245
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Vibrio cholerae virulence and its suppression through the quorum-sensing system

, &
Received 30 Jul 2023, Accepted 10 Feb 2024, Published online: 05 Mar 2024

References

  • Absalon C, Van Dellen K, Watnick PI. 2011. A communal bacterial adhesin anchors biofilm and bystander cells to surfaces. PLoS Pathog. 7(8):e1002210. doi:10.1371/journal.ppat.1002210.
  • Ali M, Nelson AR, Lopez AL, Sack DA. 2015. Updated global burden of cholera in endemic countries. PLoS Negl Trop Dis. 9(6):e0003832. doi:10.1371/journal.pntd.0003832.
  • Ali M, Nelson A, Luquero FJ, Azman AS, Debes AK, M’bang’ombe MM, Seyama L, Kachale E, Zuze K, Malichi D, et al. 2017. Safety of a killed oral cholera vaccine (Shanchol) in pregnant women in Malawi: an observational cohort study. Lancet Infect Dis. 17(5):538–544. doi:10.1016/S1473-3099(16)30523-0.
  • Almagro-Moreno S, Pruss K, Taylor RK. 2015. Intestinal colonization dynamics of Vibrio cholerae. PLoS Pathog. 11(5):e1004787. doi:10.1371/journal.ppat.1004787.
  • Anthouard R, DiRita VJ. 2013. Small-molecule inhibitors of toxT expression in Vibrio cholerae. MBio. 4(4):13. doi:10.1128/mBio.00403-13.
  • Attridge SR, Voss E, Manning PA. 1999. Pathogenic and vaccine significance of toxin-coregulated pili of Vibrio cholerae El Tor. J Biotechnol. 73(2–3):109–117. doi:10.1016/S0168-1656(99)00114-5.
  • Augustine N, Goel AK, Sivakumar KC, Kumar RA, Thomas S. 2014. Resveratrol–a potential inhibitor of biofilm formation in Vibrio cholerae. Phytomedicine. 21(3):286–289. doi:10.1016/j.phymed.2013.09.010.
  • Bandyopadhyay P, Sathe M, Ponmariappan S, Sharma A, Sharma P, Srivastava AK, Kaushik MP. 2011. Exploration of in vitro time point quantitative evaluation of newly synthesized benzimidazole and benzothiazole derivatives as potential antibacterial agents. Bioorg Med Chem Lett. 21(24):7306–7309. doi:10.1016/j.bmcl.2011.10.034.
  • Bersani C, Berna M, Pasut G, Veronese FM. 2005. PEG-metronidazole conjugates: synthesis, in vitro and in vivo properties. Farmaco. 60(9):783–788. doi:10.1016/j.farmac.2005.04.015.
  • Bénitez JA, Spelbrink RG, Silva A, Phillips TE, Stanley CM, Boesman-Finkelstein M, Finkelstein RA. 1997. Adherence of Vibrio cholerae to cultured differentiated human intestinal cells: an in vitro colonization model. Infect Immun. 65(8):3474–3477. doi:10.1128/iai.65.8.3474-3477.1997.
  • Berk V, Fong JCN, Dempsey GT, Develioglu ON, Zhuang X, Liphardt J, Yildiz FH, Chu S. 2012. Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science. 337(6091):236–239. doi:10.1126/science.1222981.
  • Bhattacharya D, Sinha R, Mukherjee P, Howlader DR, Nag D, Sarkar S, Koley H, Withey JH, Gachhui R. 2020. Anti-virulence activity of polyphenolic fraction isolated from Kombucha against Vibrio cholerae. Microb Pathog. 140:103927. doi:10.1016/j.micpath.2019.103927.
  • Bi Q, Ferreras E, Pezzoli L, Legros D, Ivers LC, Date K, Qadri F, Digilio L, Sack DA, Ali M, et al. 2017. Protection against cholera from killed whole-cell oral cholera vaccines: a systematic review and meta-analysis. Lancet Infect Dis. 17(10):1080–1088. doi:10.1016/S1473-3099(17)30359-6.
  • Bina XR, Provenzano D, Nguyen N, Bina JE. 2008. Vibrio cholerae RND Family Efflux systems are required for antimicrobial resistance, optimal virulence factor production, and colonization of the infant mouse small intestine. Infect Immun. 76(8):3595–3605. doi:10.1128/IAI.01620-07.
  • Bina XR, Howard MF, Taylor-Mulneix DL, Ante VM, Kunkle DE, Bina JE. 2018. The Vibrio cholerae RND efflux systems impact virulence factor production and adaptive responses via periplasmic sensor proteins. PLoS Pathog. 14(1):e1006804. doi:10.1371/journal.ppat.1006804.
  • Borgeaud S, Metzger LC, Scrignari T, Blokesch M. 2015. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science. 347(6217):63–67. doi:10.1126/science.1260064.
  • Boyaci H, Shah T, Hurley A, Kokona B, Li Z, Ventocilla C, Jeffrey PD, Semmelhack MF, Fairman R, Bassler BL, et al. 2016. Structure, regulation, and inhibition of the quorum-sensing signal integrator LuxO. PLoS Biol. 14(5):e1002464. doi:10.1371/journal.pbio.1002464.
  • Bridges AA, Bassler BL. 2019. The intragenus and interspecies quorum-sensing autoinducers exert distinct control over Vibrio cholerae biofilm formation and dispersal. PLoS Biol. 17(11):e3000429. doi:10.1371/journal.pbio.3000429.
  • Butler SM, Camilli A. 2005. Going against the grain: chemotaxis and infection in Vibrio cholerae. Nat Rev Microbiol. 3(8):611–620. doi:10.1038/nrmicro1207.
  • Caigoy JC, Shimamoto T, Mukhopadhyay AK, Shinoda S, Shimamoto T. 2022. Sequence polymorphisms in Vibrio cholerae HapR affect biofilm formation under aerobic and anaerobic conditions. Appl Environ Microbiol. 88(17):e0104422. doi:10.1128/aem.01044-22.
  • Cameron DE, Urbach JM, Mekalanos JJ. 2008. A defined transposon mutant library and its use in identifying motility genes in Vibrio cholerae. Proc Natl Acad Sci USA. 105(25):8736–8741. doi:10.1073/pnas.0803281105.
  • Carvalho A, Krin E, Korlowski C, Mazel D, Baharoglu Z. 2021. Interplay between Sublethal Aminoglycosides and Quorum Sensing: consequences on Survival in V. cholerae. Cells. 10(11):3227. doi:10.3390/cells10113227.
  • Chaand M, Dziejman M. 2013. Vibrio cholerae VttR A and VttR B regulatory influences extend beyond the type 3 secretion system genomic Island. J Bacteriol. 195(10):2424–2436. doi:10.1128/JB.02151-12.
  • Chaand M, Miller KA, Sofia MK, Schlesener C, Weaver JW, Sood V, Dziejman M. 2015. Type 3 secretion system island encoded proteins required for colonization by non-o1/non-o139 serogroup Vibrio cholerae. Infect Immun. 83(7):2862–2869. doi:10.1128/IAI.03020-14.
  • Chatterjee P, Kanungo S, Bhattacharya SK, Dutta S. 2020. Mapping cholera outbreaks and antibiotic resistant Vibrio cholerae in India: an assessment of existing data and a scoping review of the literature. Vaccine. 38(Suppl 1):A93–A104. doi:10.1016/j.vaccine.2019.12.003.
  • Chatterjee T, Saha T, Sarkar P, Hoque KM, Chatterjee BK, Chakrabarti P. 2021. The gold nanoparticle reduces Vibrio cholerae. pathogenesis by inhibition of biofilm formation and disruption of the production Colloids and Surfaces B: Biointerfaces 204 (2021): 111811.
  • Chatterjee S, Asakura M, Chowdhury N, Neogi SB, Sugimoto N, Haldar S, Awasthi SP, Hinenoya A, Aoki S, Yamasaki S. 2010. Capsaicin, a potential inhibitor of cholera toxin production in Vibrio cholerae. FEMS Microbiol Lett. 306(1):54–60. doi:10.1111/j.1574-6968.2010.01931.x.
  • Chatterjee SN, Chaudhuri K. 2003. Lipopolysaccharides of Vibrio cholerae. Biochim Biophys Acta. 1639(2):65–79. doi:10.1016/j.bbadis.2003.08.004.
  • Cheng AT, Ottemann KM, Yildiz FH. 2015. Vibrio cholerae response regulator VxrB controls colonization and regulates the type VI secretion system. PLoS Pathog. 11(5):e1004933. doi:10.1371/journal.ppat.1004933.
  • Chen X, Wang R, Chen A, Wang Y, Wang Y, Zhou J, Cao R. 2019. Inhibition of mouse RM-1 prostate cancer and B16F10 melanoma by the fusion protein of HSP65 & STEAP1 186-193. Biomed Pharmacother. 111:1124–1131. doi:10.1016/j.biopha.2019.01.012.
  • Chiavelli DA, Marsh JW, Taylor RK. 2001. The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton. Appl Environ Microbiol. 67(7):3220–3225. doi:10.1128/AEM.67.7.3220-3225.2001.
  • Chinnapen DJ-F, Chinnapen H, Saslowsky D, Lencer WI. 2007. Rafting with cholera toxin: endocytosis and trafficking from plasma membrane to ER. FEMS Microbiol Lett. 266(2):129–137. doi:10.1111/j.1574-6968.2006.00545.x.
  • Chowdhury FR, Nur Z, Hassan N, von Seidlein L, Dunachie S. 2017. Pandemics, pathogenicity and changing molecular epidemiology of cholera in the era of global warming. Ann Clin Microbiol Antimicrob. 16(1):10. doi:10.1186/s12941-017-0185-1.
  • Clatworthy AE, Pierson E, Hung DT. 2007. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol. 3(9):541–548. doi:10.1038/nchembio.2007.24.
  • Coburn B, Sekirov I, Finlay BB. 2007. Type III secretion systems and disease. Clin Microbiol Rev. 20(4):535–549. doi:10.1128/CMR.00013-07.
  • Dalsgaard A, Forslund A, Bodhidatta L, Serichantalergs O, Pitarangsi C, Pang L, Shimada T, Echeverria P. 1999. A high proportion of Vibrio cholerae strains isolated from children with diarrhoea in Bangkok, Thailand are multiple antibiotic resistant and belong to heterogenous non-O1, non-O139 O-serotypes. Epidemiol Infect. 122(2):217–226. doi:10.1017/s0950268899002137.
  • Das B, Verma J, Kumar P, Ghosh A, Ramamurthy T. 2020. Antibiotic resistance in Vibrio cholerae: understanding the ecology of resistance genes and mechanisms. Vaccine. 38(Suppl 1):A83–A92. doi:10.1016/j.vaccine.2019.06.031.
  • Davis BM, Waldor MK. 2003. Filamentous phages linked to virulence of Vibrio cholerae. Curr Opin Microbiol. 6(1):35–42. doi:10.1016/S1369-5274(02)00005-X.
  • Dengo-Baloi LC, Semá-Baltazar CA, Manhique LV, Chitio JE, Inguane DL, Langa JP. 2017. Antibiotics resistance in El Tor Vibrio cholerae O1 isolated during cholera outbreaks in Mozambique from 2012 to 2015. PLoS One. 12(8):e0181496. doi:10.1371/journal.pone.0181496.
  • DiRita VJ, Mekalanos JJ. 1991. Periplasmic interaction between two membrane regulatory proteins, ToxR and ToxS, results in signal transduction and transcriptional activation. Cell. 64(1):29–37. doi:10.1016/0092-8674(91)90206-E.
  • DiRita VJ, Parsot C, Jander G, Mekalanos JJ. 1991. Regulatory cascade controls virulence in Vibrio cholerae. Proc Natl Acad Sci USA. 88(12):5403–5407. doi:10.1073/pnas.88.12.5403.
  • Dolores JS, Agarwal S, Egerer M, Satchell KJF. 2015. Vibrio cholerae MARTX toxin heterologous translocation of beta-lactamase and roles of individual effector domains on cytoskeleton dynamics. Mol Microbiol. 95(4):590–604. doi:10.1111/mmi.12879.
  • Dolores J, Satchell KJF. 2013. Analysis of Vibrio cholerae genome sequences reveals unique rtxa variants in environmental strains and an rtxA -null mutation in recent altered El Tor isolates. MBio. 4(2):12. doi:10.1128/mBio.00624-12.
  • Domalaon R, Idowu T, Zhanel GG, Schweizer F. 2018. Antibiotic hybrids: the next generation of agents and adjuvants against Gram-negative pathogens? Clin Microbiol Rev. 31(2):17. doi:10.1128/CMR.00077-17.
  • Dua P, Karmakar A, Ghosh C. 2018. Virulence gene profiles, biofilm formation, and antimicrobial resistance of Vibrio cholerae non-O1/non-O139 bacteria isolated from West Bengal, India. Heliyon. 4(12):e01040. doi:10.1016/j.heliyon.2018.e01040.
  • Erfanimanesh S, Eslami G, Taherpour A, Hashemi A. 2019. Capsaicin inhibitory effects on Vibrio cholerae toxin genes expression. Avicenna J Phytomed. 9(3):187–194.
  • Faloon P, Youngsaye W, Bennion M, Ng WL, Hurley A, Lewis TA, Edwankar RV, Yao E, Pu J, Nag PP, et al. 2013. Discovery of two, structurally distinct agonists of Vibrio cholerae quorum sensing acting via the CqsS membrane receptor. Probe Reports from the NIH Molecular Libraries Program. [Internet].
  • Faruque SM, Mekalanos JJ. 2003. Pathogenicity islands and phages in Vibrio cholerae evolution. Trends Microbiol. 11(11):505–510. doi:10.1016/j.tim.2003.09.003.
  • Faruque, Shah M, Kamruzzaman, M, Sack, David A, Mekalanos, John J, Nair, G Balakrish, Asadulghani, (2003). CTXΦ-independent production of the RS1 satellite phage by Vibrio cholerae. Proc Natl Acad Sci USA, 100(3), 1280–1285. doi:10.1073/pnas.0237385100.
  • Fasano A, Baudry B, Pumplin DW, Wasserman SS, Tall BD, Ketley JM, Kaper JB. 1991. Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc Natl Acad Sci USA. 88(12):5242–5246. doi:10.1073/pnas.88.12.5242.
  • Figueroa-Arredondo P, Heuser JE, Akopyants NS, Morisaki JH, Giono-Cerezo S, Enríquez-Rincón F, Berg DE. 2001. Cell vacuolation caused by Vibrio cholerae hemolysin. Infect Immun. 69(3):1613–1624. doi:10.1128/IAI.69.3.1613-1624.2001.
  • Fleitas Martínez O, Cardoso MH, Ribeiro SM, Franco OL. 2019. Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Front Cell Infect Microbiol. 9:74. doi:10.3389/fcimb.2019.00074.
  • Floyd KA, Lee CK, Xian W, Nametalla M, Valentine A, Crair B, Zhu S, Hughes HQ, Chlebek JL, Wu DC, et al. 2020. c-di-GMP modulates type IV MSHA pilus retraction and surface attachment in Vibrio cholerae. Nat Commun. 11(1):1549. doi:10.1038/s41467-020-15331-8.
  • Fong JCN, Syed KA, Klose KE, Yildiz FH. 2010. Role of Vibrio polysaccharide (vps) genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis. Microbiology. 156(Pt 9):2757–2769. doi:10.1099/mic.0.040196-0.
  • Fu Y, Waldor MK, Mekalanos JJ. 2013. Tn-Seq analysis of Vibrio cholerae intestinal colonization reveals a role for T6SS-mediated antibacterial activity in the host. Cell Host Microbe. 14(6):652–663. doi:10.1016/j.chom.2013.11.001.
  • Fullner KJ, Lencer WI, Mekalanos JJ. 2001. Vibrio cholerae-induced cellular responses of polarized T84 intestinal epithelial cells are dependent on production of cholera toxin and the RTX toxin. Infect Immun. 69(10):6310–6317. doi:10.1128/IAI.69.10.6310-6317.2001.
  • Gao H, Zhang J, Lou J, Li J, Qin Q, Shi Q, Zhang Y, Kan B. 2020. Direct binding and regulation by Fur and HapR of the intermediate regulator and virulence factor genes within the ToxR virulence regulon in Vibrio cholerae. Front Microbiol. 11:709. doi:10.3389/fmicb.2020.00709.
  • Garbern SC, Chu T-C, Yang P, Gainey M, Nasrin S, Kanekar S, Qu K, Nelson EJ, Leung DT, Ahmed D, et al. 2021. Clinical and socio-environmental determinants of multidrug-resistant Vibrio cholerae O1 in older children and adults in Bangladesh. Int J Infect Dis. 105:436–441. doi:10.1016/j.ijid.2021.02.102.
  • Garland M, Loscher S, Bogyo M. 2017. Chemical strategies to target bacterial virulence. Chem Rev. 117(5):4422–4461. doi:10.1021/acs.chemrev.6b00676.
  • Geissler B, Ahrens S, Satchell KJF. 2012. Plasma membrane association of three classes of bacterial toxins is mediated by a basic-hydrophobic motif. Cell Microbiol. 14(2):286–298. doi:10.1111/j.1462-5822.2011.01718.x.
  • Geissler B, Tungekar R, Satchell KJF. 2010. Identification of a conserved membrane localization domain within numerous large bacterial protein toxins. Proc Natl Acad Sci USA. 107(12):5581–5586. doi:10.1073/pnas.0908700107.
  • Gerdes JC, Romig WR. 1975. Genetic basis of toxin production and pathogenesis in Vibrio cholerae: evidence against phage conversion. Infect Immun. 11(3):445–452. doi:10.1128/iai.11.3.445-452.1975.
  • Gholizadeh Tangestani M, Alinezhad J, Khajeian A, Gharibi S, Haghighi MA. 2020. Identification of cholix toxin gene in. Vibrio cholerae. Iranian Journal of Microbiology 12(4):273.
  • Ghosh A, Ramamurthy T. 2011. Antimicrobials & cholera: are we stranded? Indian J Med Res. 133(2):225–231.
  • Gmeiner J, Lüderitz O, Westphal O. 1969. Biochemical studies on lipopolysaccharides of Salmonella R mutants. 6. Investigations on the structure of the lipid A component. Eur J Biochem. 7(3):370–379. doi:10.1111/j.1432-1033.1969.tb19618.x.
  • Gupta P, Mankere B, Chekkoora Keloth S, Tuteja U, Pandey P, Chelvam KT. 2018. Increased antibiotic resistance exhibited by the biofilm of Vibrio cholerae O139. J Antimicrob Chemother. 73(7):1841–1847. doi:10.1093/jac/dky127.
  • Halpern M. 2010. Novel insights into Haemagglutinin Protease (HAP) gene regulation in Vibrio cholerae. Mol Ecol. 19(19):4108–4112. doi:10.1111/j.1365-294X.2010.04809.x.
  • Hammer BK, Bassler BL. 2003. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol. 50(1):101–104. doi:10.1046/j.1365-2958.2003.03688.x.
  • He X, Yang J, Ji M, Chen Y, Chen Y, Li H, Wang H. 2022. A potential delivery system based on cholera toxin: a macromolecule carrier with multiple activities. J Control Release. 343:551–563. doi:10.1016/j.jconrel.2022.01.050.
  • Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, et al. 2000. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature. 406(6795):477–483. doi:10.1038/35020000.
  • Hema M, Balasubramanian S, Princy SA. 2015. Meddling Vibrio cholerae murmurs: a neoteric advancement in cholera research. Indian J Microbiol. 55(2):121–130. doi:10.1007/s12088-015-0520-1.
  • Hema M, Princy SA, Sridharan V, Vinoth P, Balamurugan P, Sumana MN. 2016. Synergistic activity of quorum sensing inhibitor, pyrizine-2-carboxylic acid and antibiotics against multi-drug resistant V. cholerae. RSC Adv. 6(51):45938–45946. doi:10.1039/C6RA04705J.
  • Hema M, Vasudevan S, Balamurugan P, Adline Princy S. 2017. Modulating the global response regulator, LuxO of V. cholerae quorum sensing system using a pyrazine dicarboxylic acid derivative (PDCApy): an antivirulence approach. Front Cell Infect Microbiol. 7:441. doi:10.3389/fcimb.2017.00441.
  • Herrington DA, Hall RH, Losonsky G, Mekalanos JJ, Taylor RK, Levine MM. 1988. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med. 168(4):1487–1492. doi:10.1084/jem.168.4.1487.
  • Higgins DA, Pomianek ME, Kraml CM, Taylor RK, Semmelhack MF, Bassler BL. 2007. The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature. 450(7171):883–886. doi:10.1038/nature06284.
  • Honma Y, Iwanaga M. 2006. Conservation of cholera toxin gene in a strain of cholera toxin non-producing Vibrio cholerae O1. FEMS Microbiol Lett. 154(1):111–116. doi:10.1111/j.1574-6968.1997.tb12631.x.
  • Hsiao A, Zhu J. 2020. Pathogenicity and virulence regulation of Vibrio cholerae at the interface of host-gut microbiome interactions. Virulence. 11(1):1582–1599. doi:10.1080/21505594.2020.1845039.
  • Hunt DE, Gevers D, Vahora NM, Polz MF. 2008. Conservation of the chitin utilization pathway in the Vibrionaceae. Appl Environ Microbiol. 74(1):44–51. doi:10.1128/AEM.01412-07.
  • Ikigai H, Akatsuka A, Tsujiyama H, Nakae T, Shimamura T. 1996. Mechanism of membrane damage by El Tor hemolysin of Vibrio cholerae O1. Infect Immun. 64(8):2968–2973. doi:10.1128/iai.64.8.2968-2973.1996.
  • Islam MS, Islam MS, Mahmud ZH, Cairncross S, Clemens JD, Collins AE. 2015. Role of phytoplankton in maintaining endemicity and seasonality of cholera in Bangladesh. Trans R Soc Trop Med Hyg. 109(9):572–578. doi:10.1093/trstmh/trv057.
  • Jagdale S, Chandekar A. 2017. Optimization of chitosan and cellulose acetate phthalate controlled delivery of methylprednisolone for treatment of inflammatory bowel disease. Adv Pharm Bull. 7(2):203–213. doi:10.15171/apb.2017.025.
  • Jana SK, Gucchait A, Paul S, Saha T, Acharya S, Hoque KM, Misra AK, Chatterjee BK, Chatterjee T, Chakrabarti P. 2021. Virstatin-conjugated gold nanoparticle with enhanced antimicrobial activity against the Vibrio cholerae El Tor biotype. ACS Appl Bio Mater. 4(4):3089–3100. doi:10.1021/acsabm.0c01483.
  • Jermyn WS, Boyd EF. 2002. Characterization of a novel Vibrio pathogenicity island (VPI-2) encoding neuraminidase (nanH) among toxigenic Vibrio cholerae isolates. Microbiology (Reading). 148(Pt 11):3681–3693. doi:10.1099/00221287-148-11-3681.
  • Jermyn WS, Boyd EF. 2005. Molecular evolution of Vibrio pathogenicity island-2 (VPI-2): mosaic structure among Vibrio cholerae and Vibrio mimicus natural isolates. Microbiology (Reading). 151(Pt 1):311–322. doi:10.1099/mic.0.27621-0.
  • Joshi A, Kostiuk B, Rogers A, Teschler J, Pukatzki S, Yildiz FH. 2017. Rules of engagement: the type VI secretion system in Vibrio cholerae. Trends Microbiol. 25(4):267–279. doi:10.1016/j.tim.2016.12.003.
  • Jørgensen R, Purdy AE, Fieldhouse RJ, Kimber MS, Bartlett DH, Merrill AR. 2008. Cholix toxin, a novel ADP-ribosylating factor from Vibrio cholerae. J Biol Chem. 283(16):10671–10678. doi:10.1074/jbc.M710008200.
  • Jung SA, Chapman CA, Ng W-L. 2015. Quadruple Quorum-sensing inputs control Vibrio cholerae virulence and maintain system robustness. PLoS Pathog. 11(4):e1004837. doi:10.1371/journal.ppat.1004837.
  • Kanungo S, Azman AS, Ramamurthy T, Deen J, Dutta S. 2022. Cholera. Lancet. 399(10333):1429–1440. doi:10.1016/S0140-6736(22)00330-0.
  • Kaper JB, Morris JG, Levine MM. 1995. Cholera. Clin Microbiol Rev. 8(1):48–86. doi:10.1128/CMR.8.1.48.
  • Karaolis DKR, Johnson JA, Bailey CC, Boedeker EC, Kaper JB, Reeves PR. 1998. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci USA. 95(6):3134–3139. doi:10.1073/pnas.95.6.3134.
  • Karasawa T, Mihara T, Kurazono H, Nair GB, Garg S, Ramamurthy T, Takeda Y. 1993. Distribution of the zot (zonula occludens toxin) gene among strains of Vibrio cholerae 01 and non-01. FEMS Microbiol Lett. 106(2):143–145. doi:10.1111/j.1574-6968.1993.tb05950.x.
  • Kariisa AT, Grube A, Tamayo R. 2015. Two nucleotide second messengers regulate the production of the Vibrio cholerae colonization factor GbpA. BMC Microbiol. 15(1):166. doi:10.1186/s12866-015-0506-5.
  • Karlsson SL, Thomson N, Mutreja A, Connor T, Sur D, Ali M, Clemens J, Dougan G, Holmgren J, Lebens M. 2016. Retrospective analysis of serotype switching of Vibrio cholerae O1 in a cholera endemic region shows it is a non-random process. PLoS Negl Trop Dis. 10(10):e0005044. doi:10.1371/journal.pntd.0005044.
  • Kathuria R, Chattopadhyay K. 2018. Vibrio cholerae cytolysin: multiple facets of the membrane interaction mechanism of a β -barrel pore-forming toxin. IUBMB Life. 70(4):260–266. doi:10.1002/iub.1725.
  • Khan AI, Ali M, Lynch J, Kabir A, Excler JL, Khan MA, Islam MT, Akter A, Chowdhury F, Saha A, et al. 2019. Safety of a bivalent, killed, whole-cell oral cholera vaccine in pregnant women in Bangladesh: evidence from a randomized placebo-controlled trial. BMC Infect Dis. 19(1):422. doi:10.1186/s12879-019-4006-3.
  • Kirn TJ, Jude BA, Taylor RK. 2005. A colonization factor links Vibrio cholerae environmental survival and human infection. Nature. 438(7069):863–866. doi:10.1038/nature04249.
  • Klose KE, Mekalanos JJ. 1998a. Differential regulation of multiple Flagellins in Vibrio cholerae. J Bacteriol. 180(2):303–316. doi:10.1128/JB.180.2.303-316.1998.
  • Klose KE, Mekalanos JJ. 1998b. Distinct roles of an alternative sigma factor during both free-swimming and colonizing phases of the Vibrio cholerae pathogenic cycle. Mol Microbiol. 28(3):501–520. doi:10.1046/j.1365-2958.1998.00809.x.
  • Kojima S, Yamamoto K, Kawagishi I, Homma M. 1999. The polar flagellar motor of Vibrio cholerae is driven by an Na+ motive force. J Bacteriol. 181(6):1927–1930. doi:10.1128/JB.181.6.1927-1930.1999.
  • Kratz F, Elsadek B. 2012. Clinical impact of serum proteins on drug delivery. J Control Release. 161(2):429–445. doi:10.1016/j.jconrel.2011.11.028.
  • Krukonis ES, DiRita VJ. 2003. From motility to virulence: sensing and responding to environmental signals in Vibrio cholerae. Curr Opin Microbiol. 6(2):186–190. doi:10.1016/S1369-5274(03)00032-8.
  • Krukonis ES, Yu RR, DiRita VJ. 2000. The Vibrio cholerae ToxR/TcpP/ToxT virulence cascade: distinct roles for two membrane-localized transcriptional activators on a single promoter. Mol Microbiol. 38(1):67–84. doi:10.1046/j.1365-2958.2000.02111.x.
  • Kumar A, Das B, Kumar N. 2020. Vibrio Pathogenicity Island-1: the master determinant of cholera pathogenesis. Front Cell Infect Microbiol. 10:561296. doi:10.3389/fcimb.2020.561296.
  • Kumar H, Kawai T, Akira S. 2011. Pathogen recognition by the innate immune system. Int Rev Immunol. 30(1):16–34. doi:10.3109/08830185.2010.529976.
  • Lee BK, Yun YH, Park K. 2015. Smart nanoparticles for drug delivery: boundaries and opportunities. Chem Eng Sci. 125:158–164. doi:10.1016/j.ces.2014.06.042.
  • Lee SH, Hava DL, Waldor MK, Camilli A. 1999. Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell. 99(6):625–634. doi:10.1016/S0092-8674(00)81551-2.
  • Levine MM, Kaper JB, Herrington D, Losonsky G, Morris JG, Clements ML, Black RE, Tall B, Hall R. 1988. Volunteer studies of deletion mutants of Vibrio cholerae O1 prepared by recombinant techniques. Infect Immun. 56(1):161–167. doi:10.1128/iai.56.1.161-167.1988.
  • Li M, Shimada T, Morris JG, Sulakvelidze A, Sozhamannan S. 2002. Evidence for the emergence of non-o1 and non-O139 Vibrio cholerae strains with pathogenic potential by exchange of O-antigen biosynthesis regions. Infect Immun. 70(5):2441–2453. doi:10.1128/IAI.70.5.2441-2453.2002.
  • Lin W, Fullner KJ, Clayton R, Sexton JA, Rogers MB, Calia KE, Calderwood SB, Fraser C, Mekalanos JJ. 1999. Identification of a Vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc Natl Acad Sci USA. 96(3):1071–1076. doi:10.1073/pnas.96.3.1071.
  • Lin W, Kovacikova G, Skorupski K. 2007. The quorum sensing regulator HapR downregulates the expression of the virulence gene transcription factor AphA in Vibrio cholerae by antagonizing Lrp- and VpsR-mediated activation. Mol Microbiol. 64(4):953–967. doi:10.1111/j.1365-2958.2007.05693.x.
  • Lüderitz O, Staub AM, Westphal O. 1966. Immunochemistry of O and R antigens of Salmonella and related Entero­bacteriaceae. Bacteriol Rev. 30(1):192–255. doi:10.1128/br.30.1.192-255.1966.
  • Mashruwala AA, Bassler BL. 2020. The Vibrio cholerae Quorum-sensing protein VqmA integrates cell density, environmental, and host-derived cues into the control of virulence. MBio. 11(4):20. doi:10.1128/mBio.01572-20.
  • McCarter LL. 2001. Polar flagellar motility of the Vibrionaceae. Microbiol Mol Biol Rev. 65(3):445–462, table of contents. doi:10.1128/MMBR.65.3.445-462.2001.
  • Meibom KL, Li XB, Nielsen AT, Wu CY, Roseman S, Schoolnik GK. 2004. The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci USA. 101(8):2524–2529. doi:10.1073/pnas.0308707101.
  • Miller KA, Tomberlin KF, Dziejman M. 2019. Vibrio variations on a type three theme. Curr Opin Microbiol. 47:66–73. doi:10.1016/j.mib.2018.12.001.
  • Miller VL, Mekalanos JJ. 1984. Synthesis of cholera toxin is positively regulated at the transcriptional level by toxR. Proc Natl Acad Sci USA. 81(11):3471–3475. doi:10.1073/pnas.81.11.3471.
  • Millet YA, Alvarez D, Ringgaard S, von Andrian UH, Davis BM, Waldor MK. 2014. Insights into Vibrio cholerae intestinal colonization from monitoring fluorescently labeled bacteria. PLoS Pathog. 10(10):e1004405. doi:10.1371/journal.ppat.1004405.
  • Mondal AK, Sengupta N, Singh M, Biswas R, Lata K, Lahiri I, Dutta S, Chattopadhyay K. 2022. Glu289 residue in the pore-forming motif of Vibrio cholerae cytolysin is important for efficient β-barrel pore formation. J Biol Chem. 298(10):102441. doi:10.1016/j.jbc.2022.102441.
  • Muller A. 1999. Neisserial porin (PorB) causes rapid calcium influx in target cells and induces apoptosis by the activation of cysteine proteases. The EMBO J. 18(2):339–352. doi:10.1093/emboj/18.2.339.
  • Mutreja A, Kim DW, Thomson NR, Connor TR, Lee JH, Kariuki S, Croucher NJ, Choi SY, Harris SR, Lebens M, et al. 2011. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature. 477(7365):462–465. doi:10.1038/nature10392.
  • Nagamune K, Yamamoto K, Naka A, Matsuyama J, Miwatani T, Honda T. 1996. In vitro proteolytic processing and activation of the recombinant precursor of El Tor cytolysin/hemolysin (pro-HlyA) of Vibrio cholerae by soluble hemagglutinin/protease of V. cholerae, trypsin, and other proteases. Infect Immun. 64(11):4655–4658. doi:10.1128/iai.64.11.4655-4658.1996.
  • Naha A, Chowdhury G, Ghosh-Banerjee J, Senoh M, Takahashi T, Ley B, Thriemer K, Deen J, Seidlein LV, Ali SM, et al. 2013. Molecular characterization of high-level-cholera-toxin-producing El Tor variant Vibrio cholerae strains in the Zanzibar archipelago of Tanzania. J Clin Microbiol. 51(3):1040–1045. Mar doi:10.1128/JCM.03162-12.
  • Nair GB, Ramamurthy T, Bhattacharya SK, Mukhopadhyay AK, Garg S, Bhattacharya MK, Takeda T, Shimada T, Takeda Y, Deb BC. 1994. Spread of Vibrio cholerae O139 Bengal in India. J Infect Dis. 169(5):1029–1034. doi:10.1093/infdis/169.5.1029.
  • Nardini M, Dijkstra BW. 1999. α/β hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol. 9(6):732–737. doi:10.1016/S0959-440X(99)00037-8.
  • Narendrakumar L, Gupta SS, Johnson JB, Ramamurthy T, Thomas S. 2019a. Molecular adaptations and antibiotic resistance in Vibrio cholerae: a communal challenge. Microb Drug Resist. 25(7):1012–1022. doi:10.1089/mdr.2018.0354.
  • Narendrakumar L, Theresa M, Krishnankutty Chandrika S, Thomas S. 2019b. Tryptanthrin, a potential biofilm inhibitor against toxigenic Vibrio cholerae, modulating the global quorum sensing regulator, LuxO. Biofouling. 35(10):1093–1103. doi:10.1080/08927014.2019.1696315.
  • Negm RS, Pistole TG. 1999. The porin OmpC of Salmonella typhimurium mediates adherence to macrophages. Can J Microbiol. 45(8):658–669. doi:10.1139/w99-053.
  • Nikaido H. 2003. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 67(4):593–656. doi:10.1128/MMBR.67.4.593-656.2003.
  • Nikaido H, Takatsuka Y. 2009. Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta. 1794(5):769–781. doi:10.1016/j.bbapap.2008.10.004.
  • Ogura K, Yahiro K, Moss J. 2020. Cell death signaling pathway induced by cholix toxin, a cytotoxin and eEF2 ADP-Ribosyltransferase produced by Vibrio cholerae. Toxins. 13(1):12. doi:10.3390/toxins13010012.
  • Olivier V, Haines GK, Tan Y, Satchell KJF. 2007. Hemolysin and the multifunctional autoprocessing RTX toxin are virulence factors during intestinal infection of mice with Vibrio cholerae El Tor O1 strains. Infect Immun. 75(10):5035–5042. doi:10.1128/IAI.00506-07.
  • Papenfort K, Silpe JE, Schramma KR, Cong J-P, Seyedsayamdost MR, Bassler BL. 2017. A Vibrio cholerae autoinducer–receptor pair that controls biofilm formation. Nat Chem Biol. 13(5):551–557. doi:10.1038/nchembio.2336.
  • Peach KC, Cheng AT, Oliver AG, Yildiz FH, Linington RG. 2013. Discovery and biological characterization of the auromomycin chromophore as an inhibitor of biofilm formation in Vibrio cholerae. Chembiochem. 14(16):2209–2215. doi:10.1002/cbic.201300131.
  • Pei J, Grishin NV. 2009. The Rho GTPase inactivation domain in Vibrio cholerae MARTX toxin has a circularly permuted papain-like thiol protease fold. Proteins Struct Funct Bioinf. 77(2):413–419. doi:10.1002/prot.22447.
  • Peterson KM, Mekalanos JJ. 1988. Characterization of the Vibrio cholerae ToxR regulon: identification of novel genes involved in intestinal colonization. Infect Immun. 56(11):2822–2829. doi:10.1128/iai.56.11.2822-2829.1988.
  • Plecha SC, Withey JH. 2015. Mechanism for inhibition of Vibrio cholerae ToxT activity by the unsaturated fatty acid components of bile. J Bacteriol. 197(10):1716–1725. doi:10.1128/JB.02409-14.
  • Priya James H, John R, Alex A, Anoop KR. 2014. Smart polymers for the controlled delivery of drugs – a concise overview. Acta Pharm Sin B. 4(2):120–127. doi:10.1016/j.apsb.2014.02.005.
  • Prouty MG, Correa NE, Klose KE. 2001. The novel sigma54- and sigma28-dependent flagellar gene transcription hierarchy of Vibrio cholerae. Mol Microbiol. 39(6):1595–1609. doi:10.1046/j.1365-2958.2001.02348.x.
  • Ramamurthy T, Nandy RK, Mukhopadhyay AK, Dutta S, Mutreja A, Okamoto K, Miyoshi S-I, Nair GB, Ghosh A. 2020. Virulence regulation and innate host response in the pathogenicity of Vibrio cholerae. Front Cell Infect Microbiol. 10:572096. doi:10.3389/fcimb.2020.572096.
  • Rashed SM, Hasan NA, Alam M, Sadique A, Sultana M, Hoq MM, Sack RB, Colwell RR, Huq A. 2017. Vibrio cholerae O1 with reduced susceptibility to ciprofloxacin and azithromycin isolated from a rural coastal area of Bangladesh. Front Microbiol. 8:252. doi:10.3389/fmicb.2017.00252.
  • Rasko DA, Sperandio V. 2010. Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov. 9(2):117–128. doi:10.1038/nrd3013.
  • Reguera G, Kolter R. 2005. Virulence and the environment: a novel role for Vibrio cholerae toxin-coregulated pili in biofilm formation on chitin. J Bacteriol. 187(10):3551–3555. doi:10.1128/JB.187.10.3551-3555.2005.
  • Reidl J, Klose KE. 2002. Vibrio cholerae and cholera: out of the water and into the host. FEMS Microbiol Rev. 26(2):125–139. doi:10.1111/j.1574-6976.2002.tb00605.x.
  • Rezzoagli C, Archetti M, Mignot I, Baumgartner M, Kümmerli R. 2020. Combining antibiotics with antivirulence compounds can have synergistic effects and reverse selection for antibiotic resistance in Pseudomonas aeruginosa. PLoS Biol. 18(8):e3000805. doi:10.1371/journal.pbio.3000805.
  • Rutherford ST, van Kessel JC, Shao Y, Bassler BL. 2011. AphA and LuxR/HapR reciprocally control quorum sensing in vibrios. Genes Dev. 25(4):397–408. doi:10.1101/gad.2015011.
  • Safa A, Jime JS, Shahel F. 2020. Cholera toxin phage: structural and functional diversity between Vibrio cholerae biotypes. AIMS Microbiol. 6(2):144–151. doi:10.3934/microbiol.2020009.
  • Sakib SN, Reddi G, Almagro-Moreno S. 2018. Environmental role of pathogenic traits in Vibrio cholerae. J Bacteriol. 200(15):17. doi:10.1128/JB.00795-17.
  • Saha S, Aggarwal S, Singh DV. 2023. Attenuation of quorum sensing system and virulence in Vibrio cholerae by phytomolecules. Front Microbiol. 14:1133569. doi:10.3389/fmicb.2023.1133569.
  • Salama NN, Eddington ND, Fasano A. 2006. Tight junction modulation and its relationship to drug delivery. Adv Drug Deliv Rev. 58(1):15–28. doi:10.1016/j.addr.2006.01.003.
  • Singh M, Rupesh N, Pandit SB, Chattopadhyay K. 2021. Curcumin inhibits membrane-damaging pore-forming function of the β-barrel pore-forming toxin Vibrio cholerae cytolysin. Front Microbiol. 12:809782. doi:10.3389/fmicb.2021.809782.
  • Sarker AR, Islam Z, Sultana M, Sheikh N, Mahumud RA, Islam MT, Meer RV, Der Morton A, Khan AI, Clemens JD, et al. 2020. Willingness to pay for oral cholera vaccines in urban Bangladesh. PLoS One. 15(4):e0232600. doi:10.1371/journal.pone.0232600.
  • Sarveswari HB, Gupta KK, Durai R, Solomon AP. 2023. Development of a smart pH-responsive nano-polymer drug, 2-methoxy-4-vinylphenol conjugate against the intestinal pathogen, Vibrio cholerae. Sci Rep. 13(1):1250. doi:10.1038/s41598-023-28033-0.
  • Sarveswari HB, Kalimuthu S, Shanmugam K, Neelakantan P, Solomon AP. 2020. Exploration of Anti-infectives from mangrove-derived micromonospora sp. RMA46 to combat Vibrio cholerae pathogenesis. Front Microbiol. 11:1393. doi:10.3389/fmicb.2020.01393.
  • Sarwar S, Chakraborti S, Bera S, Sheikh IA, Hoque KM, Chakrabarti P. 2016. The antimicrobial activity of ZnO nanoparticles against Vibrio cholerae : Variation in response depends on biotype. Nanomedicine. 12(6):1499–1509. doi:10.1016/j.nano.2016.02.006.
  • Shakhnovich EA, Hung DT, Pierson E, Lee K, Mekalanos JJ. 2007. Virstatin inhibits dimerization of the transcriptional activator ToxT. Proc Natl Acad Sci USA. 104(7):2372–2377. doi:10.1073/pnas.0611643104.
  • Shao Y, Bassler BL. 2012. Quorum-sensing non-coding small RNAs use unique pairing regions to differentially control mRNA targets. Mol Microbiol. 83(3):599–611. doi:10.1111/j.1365-2958.2011.07959.x.
  • Siddique AK, Nair GB, Alam M, Sack DA, Huq A, Nizam A, Longini IM, Jr.Qadri F, Faruque SM, Colwell RR, et al. 2010. El Tor cholera with severe disease: a new threat to Asia and beyond. Epidemiol Infect. 138(3):347–352. doi:10.1017/S0950268809990550.
  • Silva AJ, Benitez JA. 2016. Vibrio cholerae biofilms and cholera pathogenesis. PLoS Negl Trop Dis. 10(2):e0004330. doi:10.1371/journal.pntd.0004330.
  • Silva AJ, Pham K, Benitez JA. 2003. Haemagglutinin/protease expression and mucin gel penetration in El Tor biotype Vibrio cholerae. Microbiology. 149(Pt 7):1883–1891. doi:10.1099/mic.0.26086-0.
  • Singh PK, Bartalomej S, Hartmann R, Jeckel H, Vidakovic L, Nadell CD, Drescher K. 2017. Vibrio cholerae combines individual and collective sensing to trigger biofilm dispersal. Curr Biol. 27(21):3359–3366.e7. doi:10.1016/j.cub.2017.09.041.
  • Sinha VR, Kumria R. 2003. Microbially triggered drug delivery to the colon. Eur J Pharm Sci. 18(1):3–18. doi:10.1016/s0928-0987(02)00221-x.
  • Sit B, Fakoya B, Waldor MK. 2022. Emerging concepts in cholera vaccine design. Annu Rev Microbiol. 76(1):681–702. doi:10.1146/annurev-micro-041320-033201.
  • Sorci G, Faivre B. 2009. Inflammation and oxidative stress in vertebrate host–parasite systems. Philos Trans R Soc Lond B Biol Sci. 364(1513):71–83. doi:10.1098/rstb.2008.0151.
  • Sperandio V, Girón JA, Silveira WD, Kaper JB. 1995. The OmpU outer membrane protein, a potential adherence factor of Vibrio cholerae. Infect Immun. 63(11):4433–4438. doi:10.1128/iai.63.11.4433-4438.1995.
  • Syed KA, Beyhan S, Correa N, Queen J, Liu J, Peng F, Satchell KJF, Yildiz F, Klose KE. 2009. The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. J Bacteriol. 191(21):6555–6570. doi:10.1128/JB.00949-09.
  • Tarsi R, Pruzzo C. 1999. Role of surface proteins in Vibrio cholerae attachment to chitin. Appl Environ Microbiol. 65(3):1348–1351. doi:10.1128/AEM.65.3.1348-1351.1999.
  • Thanassi DG, Cheng LW, Nikaido H. 1997. Active efflux of bile salts by Escherichia coli. J Bacteriol. 179(8):2512–2518. doi:10.1128/jb.179.8.2512-2518.1997.
  • Theuretzbacher U, Outterson K, Engel A, Karlén A. 2020. The global preclinical antibacterial pipeline. Nat Rev Microbiol. 18(5):275–285. doi:10.1038/s41579-019-0288-0.
  • Trucksis M, Galen JE, Michalski J, Fasano A, Kaper JB. 1993. Accessory cholera enterotoxin (Ace), the third toxin of a Vibrio cholerae virulence cassette. Proc Natl Acad Sci USA. 90(11):5267–5271. doi:10.1073/pnas.90.11.5267.
  • Valiente E, Davies C, Mills DC, Getino M, Ritchie JM, Wren BW. 2018. Vibrio cholerae accessory colonisation factor AcfC: a chemotactic protein with a role in hyper infectivity. Sci Rep. 8(1):8390. doi:10.1038/s41598-018-26570-7.
  • Vanden Broeck D, Horvath C, De Wolf MJS. 2007. Vibrio cholerae: cholera toxin. Int J Biochem Cell Biol. 39(10):1771–1775. doi:10.1016/j.biocel.2007.07.005.
  • Verma J, Bag S, Saha B, Kumar P, Ghosh TS, Dayal M, Senapati T, Mehra S, Dey P, Desigamani A, et al. 2019. Genomic plasticity associated with antimicrobial resistance in Vibrio cholerae. Proc Natl Acad Sci USA. 116(13):6226–6231. doi:10.1073/pnas.1900141116.
  • Villeneuve S, Boutonnier A, Mulard LA, Fournier J-M. 1999. Immunochemical characterization of an Ogawa-Inaba common antigenic determinant of Vibrio cholerae O1. Microbiology. 145(Pt 9):2477–2484. doi:10.1099/00221287-145-9-2477.
  • Waldor MK, Mekalanos JJ. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science. 272(5270):1910–1914. doi:10.1126/science.272.5270.1910.
  • Wang BX, Takagi J, McShane A, Park JH, Aoki K, Griffin C, Teschler J, Kitts G, Minzer G, Tiemeyer M, et al. 2023. Host-derived O-glycans inhibit toxigenic conversion by a virulence-encoding phage in Vibrio cholerae. Embo J. 42(3):e111562. doi:10.15252/embj.2022111562.
  • Wang Z, Guo J, Liu X, Sun J, Gao W. 2020. Temperature-triggered micellization of interferon alpha-diblock copolypeptide conjugate with enhanced stability and pharmacology. J Control Release. 328:444–453. doi:10.1016/j.jconrel.2020.08.065.
  • Warner CJA, Cheng AT, Yildiz FH, Linington RG. 2015. Development of benzo[1,4]oxazines as biofilm inhibitors and dispersal agents against Vibrio cholerae. Chem Commun. 51(7):1305–1308. doi:10.1039/C4CC07003H.
  • Waters RC, O’Toole PW, Ryan KA. 2007. The FliK protein and flagellar hook-length control. Protein Sci. 16(5):769–780. doi:10.1110/ps.072785407.
  • Watnick PI, Fullner KJ, Kolter R. 1999. A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J Bacteriol. 181(11):3606–3609. doi:10.1128/JB.181.11.3606-3609.1999.
  • Wibbenmeyer JA, Provenzano D, Landry CF, Klose KE, Delcour AH. 2002. Vibrio cholerae OmpU and OmpT porins are differentially affected by bile. Infect Immun. 70(1):121–126. doi:10.1128/IAI.70.1.121-126.2002.
  • Wierzba TF. 2019. Oral cholera vaccines and their impact on the global burden of disease. Hum Vaccin Immunother. 15(6):1294–1301. doi:10.1080/21645515.2018.1504155.
  • Withey JH, DiRita VJ. 2005. Activation of both acfA and acfD transcription by Vibrio cholerae ToxT requires binding to two centrally located DNA sites in an inverted repeat conformation. Mol Microbiol. 56(4):1062–1077. doi:10.1111/j.1365-2958.2005.04589.x.
  • Woida PJ, Satchell KJF. 2020. The Vibrio cholerae MARTX toxin silences the inflammatory response to cytoskeletal damage before inducing actin cytoskeleton collapse. Sci Signal. 13(614):447. doi:10.1126/scisignal.aaw9447.
  • Woodbrey AK, Onyango EO, Kovacikova G, Kull FJ, Gribble GW. 2018. A modified ToxT inhibitor reduces Vibrio cholerae virulence in vivo. Biochemistry. 57(38):5609–5615. doi:10.1021/acs.biochem.8b00667.
  • Xu Q, Dziejman M, Mekalanos JJ. 2003. Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and mid-exponential phase in vitro. Proc Natl Acad Sci USA. 100(3):1286–1291. doi:10.1073/pnas.0337479100.
  • Yan J, Sharo AG, Stone HA, Wingreen NS, Bassler BL. 2016. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging. Proc Natl Acad Sci USA. 36:113. doi:10.1073/pnas.1611494113.
  • Yang M, Frey EM, Liu Z, Bishar R, Zhu J. 2010. The virulence transcriptional activator Apha enhances biofilm formation by Vibrio cholerae by activating expression of the biofilm regulator VpsT. Infect Immun. 78(2):697–703. doi:10.1128/IAI.00429-09.
  • Yu C, Lee AM, Bassler BL, Roseman S. 1991. Chitin utilization by marine bacteria. A physiological function for bacterial adhesion to immobilized carbohydrates. J Biol Chem. 266(36):24260–24267. doi:10.1016/S0021-9258(18)54223-X.
  • Zahid MSH, Awasthi SP, Asakura M, Chatterjee S, Hinenoya A, Faruque SM, Yamasaki S. 2015. Suppression of virulence of toxigenic Vibrio cholerae by anethole through the cyclic AMP (cAMP)-cAMP receptor protein signaling system. PLoS One. 10(9):e0137529. doi:10.1371/journal.pone.0137529.
  • Zhang W, Luo M, Feng C, Liu H, Zhang H, Bennett RR, Utada AS, Liu Z, Zhao K. 2021a. Crash landing of Vibrio cholerae by MSHA pili-assisted braking and anchoring in a viscoelastic environment. Elife. 10:655. doi:10.7554/eLife.60655.
  • Zhang X, Han Y, Huang W, Jin M, Gao Z. 2021b. The influence of the gut microbiota on the bioavailability of oral drugs. Acta Pharm Sin B. 11(7):1789–1812. doi:10.1016/j.apsb.2020.09.013.
  • Zheng J, Shin OS, Cameron DE, Mekalanos JJ. 2010. Quorum sensing and a global regulator TsrA control expression of type VI secretion and virulence in Vibrio cholerae. Proc Natl Acad Sci USA. 107(49):21128–21133. doi:10.1073/pnas.1014998107.
  • Zhu J, Mekalanos JJ. 2003. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev Cell. 5(4):647–656. doi:10.1016/s1534-5807(03)00295-8.
  • Zitzer A, Wassenaar TM, Walev I, Bhakdi S. 1997. Potent membrane-permeabilizing and cytocidal action of Vibrio cholerae cytolysin on human intestinal cells. Infect Immun. 65(4):1293–1298. doi:10.1128/iai.65.4.1293-1298.1997.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.