hill AL, Rosenbloom DIS, Petrov DA, Nowak MA, Pennings PS. 2015. Imperfect drug penetration leads to spatial monotherapy and rapid evolution of multidrug resistance. Proc Natl Acad Sci U S A. 112(22):E2874–83. doi:10.1073/pnas.1424184112.
  • Munguia J, Nizet V. 2017. Pharmacological targeting of the host–pathogen interaction: alternatives to classical antibiotics to combat drug-resistant superbugs. Trends Pharmacol Sci. 38(5):473–488. doi:10.1016/j.tips.2017.02.003.
  • Munita JM, Arias CA. 2016. Mechanisms of antibiotic resistance. Microbiol Spectr. 4(2): doi:10.1128/microbiolspec.vmbf–0016–2015.
  • Naeemmudeen NM, Mohd Ghazali NAN, Bahari H, Ibrahim R, Samsudin AD, Jasni AS. 2021. Trends in antimicrobial resistance in Malaysia. Med J Malaysia. 76(5):698–705.
  • Naimi HM, André C, Bes M, Tristan A, Gustave C-A, Vandenesch F, Nazari QA, Laurent F, Dupieux C. 2021. Antibiotic resistance profile and molecular characterization of Staphylococcus aureus strains isolated in hospitals in Kabul, Afghanistan. Eur J Clin Microbiol Infect Dis. 40(5):1029–1038. doi:10.1007/s10096–020–04130–0.
  • Nakamura-Silva R, Cerdeira L, Oliveira-Silva M, da Costa KRC, Sano E, Fuga B, Moura Q, Esposito F, Lincopan N, Wyres K, et al. 2022. Multidrug–resistant Klebsiella pneumoniae: a retrospective study in Manaus, Brazil. Arch Microbiol. 204(4):202. doi:10.1007/s00203–022–02813–0.
  • National Center for Biotechnology Information. 2022a. PubChem compound summary for CID 9835049, Avibactam. https://pubchem.ncbi.nlm.nih.gov/compound/Avibactam
  • National Center for Biotechnology Information. 2022b. PubChem compound summary for CID 123630, Tazobactam. https://pubchem.ncbi.nlm.nih.gov/compound/Tazobactam
  • National Center for Biotechnology Information. 2022c. PubChem compound summary for CID 44129647, Relebactam. https://pubchem.ncbi.nlm.nih.gov/compound/Relebactam
  • National Center for Biotechnology Information. 2022d. PubChem compound summary for CID 130313, Sulbactam. https://pubchem.ncbi.nlm.nih.gov/compound/Sulbactam
  • National Center for Biotechnology Information. 2022e. PubChem compound summary for CID 5280980, Clavulanic acid. https://pubchem.ncbi.nlm.nih.gov/compound/Clavulanic–acid
  • NBC news 2023. At least 2 cases of drug-resistant ringworm infections found in the U.S., CDC says. https://www.nbcnews.com/health/health-news/least-two-cases-drug-resistant-ringworm-infections-found-us-cdc-says-rcna83918
  • Nguyen S, Baker K, Padman BS, Patwa R, Dunstan RA, Weston TA, Schlosser K, Bailey B, Lithgow T, Lazarou M, et al. 2017. Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. MBio. 8(6):10–128. doi:10.1128/mbio.01874-17.
  • Nguyen THT, Nguyen HD, Le MH, Nguyen TTH, Nguyen TD, Nguyen DL, Nguyen QH, Nguyen TKO, Michalet S, Dijoux-Franca M-G, et al. 2023. Efflux pump inhibitors in controlling antibiotic resistance: outlook under a heavy metal contamination context. Molecules. 28(7):2912. doi:10.3390/molecules28072912.
  • Nieth A, Verseux C, Römer W. 2015. A question of attire: dressing up bacteriophage therapy for the battle against antibiotic-resistant intracellular bacteria. Springer Sc. Rev. 3(1):1–11. doi:10.1007/s40362-014-0027-x.
  • Nikaido H. 2009. Multidrug resistance in bacteria. Annu Rev Biochem. 78(1):119–146. doi:10.1146/annurev.biochem.78.082907.145923.
  • Nikolich MP, Filippov AA. 2020. Bacteriophage therapy: developments and directions. Antibiotics (Basel). 9(3):135. doi:10.3390/antibiotics9030135.
  • Oechslin F, Piccardi P, Mancini S, Gabard J, Moreillon P, Entenza JM, Resch G, Que Y-A. 2017. Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence. J Infect Dis. 215(5):703–712. doi:10.1093/infdis/jiw632.
  • Ogawara H. 2019. Comparison of antibiotic resistance mechanisms in antibiotic–producing and pathogenic bacteria. Molecules. 24(19):3430. doi:10.3390/molecules24193430.
  • Otto RG, van Gorp E, Kloezen W, Meletiadis J, van den Berg S, Mouton JW. 2019. An alternative strategy for combination therapy: interactions between polymyxin B and non-antibiotics. Int J Antimicrob Agents. 53(1):34–39. doi:10.1016/j.ijantimicag.2018.09.003.
  • Paintsil EK, Ofori LA, Adobea S, Akenten CW, Phillips RO, Maiga-Ascofare O, Lamshöft M, May J, Obiri Danso K, Krumkamp R, et al. 2022. Prevalence and antibiotic resistance in Campylobacter spp. isolated from humans and food–producing animals in West Africa: a systematic review and meta–analysis. Pathogens. 11(2):140. doi:10.3390/pathogens11020140.
  • Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ. 2016. The structure and diversity of human, animal and environmental resistomes. Microbiome. 4(1):54. doi:10.1186/s40168-016-0199-5.
  • Palwe S, Bakthavatchalam YD, Khobragadea K, Kharat AS, Walia K, Veeraraghavan B. 2021. In-vitro selection of ceftazidime/avibactam resistance in OXA-48-like-expressing Klebsiella pneumoniae: in-vitro and in-vivo fitness, genetic basis and activities of β-lactam plus novel β-lactamase inhibitor or β-lactam enhancer combinations. Antibiotics (Basel). 10(11):1318. doi:10.3390/antibiotics10111318.
  • Park JY, Moon BY, Park JW, Thornton JA, Park YH, Seo KS. 2017. Genetic engineering of a temperate phage–based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus. Sci Rep. 7(1):44929. doi:10.1038/srep44929.
  • Pelgrift RY, Friedman AJ. 2013. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 65(13-14):1803–1815. doi:10.1016/j.addr.2013.07.011.
  • Pendleton JN, Gorman SP, Gilmore BF. 2013. Clinical relevance of the ESKAPE pathogens. Expert Rev anti Infect Ther. 11(3):297–308. doi:10.1586/eri.13.12.
  • Penn-Nicholson A, Georghiou SB, Ciobanu N, Kazi M, Bhalla M, David A, Conradie F, Ruhwald M, Crudu V, Rodrigues C, et al. 2022. Detection of isoniazid, fluoroquinolone, ethionamide, amikacin, kanamycin, and capreomycin resistance by the Xpert MTB/XDR assay: a cross–sectional multicentre diagnostic accuracy study. Lancet Infect Dis. 22(2):242–249. doi:10.1016/S1473–3099(21)00452–7.
  • Perovic O, Duse A, Chibabhai V, Black M, Said M, Prentice E, Wadula J, Mahabeer Y, Han KSS, Mogokotleng R, et al. 2022. Acinetobacter baumannii complex, national laboratory–based surveillance in South Africa, 2017 to 2019. PLoS One. 17(8):e0271355. doi:10.1371/journal.pone.0271355.
  • Pi H, Nguyen HT, Venter H, Boileau AR, Woolford L, Garg S, Page SW, Russell CC, Baker JR, McCluskey A, et al. 2020. In vitro activity of robenidine analog NCL195 in combination with outer membrane permeabilizers against gram–negative bacterial pathogens and impact on systemic gram–positive bacterial infection in mice. Front Microbiol. 11:1556. doi:10.3389/fmicb.2020.01556.
  • Podschun R, Ullmann U. 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 11(4):589–603. doi:10.1128/cmr.11.4.589.
  • PubChem. 2004a. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. PubChem compound summary for CID 2603, (3-Chlorophenyl) hydrazonomalononitrile. https://pubchem.ncbi.nlm.nih.gov/compound/3-Chlorophenyl_hydrazonomalononitrile
  • PubChem. 2004b. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. PubChem compound summary for CID 40492789. https://pubchem.ncbi.nlm.nih.gov/compound/40492789
  • Ramirez DM, Ramirez D, Arthur G, et al. 2022. Guanidinylated polymyxins as outer membrane permeabilizers capable of potentiating rifampicin, erythromycin, ceftazidime and aztreonam against gram–negative bacteria. Antibiotics. 11(10):1277. doi:10.3390/antibiotics11101277.
  • Rather MA, Gupta K, Mandal M. 2021. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol. 52(4):1701–1718. doi:10.1007/s42770–021–00624–x.
  • Rawson TM, Moore LSP, Zhu N, Ranganathan N, Skolimowska K, Gilchrist M, Satta G, Cooke G, Holmes A. 2020. Bacterial and fungal coinfection in individuals with coronavirus: a rapid review to support COVID–19 antimicrobial prescribing. Clin Infect Dis. 71(9):2459–2468. doi:10.1093/cid/ciaa530.
  • Roberts T, Dahal P, Shrestha P, Schilling W, Shrestha R, Ngu R, Huong VTL, van Doorn HR, Phimolsarnnousith V, Miliya T, et al. 2022. Antimicrobial resistance patterns in bacteria causing febrile illness in Africa, South Asia and Southeast Asia: a systematic review of published aetiological studies from 1980–2015. Int J Infect Dis. 122:612–621. doi:10.1016/j.ijid.2022.07.018.
  • Rodrigues M, McBride SW, Hullahalli K, Palmer KL, Duerkop BA. 2019. Conjugative delivery of CRISPR–Cas9 for the selective depletion of antibiotic–resistant enterococci. Antimicrob Agents Chemother. 63(11):e01454–19. doi:10.1128/aac.01454–19.
  • Rodríguez-Medina N, Barrios-Camacho H, Duran-Bedolla J, Garza-Ramos U. 2019. Klebsiella variicola: an emerging pathogen in humans. Emerg Microbes Infect. 8(1):973–988. doi:10.1080/22221751.2019.1634981.
  • Saito R, Nakajima J, Prah I, et al. 2022. Penicillin–and ciprofloxacin–resistant invasive Neisseria meningitidis isolates from. Japan. Microbiol. Spectr. 10(3):e00627. 22. doi:10.1128/spectrum.00627–22.
  • Sánchez-Busó L, Yeats CA, Taylor B, Goater RJ, Underwood A, Abudahab K, Argimón S, Ma KC, Mortimer TD, Golparian D, et al. 2021. A community-driven resource for genomic epidemiology and antimicrobial resistance prediction of Neisseria gonorrhoeae at Pathogenwatch. Genome Med. 13(1):61. doi:10.1186/s13073-021-00858-2.
  • Sanchez-Carbonel A, Mondragón B, López-Chegne N, Peña-Tuesta I, Huayan-Dávila G, Blitchtein D, Carrillo-Ng H, Silva-Caso W, Aguilar-Luis MA, Del Valle-Mendoza J, et al. 2021. The effect of the efflux pump inhibitor Carbonyl Cyanide m–Chlorophenylhydrazone (CCCP) on the susceptibility to imipenem and cefepime in clinical strains of Acinetobacter baumannii. PLoS One. 16(12):e0259915. doi:10.1371/journal.pone.0259915.
  • Sanduja P, Gupta M, Somani VK, Yadav V, Dua M, Hanski E, Sharma A, Bhatnagar R, Johri AK. 2020. Cross-serotype protection against group A Streptococcal infections induced by immunization with SPy_2191. Nat Commun. 11(1):3545. doi:10.1038/s41467-020-17299.
  • Sasaki Y, Yonemitsu K, Uema M, Asakura H, Asai T. 2022. Prevalence and antimicrobial resistance of Campylobacter and Salmonella in layer flocks in Honshu, Japan. J. J Vet Med Sci. 84(11):1502–1507. doi:10.1292/jvms.22–0257.
  • Sawatzky P, Demczuk W, Lefebvre B, et al. 2015. Increasing azithromycin resistance in Neisseria gonorrhoeae due to NG–MAST 12302 clonal spread in Canada. to. Antimicrob. 66(3):2022–2018. e01688–21. doi:10.1128/AAC.01688–21.
  • Šedo O, Radolfová-Křížová L, Nemec A, Zdráhal Z. 2018. Limitations of routine MALDI-TOF mass spectrometric identification of Acinetobacter species and remedial actions. J Microbiol Methods. 154:79–85. doi:10.1016/j.mimet.2018.10.009.
  • Selden R, Lee S, Wang WL, Bennett JV, Eickhoff TC. 1971. Nosocomial Klebsiella infections: intestinal colonization as a reservoir. Ann Intern Med. 74(5):657–664. doi:10.7326/0003-4819-74-5-657.
  • Sen K, Berglund T, Patel N, Chhabra N, Ricci DM, Dutta S, Mukhopadhyay AK. 2022. Genotypic analyses and antimicrobial resistance profiles of Campylobacter jejuni from crows (Corvidae) of United States and India reflect their respective local antibiotic burdens. J Appl Microbiol. 132(1):696–706. doi:10.1111/jam.15220.
  • Sharma A, Gupta VK, Pathania R. 2019. Efflux pump inhibitors for bacterial pathogens: from bench to bedside. Indian J Med Res. 149(2):129–145. doi:10.4103/ijmr.IJMR_2079_17.
  • Sharma A, Kumar Arya D, Dua M, Chhatwal GS, Johri AK. 2012. Nano–technology for targeted drug delivery to combat antibiotic resistance. Expert Opin Drug Deliv. 9(11):1325–1332. doi:10.1517/17425247.2012.717927.
  • Sharma G, Dang S, K A, Kalia M, Gabrani R. 2020. Synergistic antibacterial and anti-biofilm activity of nisin like bacteriocin with curcumin and cinnamaldehyde against ESBL and MBL producing clinical strains. Biofouling. 36(6):710–724. doi:10.1080/08927014.2020.1804553.
  • Shaw S, Samanta P, Chowdhury G, Ghosh D, Dey TK, Deb AK, Ramamurthy T, Miyoshi S-I, Ghosh A, Dutta S, et al. 2022. Altered molecular attributes and antimicrobial resistance patterns of Vibrio cholerae O1 El Tor strains isolated from the cholera endemic regions of India. J Appl Microbiol. 133(6):3605–3616. doi:10.1111/jam.15794.
  • Shen D, Ma G, Li C, Jia X, Qin C, Yang T, Wang L, Jiang X, Ding N, Zhang X, et al. 2019. Emergence of a multidrug-resistant hypervirulent Klebsiella pneumoniae sequence type 23 strain with a rare bla CTX-M-24-harboring virulence plasmid. Antimicrob Agents Chemother. 63(3):10–128. doi:10.1128/aac.02273-18.
  • Shon AS, Bajwa RP, Russo TA. 2013. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence. 4(2):107–118. doi:10.4161/viru.22718.
  • Shrestha LB, Syangtan G, Basnet A, Acharya KP, Chand AB, Pokhrel K. 2021. Methicillin–resistant Staphylococcus aureus in Nepal. JNMA J Nepal Med Assoc. 59(237):518–522. doi:10.31729/jnma.6251.
  • Singh L, Cariappa MP, Kaur M. 2016. Klebsiella oxytoca: an emerging pathogen? Med J Armed Forces India. 72(Suppl 1):S59–S61. doi:10.1016/j.mjafi.2016.05.002.
  • Sousa EO, Carneiro RTO, Montes FCOF, et al. 2022. Laboratory–based study of drug resistance and genotypic profile of multidrug–resistant tuberculosis isolates in Salvador, Bahia. Brazil Rev Soc Bras Med Trop. 55:e00132022. doi:10.1590/0037–8682–0013–2022.
  • Sundaresan AK, Vincent K, Mohan GBM, Ramakrishnan J. 2022. Association of sequence types, antimicrobial resistance and virulence genes in Indian isolates of Klebsiella pneumoniae: a comparative genomics study. J Glob Antimicrob Resist. 30:431–441. doi:10.1016/j.jgar.2022.05.006.
  • Tiwari M, Kumar P, Tejavath KK, Tiwari V. 2020. Assessment of molecular mechanism of gallate-polyvinylpyrrolidone-capped hybrid silver nanoparticles against carbapenem-resistant Acinetobacter baumannii. ACS Omega. 5(2):1206–1213. doi:10.1021/acsomega.9b03644.
  • Tiwari V, Kapil A, Moganty RR. 2012. Carbapenem-hydrolyzing oxacillinase in high resistant strains of Acinetobacter baumannii isolated from India. Microb Pathog. 53(2):81–86. doi:10.1016/j.micpath.2012.05.004.
  • Tiwari V, Mishra N, Gadani K, Solanki PS, Shah NA, Tiwari M. 2018. Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii. Front Microbiol. 9:1218. doi:10.3389/fmicb.2018.01218.
  • Tiwari V, Tiwari M, Solanki V. 2017. Polyvinylpyrrolidone-capped silver nanoparticle inhibits infection of carbapenem-resistant strain of Acinetobacter baumannii in the human pulmonary epithelial cell. Front Immunol. 8:973. doi:10.3389/fimmu.2017.00973.
  • Tropical Medicine. 2023. Global Research on AntiMicrobial resistance (GRAM) project. https://www.tropicalmedicine.ox.ac.uk/news/global-burden-of-bacterial-antimicrobial-resistance
  • Tuon FF, Rocha JL, Formigoni–Pinto MR. 2018. Pharmacological aspects and spectrum of action of ceftazidime–avibactam: a systematic review. Infection. 46(2):165–181. doi:10.1007/s15010–017–1096–y.
  • Ugwuanyi FC, Ajayi A, Ojo DA, Adeleye AI, Smith SI. 2021. Evaluation of efflux pump activity and biofilm formation in multidrug resistant clinical isolates of Pseudomonas aeruginosa isolated from a Federal Medical Center in Nigeria. Ann Clin Microbiol Antimicrob. 20(1):11. doi:10.1186/s12941–021–00417–y.
  • Ventola CL. 2015. The antibiotic resistance crisis: part 1: causes and threats. P T. 40(4):277–283.
  • Verma S, Kumari M, Pathak A, Yadav V, Johri AK, Yadav P. 2023. Antibiotic resistance, biofilm formation, and virulence genes of Streptococcus agalactiae serotypes of Indian origin. BMC Microbiol. 23(1):176. doi:10.1186/s12866-023-02877-y.
  • Vrancianu CO, Gheorghe I, Dobre E-G, Barbu IC, Cristian RE, Popa M, Lee SH, Limban C, Vlad IM, Chifiriuc MC, et al. 2020. Emerging strategies to combat β–lactamase producing ESKAPE pathogens. Int J Mol Sci. 21(22):8527. doi:10.3390/ijms21228527.
  • Walesch S, Birkelbach J, Jézéquel G, Haeckl FPJ, Hegemann JD, Hesterkamp T, Hirsch AKH, Hammann P, Müller R. 2023. Fighting antibiotic resistance—strategies and (pre) clinical developments to find new antibacterials. EMBO Reports. 24(1):e56033. doi:10.15252/embr.202256033.
  • Wan F, Draz MS, Gu M, Yu W, Ruan Z, Luo Q. 2021. Novel strategy to combat antibiotic resistance: a sight into the combination of CRISPR/Cas9 and nanoparticles. Pharmaceutics. 13(3):352. doi:10.3390/pharmaceutics13030352.
  • Wang J, Chu L, Wojnárovits L, Takács E. 2020. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: an overview. Sci Total Environ. 744:140997. doi:10.1016/j.scitotenv.2020.140997.
  • White AR, Kaye C, Poupard J, Pypstra R, Woodnutt G, Wynne B. 2004. Augmentin®(amoxicillin/clavulanate) in the treatment of community–acquired respiratory tract infection: a review of the continuing development of an innovative antimicrobial agent. J Antimicrob Chemother. 5(suppl_1):i3–20. doi:10.1093/jac/dkh050.
  • WHO. 2022. 2021 Antibacterial agents in clinical and preclinical development: an overview and analysis. https://www.who.int/publications/i/item/9789240047655
  • WHO. 2023a. Antimicrobial Resistance: briefing to WHO mem­ber states. https://apps.who.int/gb/MSPI/pdf_files/2023/03/Item1_22-03.pdf
  • WHO. 2023b. Global Tuberculosis Report 2016. World Health Organization http://www.who.int/tb/publications/global_report/en/2016
  • Williams A, Wheeler R, Thiriau C, Haouz A, Taha M, Boneca I. 2017. Bulgecin A: the key to a broad–spectrum inhibitor that targets lytic transglycosylases. Antibiotics. 6(1):8. doi:10.3390/antibiotics6010008.
  • Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. 2017. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin Microbiol Rev. 30(1):409–447. doi:10.1128/cmr.00058-16.
  • World Bank 2023. Antimicrobial Resistance (AMR). https://www.worldbank.org/en/topic/health/brief/antimicrobial–resistance
  • World Health Organization. 2019a. New report calls for ur­gent action to avert antimicrobial resistance crisis. https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis
  • World Health Organization. 2019b. Antibacterial agents in clinical development: an analysis of the antibacterial clini­cal development pipeline. https://www.who.int/publications/i/item/9789240000193
  • Wozniak TM, Dyda A, Merlo G, Hall L. 2022. Disease burden, associated mortality and economic impact of antimicrobial resistant infections in Australia. Lancet Reg Health West Pac. 27:100521. doi:10.1016/j.lanwpc.2022.100521.
  • Yadav JP, Kaur S, Dhaka P, Vijay D, Bedi JS. 2022. Prevalence, molecular characterization, and antimicrobial resistance profile of Clostridium perfringens from India: a scoping review. Anaerobe. 77:102639. doi:10.1016/j.anaerobe.2022.102639.
  • Zechini B, Versace I. 2009. Inhibitors of multidrug ­resistant efflux systems in bacteria. Recent Pat Antiinfect Drug Discov. 4(1):37–50. doi:10.2174/157489109787236256.
  • Zhanel GG, Pozdirca M, Golden AR, Lawrence CK, Zelenitsky S, Berry L, Schweizer F, Bay D, Adam H, Zhanel MA, et al. 2022. Sulopenem: an intravenous and oral penem for the treatment of urinary tract infections due to multidrug-resistant bacteria. Drugs. 82(5):533–557. doi:10.1007/s40265-022-01688-1.
  • Zhen X, Lundborg CS, Sun X, Hu X, Dong H. 2019. Economic burden of antibiotic resistance in ESKAPE organisms: a systematic review. Antimicrob Resist Infect Control. 8(1):137. doi:10.1186/s13756–019–0590–7.
  • Zhu Y-G, Zhao Y, Zhu D, Gillings M, Penuelas J, Ok YS, Capon A, Banwart S. 2019. Soil biota, antimicrobial resistance and planetary health. Environ Int. 131:105059. doi:10.1016/j.envint.2019.105059.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.