365
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Current developments and prospects of the antibiotic delivery systems

, , & ORCID Icon
Received 26 Jul 2023, Accepted 16 Feb 2024, Published online: 29 Feb 2024

References

  • Abdelghany A, El-Desouky MA, Shemis M. 2021. Synthesis and characterization of amoxicillin-loaded polymeric nanocapsules as a drug delivery system targeting Helicobacter pylori. Arab J Gastroenterol. 22(4):278–284. doi: 10.1016/j.ajg.2021.06.002.
  • Abdelghany SM, Quinn DJ, Ingram RJ, Gilmore BF, Donnelly RF, Taggart CC, Scott CJ. 2012. Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection. Int J Nanomed. 7:4053–4063. doi: 10.2147/IJN.S34341.
  • Abdellatif AAH, Alhumaydhi FA, Rugaie O, Tolba NS, Mousa AM. 2023. Topical silver nanoparticles reduced with ethylcellulose enhance skin wound healing. Eur Rev Med Pharmacol Sci. 27(2):744–754.
  • Abe K, Nomura N, Suzuki S. 2021. Biofilms: hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol Ecol. 96(5):1–12.
  • Adnan M, Ali Shah MR, Jamal M, Jalil F, Andleeb S, Nawaz MA, Pervez S, Hussain T, Shah I, Imran M, et al. 2020. Isolation and characterization of bacteriophage to control multidrug-resistant Pseudomonas aeruginosa planktonic cells and biofilm. Biologicals. 63:89–96. doi: 10.1016/j.biologicals.2019.10.003.
  • Agrawal P, Bhalla S, Usmani SS, Singh S, Chaudhary K, Raghava GPS, Gautam A. 2016. CPPsite 2.0: a repository of experimentally validated cell-penetrating peptides. Nucleic Acids Res. 44(D1):D1098–D1103. doi: 10.1093/nar/gkv1266.
  • Ahmad F, Salem-Bekhit MM, Khan F, Alshehri S, Khan A, Ghoneim MM, Wu HF, Taha EI, Elbagory I. 2022. Unique properties of surface-functionalized nanoparticles for bio-application: functionalization mechanisms and importance in application. Nanomater (Basel, Switzerland). 12(8):1333. doi: 10.3390/nano12081333.
  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. 2013. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 8(1):102. doi: 10.1186/1556-276X-8-102.
  • Aliabadi HM, Lavasanifar A. 2006. Polymeric micelles for drug delivery. Expert Opin Drug Deliv. 3(1):139–162. doi: 10.1517/17425247.3.1.139.
  • Al-Shayeb B, Sachdeva R, Chen LX, Ward F, Munk P, Devoto A, Castelle CJ, Olm MR, Bouma-Gregson K, Amano Y, et al. 2020. Clades of huge phages from across Earth’s ecosystems. Nature. 578(7795):425–431. doi: 10.1038/s41586-020-2007-4.
  • Aminov RI. 2010. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol. 1:134. doi: 10.3389/fmicb.2010.00134.
  • Andrei S, Droc G, Stefan G. 2019. FDA approved antibacterial drugs: 2018-2019. Discoveries (Craiova). 7(4):e102. doi: 10.15190/d.2019.15.
  • Antonoplis A, Zang X, Huttner MA, Chong KKL, Lee YB, Co JY, Amieva MR, Kline KA, Wender PA, Cegelski L. 2018. A dual-function antibiotic-transporter conjugate exhibits ­superior activity in sterilizing MRSA biofilms and killing persister cells. J Am Chem Soc. 140(47):16140–16151. doi: 10.1021/jacs.8b08711.
  • Arisawa M, Sekine Y, Shimizu S, Takano H, Angehrn P, Then RL. 1991. In vitro and in vivo evaluation of Ro 09-1428, a new parenteral cephalosporin with high antipseudomonal activity. Antimicrob Agents Chemother. 35(4):653–659. doi: 10.1128/AAC.35.4.653.
  • Arnusch CJ, Pieters RJ, Breukink E. 2012. Enhanced membrane pore formation through high-affinity targeted antimicrobial peptides. PLoS One. 7(6):e39768. doi: 10.1371/journal.pone.0039768.
  • Assoni L, Milani B, Carvalho MR, Nepomuceno LN, Waz NT, Guerra MES, Converso TR, Darrieux M. 2020. Resistance mechanisms to antimicrobial peptides in gram-positive bacteria. Front Microbiol. 11:593215. doi: 10.3389/fmicb.2020.593215.
  • Astete CE, Sabliov CM. 2006. Synthesis and characterization of PLGA nanoparticles. J Biomater Sci Polym Ed. 17(3):247–289. doi: 10.1163/156856206775997322.
  • Audrain B, Ferrières L, Zairi A, Soubigou G, Dobson C, Coppée JY, Beloin C, Ghigo JM. 2013. Induction of the Cpx envelope stress pathway contributes to Escherichia coli tolerance to antimicrobial peptides. Appl Environ Microbiol. 79(24):7770–7779. doi: 10.1128/AEM.02593-13.
  • Azarnezhad A, Samadian H, Jaymand M, Sobhani M, Ahmadi A. 2020. Toxicological profile of lipid-based nanostructures: are they considered as completely safe nanocarriers? Crit Rev Toxicol. 50(2):148–176. doi: 10.1080/10408444.2020.1719974.
  • Baig N, Kammakakam I, Falath W, Kammakakam I. 2021. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv. 2(6):1821–1871. doi: 10.1039/D0MA00807A.
  • Balmayor ER, Baran ET, Azevedo HS, Reis RL. 2012. Injectable biodegradable starch/chitosan delivery system for the sustained release of gentamicin to treat bone infections. Carbohydr Polym. 87(1):32–39. doi: 10.1016/j.carbpol.2011.06.078.
  • Bamrungsap S, Zhao Z, Chen T, Wang L, Li C, Fu T, Tan W. 2012. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine (Lond). 7(8):1253–1271. doi: 10.2217/nnm.12.87.
  • Banin E, Vasil ML, Greenberg EP. 2005. Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A. 102(31):11076–11081. doi: 10.1073/pnas.0504266102.
  • Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR. 2018. Nano-strategies to fight multidrug resistant bacteria- “A battle of the titans”. Front Microbiol. 9:1441. doi: 10.3389/fmicb.2018.01441.
  • Bera S, Zhanel GG, Schweizer F. 2011. Synthesis and antibacterial activity of amphiphilic lysine-ligated neomycin B conjugates. Carbohydr Res. 346(5):560–568. doi: 10.1016/j.carres.2011.01.015.
  • Bhandari M, Soria-Carrera H, Wohlmann J, Dal N-JK, de la Fuente JM, Martín-Rapún R, Griffiths G, Fenaroli F. 2023. Subcellular localization and therapeutic efficacy of polymeric micellar nanoparticles encapsulating bedaquiline for tuberculosis treatment in zebrafish. Biomater Sci. 11(6):2103–2114. doi: 10.1039/d2bm01835g.
  • Bhatia E, Banerjee R. 2020. Hybrid silver-gold nanoparticles suppress drug resistant polymicrobial biofilm formation and intracellular infection. J Mater Chem B. 8(22):4890–4898. doi: 10.1039/d0tb00158a.
  • Bhatti R, Shakeel H, Malik K, Qasim M, Khan MA, Ahmed N, Jabeen S. 2022. Inorganic nanoparticles: toxic effects, mechanisms of cytotoxicity and phytochemical interactions. Adv Pharm Bull. 12(4):757–762.
  • Bierne H, Milohanic E, Kortebi M. 2018. To be cytosolic or vacuolar: the double life of Listeria monocytogenes. Front Cell Infect Microbiol. 8:136. doi: 10.3389/fcimb.2018.00136.
  • Birk SE, Boisen A, Nielsen LH. 2021. Polymeric nano- and microparticulate drug delivery systems for treatment of biofilms. Adv Drug Deliv Rev. 174:30–52. doi: 10.1016/j.addr.2021.04.005.
  • Blair J. 2017. Making magic bullets. Nat Microbiol. 2(8):17110. doi: 10.1038/nmicrobiol.2017.110.
  • Blanco-Picazo P, Morales-Cortes S, Ramos-Barbero MD, García-Aljaro C, Rodríguez-Rubio L, Muniesa M. 2023. Dominance of phage particles carrying antibiotic resistance genes in the viromes of retail food sources. Isme J. 17(2):195–203. doi: 10.1038/s41396-022-01338-0.
  • Blencowe CA, Russell AT, Greco F, Hayes W, Thornthwaite DW. 2011. Self-immolative linkers in polymeric delivery systems. Polym Chem. 2(4):773–790. doi: 10.1039/C0PY00324G.
  • Boluarte T, Schulze U. 2022. The case for a subscriptiom model to tackle antimicrobical resistance. BCG. https://www.bcg.com/publications/2022/model-for-tackling-antimicrobial-resistancd
  • Boman HG. 2003. Antibacterial peptides : basic facts and emerging concepts. J Intern Med. 254(3):197–215. doi: 10.1046/j.1365-2796.2003.01228.x.
  • Bowler P, Murphy C, Wolcott R. 2020. Biofilm exacerbates antibiotic resistance: is this a current oversight in antimicrobial stewardship? Antimicrob Resist Infect Control. 9(1):162. doi: 10.1186/s13756-020-00830-6.
  • Braun V, Pramanik A, Gwinner T, Köberle M, Bohn E. 2009. Sideromycins: tools and antibiotics. Biometals. 22(1):3–13. doi: 10.1007/s10534-008-9199-7.
  • Brezden A, Mohamed MF, Nepal M, Harwood JS, Kuriakose J, Seleem MN, Chmielewski J. 2016. Dual targeting of intracellular pathogenic bacteria with a cleavable conjugate of kanamycin and an antibacterial cell-penetrating peptide. J Am Chem Soc. 138(34):10945–10949. doi: 10.1021/jacs.6b04831.
  • Brown AN, Smith K, Samuels TA, Lu J, Obare SO, Scott ME. 2012. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol. 78(8):2768–2774. doi: 10.1128/AEM.06513-11.
  • Burnhan BF. 1963. Investigations on the action of the iron-containing growth factors. J Gen Microbiol. 32:117–121. doi: 10.1099/00221287-32-1-117.
  • Butler MS, Gigante V, Sati H, Paulin S, Al-Sulaiman L, Rex JH, Fernandes P, Arias CA, Paul M, Thwaites GE, et al. 2022. Analysis of the clinical pipeline of treatments for drug-resistant bacterial infections: despite progress, More action is needed. Antimicrob Agents Chemother. 66(3):e0199121. doi: 10.1128/AAC.01991-21.
  • Cal PMSD, Matos MJ, Bernardes GJL. 2017. Trends in therapeutic drug conjugates for bacterial diseases: a patent review. Expert Opin Ther Pat. 27(2):179–189. doi: 10.1080/13543776.2017.1259411.
  • Cavaco M, Castanho MARB, Neves V. 2017. Peptibodies: an elegant solution for a long-standing problem. Biopolymers. 110(1):e23095. doi: 10.1002/bip.23095.
  • Cavaco M, Castanho MARB, Neves V. 2022. The use of antibody-antibiotic conjugates to fight bacterial infections. Front Microbiol. 13:835677. doi: 10.3389/fmicb.2022.835677.
  • CDC. 2019. Antibiotic resistance threats in the United States. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019.
  • Chairatana P, Zheng T, Nolan EM. 2015. Targeting virulence: salmochelin modification tunes the antibacterial activity spectrum of β-lactams for pathogen-selective killing of Escherichia coli. Chem Sci. 6(8):4458–4471. doi: 10.1039/c5sc00962f.
  • Changerath R, Nair PD, Mathew S, Nair CPR. 2009. Poly(methyl methacrylate)-grafted chitosan microspheres for controlled release of ampicillin. J Biomed Mater Res B Appl Biomater. 89(1):65–76. doi: 10.1002/jbm.b.31188.
  • Chanphai P, Konka V, Tajmir-Riahi HA. 2017. Folic acid–chitosan conjugation: a new drug delivery tool. J Mol Liq. 238:155–159. doi: 10.1016/j.molliq.2017.04.132.
  • Chau CH, Steeg PS, Figg WD. 2019. Antibody–drug conjugates for cancer. Lancet. 394(10200):793–804. doi: 10.1016/S0140-6736(19)31774-X.
  • Chen X, Guo R, Wang C, Li K, Jiang X, He H, Hong W. 2021. On-demand pH-sensitive surface charge-switchable polymeric micelles for targeting Pseudomonas aeruginosa biofilms development. J Nanobiotechnology. 19(1):99. doi: 10.1186/s12951-021-00845-0.
  • Chen H, Liu C, Chen D, Madrid K, Peng S, Dong X, Zhang M, Gu Y. 2015. Bacteria-targeting conjugates based on antimicrobial peptide for bacteria diagnosis and therapy. Mol Pharm. 12(7):2505–2516. doi: 10.1021/acs.molpharmaceut.5b00053.
  • Chlumsky O, Purkrtova S, Michova H, Svarcova V, Slepicka P, Fajstavr D, Ulbrich P, Demnerova K. 2020. The effect of gold and silver nanoparticles, chitosan and their combinations on bacterial biofilms of food-borne pathogens. Biofouling. 36(2):222–233. doi: 10.1080/08927014.2020.1751132.
  • Chu BC, Garcia-Herrero A, Johanson TH, Krewulak KD, Lau CK, Peacock RS, Slavinskaya Z, Vogel HJ. 2010. Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. Biometals. 23(4):601–611. doi: 10.1007/s10534-010-9361-x.
  • Cipolla D, Blanchard J, Gonda I. 2016. Development of liposomal ciprofloxacin to treat lung infections. Pharmaceutics. 8(1):6. doi: 10.3390/pharmaceutics8010006.
  • Clancy JP, Dupont L, Konstan MW, Billings J, Fustik S, Goss CH, Lymp J, Minic P, Quittner AL, Rubenstein RC, et al. 2013. Phase II studies of nebulised Arikace in CF patients with Pseudomonas aeruginosa infection. Thorax. 68(9):818–825. doi: 10.1136/thoraxjnl-2012-202230.
  • Coates AR, Halls G, Hu Y. 2011. Novel classes of antibiotics or more of the same? Br J Pharmacol. 163(1):184–194. doi: 10.1111/j.1476-5381.2011.01250.x.
  • Cypriyana P J J, S S, Angalene J LA, Samrot AV, Kumar S S, Ponniah P, Chakravarthi S. 2021. Overview on toxicity of nanoparticles, it’s mechanism, models used in toxicity studies and disposal methods – a review. Biocatal Agric Biotechnol. 36:102117. doi: 10.1016/j.bcab.2021.102117.
  • Dassonville-Klimpt A, Sonnet P. 2020. Advances in “Trojan horse” strategies in antibiotic delivery systems. Future Med Chem. 12(11):983–986. doi: 10.4155/fmc-2020-0065.
  • De Matteis V. 2017. Exposure to inorganic nanoparticles: routes of entry, immune response, biodistribution and in vitro/In vivo toxicity evaluation. Toxics. 5(4):29. doi: 10.3390/toxics5040029.
  • de Oliveira Júnior NG, Franco OL. 2020. Promising strategies for future treatment of Klebsiella pneumoniae biofilms. Future Microbiol. 15(1):63–79. doi: 10.2217/fmb-2019-0180.
  • De Soir S, Parée H, Kamarudin NHN, Wagemans J, Lavigne R, Braem A, Merabishvili M, De Vos D, Pirnay J-P, Van Bambeke F. 2024. Exploiting phage-antibiotic synergies to disrupt Pseudomonas aeruginosa PAO1 biofilms in the context of orthopedic infections. Microbiol Spectr. 12(1):e0321923. doi: 10.1128/spectrum.03219-23.
  • Defaus S, Gallo M, Abengózar MA, Rivas L, Andreu D. 2017. A synthetic strategy for conjugation of paromomycin to cell-penetrating tat(48-60) for delivery and visualization into leishmania parasites. Int J Pept. 2017:4213037–4213037. doi: 10.1155/2017/4213037.
  • Deng R, Zhou C, Li D, Cai H, Sukumaran S, Carrasco-Triguero M, Saad O, Nazzal D, Lowe C, Ramanujan S, et al. 2019. Preclinical and translational pharmacokinetics of a novel THIOMABTM antibody-antibiotic conjugate against Staphylococcus aureus. MAbs. 11(6):1162–1174. doi: 10.1080/19420862.2019.1627152.
  • Deore AB, Dhumane JR, Wagh R, Sonawane R. 2019. The stages of drug discovery and development process. Asian J Pharm Res Dev. 7(6):62–67. doi: 10.22270/ajprd.v7i6.616.
  • Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A. 1996. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem. 271(30):18188–18193. doi: 10.1074/jbc.271.30.18188.
  • Deshayes C, Arafath MN, Apaire-Marchais V, Roger E. 2021. Drug delivery systems for the oral administration of antimicrobial peptides: promising tools to treat infectious diseases. Front Med Technol. 3:778645. doi: 10.3389/fmedt.2021.778645.
  • Deshayes S, Morris MC, Divita G, Heitz F. 2006. Interactions of amphipathic CPPs with model membranes. Biochim Biophys Acta - Biomembr. 1758(3):328–335. doi: 10.1016/j.bbamem.2005.10.004.
  • Deshayes S, Xian W, Schmidt NW, Kordbacheh S, Lieng J, Wang J, Zarmer S, Germain SS, Voyen L, Thulin J, et al. 2017. Designing hybrid antibiotic peptide conjugates to cross bacterial membranes. Bioconjug Chem. 28(3):793–804.,. doi: 10.1021/acs.bioconjchem.6b00725.
  • Deusenbery C, Gomez Casas C, Shukla A. 2023. pH-Responsive swelling micelles for the treatment of methicillin-resistant Staphylococcus aureus biofilms. ACS Appl Polym Mater. 5(9):7400–7410. doi: 10.1021/acsapm.3c01307.
  • Ding D, Zhu Q. 2018. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater Sci Eng C Mater Biol Appl. 92:1041–1060. doi: 10.1016/j.msec.2017.12.036.
  • Domingo-Calap P, Delgado-Martínez J. 2018. Bacteriophages: protagonists of a post-antibiotic era. Antibiotics. 7(3):66. doi: 10.3390/antibiotics7030066.
  • Doore SM, Schrad JR, Dean WF, Dover JA, Parent KN. 2018. Shigella phages isolated during a dysentery outbreak reveal uncommon structures and broad species diversity. J Virol. 92(8):e02117–17. doi: 10.1128/JVI.02117-17.
  • Dorati R, De Trizio A, Genta I, Merelli A, Modena T, Conti B. 2016. Formulation and in vitro characterization of a ­composite biodegradable scaffold as antibiotic delivery system and regenerative device for bone. J Drug Deliv Sci Technol. 35:124–133. doi: 10.1016/j.jddst.2016.04.008.
  • dos Santos VE, JrVasconcelos Filho A, Targino AGR, Flores MAP, Galembeck A, CaldasJrAF, Rosenblatt A. 2014. A new “silver-bullet” to treat caries in children–nano silver fluoride: a randomised clinical trial. J Dent. 42(8):945–951. doi: 10.1016/j.jdent.2014.05.017.
  • Ekins S. 2014. Hacking into the granuloma: could antibody antibiotic conjugates be developed for TB? Tuberculosis (Edinb). 94(6):715–716. doi: 10.1016/j.tube.2014.08.009.
  • El Shazely B, Yu G, Johnston PR, Rolff J. 2020. Resistance evolution against antimicrobial peptides in Staphylococcus aureus alters pharmacodynamics beyond the MIC. Front Microbiol. 11:103. doi: 10.3389/fmicb.2020.00103.
  • El-Alfy EA, El-Bisi MK, Taha GM, Ibrahim HM. 2020. Preparation of biocompatible chitosan nanoparticles loaded by tetracycline, gentamycin and ciprofloxacin as novel drug delivery system for improvement the antibacterial properties of cellulose based fabrics. Int J Biol Macromol. 161:1247–1260. doi: 10.1016/j.ijbiomac.2020.06.118.
  • El-Andaloussi S, Holm T, Langel U. 2005. Cell-penetrating peptides: mechanisms and applications. Curr Pharm Des. 11(28):3597–3611. doi: 10.2174/138161205774580796.
  • Elliott G, O’Hare P. 1997. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell. 88(2):223–233. doi: 10.1016/s0092-8674(00)81843-7.
  • Emelianova AA, Kuzmin DV, Panteleev PV, Sorokin M, Buzdin AA, Ovchinnikova TV. 2018. Anticancer activity of the goat antimicrobial peptide ChMAP-28. Front Pharmacol. 9:1501. doi: 10.3389/fphar.2018.01501.
  • Epand RM, Epand RF. 2011. Bacterial membrane lipids in the action of antimicrobial agents. J Pept Sci. 17(5):298–305. doi: 10.1002/psc.1319.
  • Esmaeillou M, Zarrini G, Rezaee MA, Mojarrad JS, Bahadori A. 2017. Vancomycin capped with silver nanoparticles as an antibacterial agent against multi-drug resistance bacteria. Adv Pharm Bull. 7(3):479–483. doi: 10.15171/apb.2017.058.
  • Etayash H, Alford M, Akhoundsadegh N, Drayton M, Straus SK, Hancock REW. 2021. Multifunctional antibiotic–host defense peptide conjugate kills bacteria, eradicates biofilms, and modulates the innate immune response. J Med Chem. 64(22):16854–16863. doi: 10.1021/acs.jmedchem.1c01712.
  • Etayash H, Pletzer D, Kumar P, Straus SK, Hancock REW. 2020. Cyclic derivative of host-defense peptide IDR-1018 improves proteolytic stability, suppresses inflammation, and enhances in vivo activity. J Med Chem. 63(17):9228–9236. doi: 10.1021/acs.jmedchem.0c00303.
  • Fadaka AO, Sibuyi NRS, Madiehe AM, Meyer M. 2021. Nanotechnology-based delivery systems for antimicrobial peptides. Pharmaceutics. 13(11):1795. doi: 10.3390/pharmaceutics13111795.
  • Fardeau S, Dassonville-Klimpt A, Audic N, Sasaki A, Pillon M, Baudrin E, Mullié C, Sonnet P. 2014. Synthesis and antibacterial activity of catecholate-ciprofloxacin conjugates. Bioorg Med Chem. 22(15):4049–4060. doi: 10.1016/j.bmc.2014.05.067.
  • Feyissa Z, Edossa GD, Gupta NK, Negera D. 2023. Development of double crosslinked sodium alginate/chitosan based hydrogels for controlled release of metronidazole and its antibacterial activity. Heliyon. 9(9):e20144. doi: 10.1016/j.heliyon.2023.e20144.
  • Fokine A, Islam MZ, Zhang Z, Bowman VD, Rao VB, Rossmann MG. 2011. Structure of the three N-terminal immunoglobulin domains of the highly immunogenic outer capsid protein from a T4-like bacteriophage. J Virol. 85(16):8141–8148. doi: 10.1128/JVI.00847-11.
  • Frankel AD, Pabo CO. 1988. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 55(6):1189–1193. doi: 10.1016/0092-8674(88)90263-2.
  • Frimodt-Møller J, Koulouktsis A, Charbon G, Otterlei M, Nielsen PE, Løbner-Olesen A. 2021. Activating the Cpx response induces tolerance to antisense PNA delivered by an arginine-rich peptide in Escherichia coli. Mol Ther Nucleic Acids. 25:444–454. doi: 10.1016/j.omtn.2021.06.009.
  • Fu Z, Li S, Han S, Shi C, Zhang Y. 2022. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther. 7(1):93.
  • Fuller A, Whiley H, Köper I. 2020. Antibiotic delivery using gold nanoparticles. SN Appl Sci. 2(6):1–7. doi: 10.1007/s42452-020-2835-8.
  • Furfaro LL, Payne MS, Chang BJ. 2018. Bacteriophage therapy: clinical trials and regulatory hurdles. Front Cell Infect Microbiol. 8:376. doi: 10.3389/fcimb.2018.00376.
  • García-Cruz JC, Rebollar-Juarez X, Limones-Martinez A, Santos-Lopez CS, Toya S, Maeda T, Ceapă CD, Blasco L, Tomás M, Díaz-Velásquez CE, et al. 2023. Resistance against two lytic phage variants attenuates virulence and antibiotic resistance in Pseudomonas aeruginosa. Front Cell Infect Microbiol. 13:1280265.,. doi: 10.3389/fcimb.2023.1280265.
  • Gasser V, Baco E, Cunrath O, August PS, Perraud Q, Zill N, Schleberger C, Schmidt A, Paulen A, Bumann D, et al. 2016. Catechol siderophores repress the pyochelin pathway and activate the enterobactin pathway in Pseudomonas aeruginosa: an opportunity for siderophore-antibiotic conjugates development. Environ Microbiol. 18(3):819–832.,. doi: 10.1111/1462-2920.13199.
  • Gaurav A, Bakht P, Saini M, Pandey S, Pathania R. 2023. Role of bacterial efflux pumps in antibiotic resistance, virulence, and strategies to discover novel efflux pump inhibitors. Microbiology. 169(5):001333. doi: 10.1099/mic.0.001333.
  • Gause GF, Biol D. 1955. Recent studies on alromycin, a new antibiotic. Br Med J. 2(4949):1177–1179. doi: 10.1136/bmj.2.4949.1177.
  • Gembara K, Dąbrowska K. 2024. Interaction of bacteriophages with the immune system: induction of bacteriophage-specific antibodies. Methods Mol Biol. 2734:186–196. doi: 10.1007/978-1-0716-3523-0_12.
  • Ghaffar K, Hussein W, Khalil Z, Capon R, Skwarczynski M, Toth I. 2015. Levofloxacin and indolicidin for combination antimicrobial therapy. Curr Drug Deliv. 12(1):108–114. doi: 10.2174/1567201811666140910094050.
  • Ghai I, Ghai S. 2018. Understanding antibiotic resistance via outer membrane permeability. Infect Drug Resist. 11:523–530. doi: 10.2147/IDR.S156995.
  • Gharibshahian M, Salehi M, Beheshtizadeh N, Kamalabadi-Farahani M, Atashi A, Nourbakhsh MS, Alizadeh M. 2023. Recent advances on 3D-printed PCL-based composite scaffolds for bone tissue engineering. Front Bioeng Biotechnol. 11:1168504. doi: 10.3389/fbioe.2023.1168504.
  • Gholap AD, Rojekar S, Kapare HS, Vishwakarma N, Raikwar S, Garkal A, Mehta TA, Jadhav H, Prajapati MK, Annapure U. 2024. Chitosan scaffolds: expanding horizons in biomedical applications. Carbohydr Polym. 323:121394. doi: 10.1016/j.carbpol.2023.121394.
  • Ghosh M, Miller MJ. 1996. Synthesis and in vitro antibacterial activity of spermidine-based mixed catechol- and hydroxamate-containing siderophore-vancomycin conjugates. Bioorg Med Chem. 4(1):43–48. doi: 10.1016/0968-0896(95)00161-1.
  • Ghosh M, Miller PA, Möllmann U, Claypool WD, Schroeder VA, Wolter WR, Suckow M, Yu H, Li S, Huang W, et al. 2017. Targeted antibiotic delivery: selective siderophore conjugation with daptomycin confers potent activity against multidrug resistant Acinetobacter baumannii both in vitro and in vivo. J Med Chem. 60(11):4577–4583. doi: 10.1021/acs.jmedchem.7b00102.
  • Gomarasca M, Martins TFC, Greune L, Hardwidge PR, Schmidt MA, Rüter C. 2017. Bacterium-derived cell-penetrating peptides deliver gentamicin to kill intracellular pathogens. Antimicrob Agents Chemother. 61(4):e02545-16. doi: 10.1128/AAC.02545-16.
  • Gomez JA, Chen J, Ngo J, Hajkova D, Yeh IJ, Gama V, Miyagi M, Matsuyama S. 2010. Cell-penetrating penta-peptides (CPP5s): measurement of cell entry and protein-transduction activity. Pharmaceuticals (Basel). 3(12):3594–3613. doi: 10.3390/ph3123594.
  • Gomis-Font MA, Clari MA, López-Causapé C, Navarro D, Oliver A. 2024. Emergence of cefiderocol resistance during ceftazidime/avibactam treatment caused by a large genomic deletion, including ampD and piuCD genes, in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 68(1):e0119223. doi: 10.1128/aac.01192-23.
  • Górska A, Sloderbach A, Marszałł MP. 2014. Siderophore-drug complexes: potential medicinal applications of the “Trojan horse” strategy. Trends Pharmacol Sci. 35(9):442–449. doi: 10.1016/j.tips.2014.06.007.
  • Goulet DR, Atkins WM. 2020. Considerations for the design of antibody-based therapeutics. J Pharm Sci. 109(1):74–103. doi: 10.1016/j.xphs.2019.05.031.
  • Green M, Loewenstein PM. 1988. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell. 55(6):1179–1188. doi: 10.1016/0092-8674(88)90262-0.
  • Grumezescu AM, Andronescu E, Holban AM, Ficai A, Ficai D, Voicu G, Grumezescu V, Balaure PC, Chifiriuc CM. 2013. Water dispersible cross-linked magnetic chitosan beads for increasing the antimicrobial efficiency of aminoglycoside antibiotics. Int J Pharm. 454(1):233–240. doi: 10.1016/j.ijpharm.2013.06.054.
  • Guarino V, Gentile G, Sorrentino L, Ambrosio L. 2017. Polycaprolactone: synthesis, properties, and applications. Encycl Polym Sci Technol. John Wiley & Sons, Ltd. p.1–36. doi: 10.1002/0471440264.pst658
  • Guidotti G, Brambilla L, Rossi D. 2017. Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol Sci. 38(4):406–424. doi: 10.1016/j.tips.2017.01.003.
  • Günday Türeli N, Torge A, Juntke J, Schwarz BC, Schneider-Daum N, Türeli AE, Lehr CM, Schneider M. 2017. Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections. Eur J Pharm Biopharm. 117:363–371. doi: 10.1016/j.ejpb.2017.04.032.
  • Guo R, Li K, Tian B, Wang C, Chen X, Jiang X, He H, Hong W. 2021. Elaboration on the architecture of pH-sensitive surface charge-adaptive micelles with enhanced penetration and bactericidal activity in biofilms. J Nanobiotechnology. 19(1):232. doi: 10.1186/s12951-021-00980-8.
  • Halasohoris SA, Scarff JM, Pysz LM, Lembirik S, Lemmon MM, Biek D, Hannah B, Zumbrun SD, Panchal RG. 2021. In vitro and in vivo activity of GT-1, a novel siderophore cephalosporin, and GT-055, a broad-spectrum β-lactamase inhibitor, against biothreat and ESKAPE pathogens. J Antibiot (Tokyo). 74(12):884–892. doi: 10.1038/s41429-021-00472-9.
  • Hampton HG, Watson BNJ, Fineran PC. 2020. The arms race between bacteria and their phage foes. Nature. 577(7790):327–336. doi: 10.1038/s41586-019-1894-8.
  • Han P, Zhang W, Pu M, Li Y, Song L, An X, Li M, Li F, Zhang S, Fan H, et al. 2022. Characterization of the bacteriophage BUCT603 and therapeutic potential evaluation against drug-resistant stenotrophomonas maltophilia in a mouse model. Front Microbiol. 13:906961. doi: 10.3389/fmicb.2022.906961.
  • Hassan D, Omolo CA, Fasiku VO, Mocktar C, Govender T. 2020. Novel chitosan-based pH-responsive lipid-polymer hybrid nanovesicles (OLA-LPHVs) for delivery of vancomycin against methicillin-resistant Staphylococcus aureus infections. Int J Biol Macromol. 147:385–398. doi: 10.1016/j.ijbiomac.2020.01.019.
  • Haworth CS, Bilton D, Chalmers JD, Davis AM, Froehlich J, Gonda I, Thompson B, Wanner A, O’Donnell AE. 2019. Inhaled liposomal ciprofloxacin in patients with non-cystic fibrosis bronchiectasis and chronic lung infection with Pseudomonas aeruginosa (ORBIT-3 and ORBIT-4): two phase 3, randomised controlled trials. Lancet Respir Med. 7(3):213–226. doi: 10.1016/S2213-2600(18)30427-2.
  • Hemmingsen LM, Giordani B, Paulsen MH, Vanić Ž, Flaten GE, Vitali B, Basnet P, Bayer A, Strøm MB, Škalko-Basnet N. 2023. Tailored anti-biofilm activity – liposomal delivery for mimic of small antimicrobial peptide. Biomater Adv. 145:213238. doi: 10.1016/j.bioadv.2022.213238.
  • Henriques ST, Melo MN, Castanho MARB. 2006. Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem J. 399(1):1–7. doi: 10.1042/BJ20061100.
  • Hider RC, Kong X. 2010. Chemistry and biology of siderophores. Nat Prod Rep. 27(5):637–657. doi: 10.1039/b906679a.
  • Hirsch JG. 1960. Antimicrobial factors in tissues and phagocytic cells. Bacteriol Rev. 24(1):133–140. doi: 10.1128/br.24.1.133-140.1960.
  • Horváth M, Kovács T, Koderivalappil S, Ábrahám H, Rákhely G, Schneider G. 2020. Identification of a newly isolated lytic bacteriophage against K24 capsular type, carbapenem resistant Klebsiella pneumoniae isolates. Sci Rep. 10(1):5891. doi: 10.1038/s41598-020-62691-8.
  • Huang Z, Liu H, Zhang X, Tang M, Lin Y, Feng L, Ye J, Zhou T, Chen L. 2023. Ceftazidime-decorated gold nanoparticles: a promising strategy against clinical ceftazidime-avibactam-resistant enterobacteriaceae with different resistance mechanisms. Antimicrob Agents Chemother. 67(7):e0026223. doi: 10.1128/aac.00262-23.
  • Hussein SM, Sofoluwe A, Paleja A, Duhme-Klair A, Thomas MS. 2024. Identification of a system for hydroxamate xenosiderophore-mediated iron transport in Burkholderia cenocepacia. Microbiology (Reading). 170(1):001425. doi: 10.1099/mic.0.001425.
  • Ibraheem DR, Hussein NN, Sulaiman GM, Mohammed HA, Khan RA, Al Rugaie O. 2022. Ciprofloxacin-loaded silver nanoparticles as potent nano-antibiotics against resistant pathogenic bacteria. Nanomaterials. 12(16):2808. doi: 10.3390/nano12162808.
  • Ibrahim HR, Tatsumoto S, Hajime O, Van Immerseel F, Raspoet R, Miyata T. 2015. A novel antibiotic-delivery system by using ovotransferrin as targeting molecule. Eur J Pharm Sci. 66:59–69. doi: 10.1016/j.ejps.2014.10.005.
  • Imamovic L, Sommer MOA. 2013. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci Transl Med. 5(204):204ra132. doi: 10.1126/scitranslmed.3006609.
  • Inomata T, Endo S, Ido H, Mori R, Iwai Y, Ozawa T, Masuda H. 2023. Iron(III) complexes with hybrid-type artificial siderophores containing catecholate and hydroxamate sites. Inorg Chem. 62(40):16362–16377. doi: 10.1021/acs.inorgchem.3c01786.
  • Inoue G, Toyohara D, Mori T, Muraoka T. 2021. Critical side chain effects of cell-penetrating peptides for transporting oligo peptide nucleic acids in bacteria. ACS Appl Bio Mater. 4(4):3462–3468. doi: 10.1021/acsabm.1c00023.
  • Jabbari P, Mahdavinia GR, Rezaei PF, Heragh BK, Labib P, Jafari H, Javanshir S. 2023. pH-responsive magnetic biocompatible chitosan-based nanocomposite carrier for ciprofloxacin release. Int J Biol Macromol. 250:126228. doi: 10.1016/j.ijbiomac.2023.126228.
  • Jafari S, Maleki Dizaj S, Adibkia K. 2015. Cell-penetrating peptides and their analogues as novel nanocarriers for drug delivery. Bioimpacts. 5(2):103–111. doi: 10.15171/bi.2015.10.
  • Jamil KM, Haque R, Rahman R, Faiz MA, Bhuiyan ATMRH, Kumar A, Hassan SM, Kelly H, Dhalaria P, Kochhar S, et al. 2015. Effectiveness study of paromomycin IM injection (PMIM) for the treatment of visceral Leishmaniasis (VL) in Bangladesh. PLoS Negl Trop Dis. 9(10):e0004118.,. doi: 10.1371/journal.pntd.0004118.
  • Jansen M, Wahida A, Latz S, Krüttgen A, Häfner H, Buhl EM, Ritter K, Horz HP. 2018. Enhanced antibacterial effect of the novel T4-like bacteriophage KARL-1 in combination with antibiotics against multi-drug resistant Acinetobacter baumannii. Sci Rep. 8(1):14140. doi: 10.1038/s41598-018-32344-y.
  • Järver P, Mäger I, Langel Ü. 2010. In vivo biodistribution and efficacy of peptide mediated delivery. Trends Pharmacol Sci. 31(11):528–535. doi: 10.1016/j.tips.2010.07.006.
  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. 2018. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 9:1050–1074. doi: 10.3762/bjnano.9.98.
  • Jia Y, Joly H, Omri A. 2010. Characterization of the interaction between liposomal formulations and Pseudomonas aeruginosa. J Liposome Res. 20(2):134–146. doi: 10.3109/08982100903218892.
  • Jorge P, Grzywacz D, Kamysz W, Lourenço A, Pereira MO. 2017. Searching for new strategies against biofilm infections: colistin-AMP combinations against Pseudomonas aeruginosa and Staphylococcus aureus single-and double-species biofilms. PLoS One. 12(3):e0174654. doi: 10.1371/journal.pone.0174654.
  • Joseph M, Trinh HM, Mitra AK. 2017. Chapter 7 - Peptide and protein-based therapeutic agents. In Mitra AK, Cholkar K, Mandal A, editors. Emerg nanotechnologies diagnostics, drug deliv med devices. Elsevier; 145–167.
  • Kajihara KK, Pantua H, Hernandez-Barry H, Hazen M, Deshmukh K, Chiang N, Ohri R, Castellanos ER, Martin L, Matsumoto ML, et al. 2021. Potent killing of Pseudomonas aeruginosa by an antibody-antibiotic conjugate. MBio. 12(3):e0020221.,. doi: 10.1128/mBio.00202-21.
  • Kalinowski DS, Richardson DR. 2005. The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharmacol Rev. 57(4):547–583. doi: 10.1124/pr.57.4.2.
  • Kamat S, Kumari M. 2023. Emergence of microbial resistance against nanoparticles: mechanisms and strategies. Front Microbiol. 14:1102615. doi: 10.3389/fmicb.2023.1102615.
  • Karakonstantis S, Rousaki M, Vassilopoulou L, Kritsotakis EI. 2024. Global prevalence of cefiderocol non-susceptibility in Enterobacterales, Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia: a systematic review and meta-analysis. Clin Microbiol Infect. 30(2):178–188. doi: 10.1016/j.cmi.2023.08.029.
  • Kardani K, Milani A,H, Shabani S, Bolhassani A. 2019. Cell penetrating peptides: the potent multi-cargo intracellular carriers. Expert Opin Drug Deliv. 16(11):1227–1258. doi: 10.1080/17425247.2019.1676720.
  • Karnwal A, Kumar G, Pant G, Hossain K, Ahmad A, Alshammari MB. 2023. Perspectives on usage of functional nanomaterials in antimicrobial therapy for antibiotic-resistant bacterial infections. ACS Omega. 8(15):13492–13508. doi: 10.1021/acsomega.3c00110.
  • Kauffman KM, Chang WK, Brown JM, Hussain FA, Yang J, Polz MF, Kelly L. 2022. Resolving the structure of phage–bacteria interactions in the context of natural diversity. Nat Commun. 13(1):372. doi: 10.1038/s41467-021-27583-z.
  • Khan I, Saeed K, Khan I. 2019. Nanoparticles: properties, applications and toxicities. Arab J Chem. 12(7):908–931. doi: 10.1016/j.arabjc.2017.05.011.
  • Kim A, Kutschke A, Ehmann DE, Patey SA, Crandon JL, Gorseth E, Miller AA, McLaughlin RE, Blinn CM, Chen A, et al. 2015. Pharmacodynamic profiling of a siderophore-conjugated monocarbam in Pseudomonas aeruginosa: assessing the risk for resistance and attenuated efficacy. Antimicrob Agents Chemother. 59(12):7743–7752. doi: 10.1128/AAC.00831-15.
  • Kim DY, Yeom S, Park J, Lee H, Kim HJ. 2023. Cytoplasmic delivery of an antibiotic, trimethoprim, with a simple bidentate catechol analog as a siderophore mimetic. ACS Infect Dis. 9(3):554–566. doi: 10.1021/acsinfecdis.2c00556.
  • Kircheva N, Dudev T. 2020. Gallium as an antibacterial agent: a DFT/SMD Study of the Ga3+/Fe3+ competition for binding bacterial siderophores. Inorg Chem. 59(9):6242–6254. doi: 10.1021/acs.inorgchem.0c00367.
  • Klebba PE. 2016. ROSET model of TonB action in gram-negative bacterial iron acquisition. J Bacteriol. 198(7):1013–1021. doi: 10.1128/JB.00823-15.
  • Köhler G, Milstein C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 256(5517):495–497. doi: 10.1038/256495a0.
  • Kong H, Cheng W, Wei H, Yuan Y, Yang Z, Zhang X. 2019. An overview of recent progress in siderophore-antibiotic conjugates. Eur J Med Chem. 182:111615. doi: 10.1016/j.ejmech.2019.111615.
  • Koren E, Torchilin VP. 2012. Cell-penetrating peptides: breaking through to the other side. Trends Mol Med. 18(7):385–393. doi: 10.1016/j.molmed.2012.04.012.
  • Kostova V, Désos P, Starck JB, Kotschy A. 2021. The chemistry behind adcs. Pharmaceuticals. 14(5):442. doi: 10.3390/ph14050442.
  • Kou S, Peters LM, Mucalo MR. 2021. Chitosan: a review of sources and preparation methods. Int J Biol Macromol. 169:85–94. doi: 10.1016/j.ijbiomac.2020.12.005.
  • Kuaté Tokam CR, Bisso Ndezo B, Boulens N, Allémann E, Delie F, Dzoyem JP. 2023. Antibiofilm activity and synergistic ­effects of thymol-loaded poly (lactic-co-glycolic acid) nanoparticles with amikacin against four Salmonella enterica serovars. Can J Infect Dis Med Microbiol. 2023:7274309–7274313. doi: 10.1155/2023/7274309.
  • Kumar L, Bisen M, Harjai K, Chhibber S, Azizov S, Lalhlenmawia H, Kumar D. 2023. Advances in nanotechnology for biofilm inhibition. ACS Omega. 8(24):21391–21409. doi: 10.1021/acsomega.3c02239.
  • Kumar M, Pandey SK, Lalhall A, Sharma R, Sharma RK, Wangoo N. 2023. Targeting bacterial biofilms using vancomycin and multivalent cell-penetrating peptide labeled quantum dots. J Biomed Mater Res B Appl Biomater. 111(2):284–294. doi: 10.1002/jbm.b.35150.
  • Kyriakides TR, Raj A, Tseng TH, Xiao H, Nguyen R, Mohammed FS, Halder S, Xu M, Wu MJ, Bao S, et al. 2021. Biocompatibility of nanomaterials and their immunological properties. Biomed Mater. 16(4):042005. doi: 10.1088/1748-605X/abe5fa.
  • Lambert PA. 2005. Bacterial resistance to antibiotics: modified target sites. Adv Drug Deliv Rev. 57(10):1471–1485. doi: 10.1016/j.addr.2005.04.003.
  • Lee H-M, Ren J, Tran KM, Jeon B-M, Park W-U, Kim H, Lee KE, Oh Y, Choi M, Kim D-S, et al. 2021. Identification of efficient prokaryotic cell-penetrating peptides with applications in bacterial biotechnology. Commun Biol. 4(1):205. doi: 10.1038/s42003-021-01726-w.
  • Lee YR, Yeo S. 2020. Cefiderocol, a new siderophore cephalosporin for the treatment of complicated urinary tract infections caused by multidrug-resistant pathogens: preclinical and clinical pharmacokinetics, pharmacodynamics, efficacy and safety. Clin Drug Investig. 40(10):901–913. doi: 10.1007/s40261-020-00955-x.
  • Lehar SM, Pillow T, Xu M, Staben L, Kajihara KK, Vandlen R, DePalatis L, Raab H, Hazenbos WL, Hiroshi Morisaki J, et al. 2015. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature. 527(7578):323–328. doi: 10.1038/nature16057.
  • Leszczynska K, Namiot D, Byfield FJ, Cruz K, Zendzian-Piotrowska M, Fein DE, Savage PB, Diamond S, McCulloch CA, Janmey PA, et al. 2013. Antibacterial activity of the human host defence peptide LL-37 and selected synthetic cationic lipids against bacteria associated with oral and upper respiratory tract infections. J Antimicrob Chemother. 68(3):610–618. doi: 10.1093/jac/dks434.
  • Levi S, Rovida E. 2009. The role of iron in mitochondrial function. Biochim Biophys Acta. 1790(7):629–636. doi: 10.1016/j.bbagen.2008.09.008.
  • Li X, Dai J, Tang Y, Li L, Jin G. 2017. Quantitative proteomic profiling of tachyplesin i targets in U251 gliomaspheres. Mar Drugs. 15(1):20. doi: 10.3390/md15010020.
  • Lima T, Bernfur K, Vilanova M, Cedervall T. 2020. Understanding the lipid and protein corona formation on different sized polymeric nanoparticles. Sci Rep. 10(1):1129. doi: 10.1038/s41598-020-57943-6.
  • Lin YM, Ghosh M, Miller PA, Möllmann U, Miller MJ. 2019. Synthetic sideromycins (skepticism and optimism): selective generation of either broad or narrow spectrum gram-negative antibiotics. Biometals. 32(3):425–451. doi: 10.1007/s10534-019-00192-6.
  • Ling H, Lou X, Luo Q, He Z, Sun M, Sun J. 2022. Recent advances in bacteriophage-based therapeutics: insight into the post-antibiotic era. Acta Pharm Sin B. 12(12):4348–4364. doi: 10.1016/j.apsb.2022.05.007.
  • Lin Z, Xu X, Zhao S, Yang X, Guo J, Zhang Q, Jing C, Chen S, He Y. 2018. Total synthesis and antimicrobial evaluation of natural albomycins against clinical pathogens. Nat Commun. 9(1):3445. doi: 10.1038/s41467-018-05821-1.
  • Li W, O’Brien-Simpson NM, Holden JA, Otvos L, Reynolds EC, Separovic F, Hossain MA, Wade JD. 2018. Covalent conjugation of cationic antimicrobial peptides with a β-lactam antibiotic core. Pept Sci. 110(3):210. doi: 10.1002/pep2.24059
  • Lipkin R, Lazaridis T. 2017. Computational studies of peptide-induced membrane pore formation. Phil Trans R Soc B. 372(1726):20160219. doi: 10.1098/rstb.2016.0219.
  • Li H, Qian ZM. 2002. Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev. 22(3):225–250. doi: 10.1002/med.10008.
  • Liu R, Miller PA, Vakulenko SB, Stewart NK, Boggess WC, Miller MJ. 2018. A synthetic dual drug sideromycin induces gram-negative bacteria to commit suicide with a gram-positive antibiotic. J Med Chem. 61(9):3845–3854. doi: 10.1021/acs.jmedchem.8b00218.
  • Loh B, Gondil VS, Manohar P, Khan FM, Yang H, Leptihn S. 2021. Encapsulation and delivery of therapeutic phages. Appl Environ Microbiol. 87(5):e01979-20. doi: 10.1128/AEM.01979-20.
  • Lopatkin AJ, Bening SC, Manson AL, Stokes JM, Kohanski MA, Badran AH, Earl AM, Cheney NJ, Yang JH, Collins JJ. 2021. Clinically relevant mutations in core metabolic genes confer antibiotic resistance. Science. 371(6531):eaba0862. doi: 10.1126/science.aba0862.
  • Lv Y, Su L, Zhao Z, Zhao J, Su H, Zhang Z, Wang Y. 2023. Chitosan microspheres loaded with curcumin and gallic acid: modified synthesis, sustainable slow release, and enhanced biological property. Curr Microbiol. 80(8):240. doi: 10.1007/s00284-023-03352-7.
  • MacDougall G, Anderton RS, Edwards AB, Knuckey NW, Meloni BP. 2017. The neuroprotective peptide poly-arginine-12 (R12) reduces cell surface levels of NMDA NR2B receptor subunit in cortical neurons; investigation into the involvement of endocytic mechanisms. J Mol Neurosci. 61(2):235–246. doi: 10.1007/s12031-016-0861-1.
  • Macyszyn J, Chyży P, Burmistrz M, Lobka M, Miszkiewicz J, Wojciechowska M, Trylska J. 2023. Structural dynamics influences the antibacterial activity of a cell-penetrating peptide (KFF)3K. Sci Rep. 13(1):14826. doi: 10.1038/s41598-023-38745-y.
  • Makabenta JMV, Nabawy A, Li CH, Schmidt-Malan S, Patel R, Rotello VM. 2021. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol. 19(1):23–36. doi: 10.1038/s41579-020-0420-1.
  • Makowski M, Silva ÍC, Do Amaral CP, Gonçalves S, Santos NC. 2019. Advances in lipid and metal nanoparticles for antimicrobial peptide delivery. Pharmaceutics. 11(11):588. doi: 10.3390/pharmaceutics11110588.
  • Manea YK, Qashqoosh MTA, Rezakazemi M. 2024. In vitro hemoglobin binding and molecular docking of synthesized chitosan-based drug-carrying nanocomposite for ciprofloxacin-HCl drug delivery system. ACS Omega. 9(6):6339–6354. doi: 10.1021/acsomega.3c04632.
  • Mangal S, Ranot N, Nosran A, Singh V, Chhibber S, Harjai K. 2023. In vivo efficacy of pyochelin-mediated delivery of zingerone in Pseudomonas aeruginosa-induced peritonitis. Future Microbiol. 18:1339–1351. doi: 10.2217/fmb-2023-0016.
  • Mariathasan S, Tan MW. 2017. Antibody–antibiotic conjugates: a novel therapeutic platform against bacterial infections. Trends Mol Med. 23(2):135–149. doi: 10.1016/j.molmed.2016.12.008.
  • Mashburn LM, Jett AM, Akins DR, Whiteley M. 2005. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J Bacteriol. 187(2):554–566. doi: 10.1128/JB.187.2.554-566.2005.
  • Massip C, Oswald E. 2020. Siderophore-microcins in Escherichia coli: determinants of digestive colonization, the first step toward virulence. Front Cell Infect Microbiol. 10:381. doi: 10.3389/fcimb.2020.00381.
  • Ma J, Sun H, Li B, Wu B, Zhang X, Ye L. 2024. Horizontal transfer potential of antibiotic resistance genes in wastewater treatment plants unraveled by microfluidic-based mini-metagenomics. J Hazard Mater. 465:133493. doi: 10.1016/j.jhazmat.2024.133493.
  • Matijass M, Neundorf I. 2021. Cell-penetrating peptides as part of therapeutics used in cancer research. Med Drug Discov. 10:100092. doi: 10.1016/j.medidd.2021.100092.
  • Ma L, Xie X, Liu H, Huang Y, Wu H, Jiang M, Xu P, Ye X, Zhou C. 2020. Potent antibacterial activity of MSI-1 derived from the magainin 2 peptide against drug-resistant bacteria. Theranostics. 10(3):1373–1390. doi: 10.7150/thno.39157.
  • Mayor S, Pagano RE. 2007. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol. 8(8):603–612. doi: 10.1038/nrm2216.
  • McPherson CJ, Aschenbrenner LM, Lacey BM, Fahnoe KC, Lemmon MM, Finegan SM, Tadakamalla B, O’Donnell JP, Mueller JP, Tomaras AP. 2012. Clinically relevant Gram-negative resistance mechanisms have no effect on the efficacy of MC-1, a novel siderophore-conjugated monocarbam. Antimicrob Agents Chemother. 56(12):6334–6342. doi: 10.1128/AAC.01345-12.
  • Meléndez-Alafort L, Nadali A, Pasut G, Zangoni E, De Caro R, Cariolato L, Giron MC, Castagliuolo I, Veronese FM, Mazzi U. 2009. Detection of sites of infection in mice using 99mTc-labeled PN2S-PEG conjugated to UBI and 99mTc-UBI: a comparative biodistribution study. Nucl Med Biol. 36(1):57–64. doi: 10.1016/j.nucmedbio.2008.10.011.
  • Members IUSS. 2011. Acinetobacter baumannii Infections among Patients at Military Medical Facilities Treating. 53(45):1–5.
  • Meng X, Xu Z, Wang C, Patitz J, Boccaccini AR, Burkovski A, Zheng K. 2024. Surface engineering of mesoporous bioactive glass nanoparticles with bacteriophages for enhanced antibacterial activity. Colloids Surf B Biointerfaces. 234:113714. doi: 10.1016/j.colsurfb.2023.113714.
  • Merchant B. 1998. Gold, the Noble metal and the paradoxes of its toxicology. Biologicals. 26(1):49–59. doi: 10.1006/biol.1997.0123.
  • Miethke M, Marahiel MA. 2007. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev. 71(3):413–451. doi: 10.1128/MMBR.00012-07.
  • Miller MJ. 1989. Syntheses and therapeutic potential of hydroxamic acid based siderophores and analogues. Chem Rev. 89(7):1563–1579. doi: 10.1021/cr00097a011.
  • Miller MJ, Malouin F. 1993. Microbial iron chelators as drug delivery agents: the rational design and synthesis of siderophore-drug conjugates. Acc Chem Res. 26(5):241–249. doi: 10.1021/ar00029a003.
  • Miller MJ, Walz AJ, Zhu H, Wu C, Moraski G, Möllmann U, Tristani EM, Crumbliss AL, Ferdig MT, Checkley L, et al. 2011. Design, synthesis, and study of a mycobactin − artemisinin conjugate that has selective and potent activity against tuberculosis and malaria. J Am Chem Soc. 133(7):2076–2079.,. doi: 10.1021/ja109665t.
  • Miller KP, Wang L, Benicewicz BC, Decho AW. 2015. Inorganic nanoparticles engineered to attack bacteria. Chem Soc Rev. 44(21):7787–7807. doi: 10.1039/c5cs00041f.
  • Miranda Calderon LG, Alejo T, Santos S, Mendoza G, Irusta S, Arruebo M. 2023. Antibody-functionalized polymer nanoparticles for targeted antibiotic delivery in models of pathogenic bacteria infecting human macrophages. acs Appl Mater Interfaces. 15(34):40213–40227. doi: 10.1021/acsami.3c07367.
  • Mishra NM, Briers Y, Lamberigts C, Steenackers H, Robijns S, Landuyt B, Vanderleyden J, Schoofs L, Lavigne R, Luyten W, et al. 2015. Evaluation of the antibacterial and antibiofilm activities of novel CRAMP-vancomycin conjugates with diverse linkers. Org Biomol Chem. 13(27):7477–7486. doi: 10.1039/c5ob00830a.
  • Mnif S, Jardak M, Graiet I, Abid S, Driss D, Kharrat N. 2019. The novel cationic cell-penetrating peptide PEP-NJSM is highly active against Staphylococcus epidermidis biofilm. Int J Biol Macromol. 125:262–269. doi: 10.1016/j.ijbiomac.2018.12.008.
  • Mohamed MF, Brezden A, Mohammad H, Chmielewski J, Seleem MN. 2017. Targeting biofilms and persisters of ESKAPE pathogens with P14KanS, a kanamycin peptide conjugate. Biochim Biophys Acta Gen Subj. 1861(4):848–859. doi: 10.1016/j.bbagen.2017.01.029.
  • Mohs RC, Greig NH. 2017. Drug discovery and development: role of basic biological research. Alzheimers Dement (N Y). 3(4):651–657. doi: 10.1016/j.trci.2017.10.005.
  • Möllmann U, Heinisch L, Bauernfeind A, Köhler T, Ankel-Fuchs D. 2009. Siderophores as drug delivery agents: application of the “trojan Horse” strategy. Biometals. 22(4):615–624. doi: 10.1007/s10534-009-9219-2.
  • Monteiro N, Martins M, Martins A, Fonseca NA, Moreira JN, Reis RL, Neves NM. 2015. Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin. Acta Biomater. 18:196–205. doi: 10.1016/j.actbio.2015.02.018.
  • Mortezaee K, Najafi M, Samadian H, Barabadi H, Azarnezhad A, Ahmadi A. 2019. Redox interactions and genotoxicity of metal-based nanoparticles: a comprehensive review. Chem Biol Interact. 312:108814. doi: 10.1016/j.cbi.2019.108814.
  • Mugabe C, Halwani M, Azghani AO, Lafrenie RM, Omri A. 2006. Mechanism of enhanced activity of liposome-entrapped aminoglycosides against resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 50(6):2016–2022. doi: 10.1128/AAC.01547-05.
  • Mühlberg E, Umstätter F, Domhan C, Hertlein T, Ohlsen K, Krause A, Kleist C, Beijer B, Zimmermann S, Haberkorn U, et al. 2020. Vancomycin-lipopeptide conjugates with high antimicrobial activity on vancomycin-resistant enterococci. Pharmaceuticals. 13(6):110. doi: 10.3390/ph13060110.
  • Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, Han C, Bisignano C, Rao P, Wool E, et al. 2022. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 399(10325):629–655. doi: 10.1016/S0140-6736(21)02724-0.
  • Nagoba B, Vedpathak D. 2011. Medical applications of siderophores. Electron J Gen Med. 8(3):229–235. doi: 10.29333/ejgm/82743.
  • Nakase I, Hirose H, Tanaka G, Tadokoro A, Kobayashi S, Takeuchi T, Futaki S. 2009. Cell-surface accumulation of flock house virus-derived peptide leads to efficient internalization via macropinocytosis. Mol Ther. 17(11):1868–1876. doi: 10.1038/mt.2009.192.
  • Nakonieczna A, Topolska-Woś A, Łobocka M. 2024. New bacteriophage-derived lysins, LysJ and LysF, with the potential to control Bacillus anthracis. Appl Microbiol Biotechnol. 108(1):76. doi: 10.1007/s00253-023-12839-z.
  • Negash KH, Norris JKS, Hodgkinson JT. 2019. Siderophore–antibiotic conjugate design: new drugs for bad bugs? Molecules. 24(18):3314. doi: 10.3390/molecules24183314.
  • Nepal A, Ræder SB, Søgaard CK, Haugan MS, Otterlei M. 2021. Broad-spectrum antibacterial peptide kills extracellular and intracellular bacteria without affecting epithelialization. Front Microbiol. 12:764451. doi: 10.3389/fmicb.2021.764451.
  • Neumann W, Nolan EM. 2018. Evaluation of a reducible disulfide linker for siderophore-mediated delivery of antibiotics. J Biol Inorg Chem. 23(7):1025–1036. doi: 10.1007/s00775-018-1588-y.
  • Nguyen LT, Haney EF, Vogel HJ. 2011. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 29(9):464–472. doi: 10.1016/j.tibtech.2011.05.001.
  • Nobrega FL, Vlot M, de Jonge PA, Dreesens LL, Beaumont HJE, Lavigne R, Dutilh BE, Brouns SJJ. 2018. Targeting mechanisms of tailed bacteriophages. Nat Rev Microbiol. 16(12):760–773. doi: 10.1038/s41579-018-0070-8.
  • Nuding S, Frasch T, Schaller M, Stange EF, Zabel LT. 2014. Synergistic effects of antimicrobial peptides and antibiotics against clostridium difficile. Antimicrob Agents Chemother. 58(10):5719–5725. doi: 10.1128/AAC.02542-14.
  • Oehlke J, Scheller A, Wiesner B, Krause E, Beyermann M, Klauschenz E, Melzig M, Bienert M. 1998. Cellular uptake of an α-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta. 1414(1-2):127–139. doi: 10.1016/s0005-2736(98)00161-8.
  • Okkeh M, Bloise N, Restivo E, De Vita L, Pallavicini P, Visai L. 2021. Gold nanoparticles: can they be the next magic bullet for multidrug-resistant bacteria? Nanomaterials. 11(2):312. doi: 10.3390/nano11020312.
  • Olshvang E, Fritsch S, Scholtyssek OC, Schalk IJ, Metzler-Nolte N. 2023. Vectorization via siderophores increases antibacterial activity of K(RW)(3) peptides against Pseudomonas aeruginosa. Chemistry. 29(50):e202300364. doi: 10.1002/chem.202300364
  • Oromí-Bosch A, Antani JD, Turner PE. 2023. Developing phage therapy that overcomes the evolution of bacterial resistance. Annu Rev Virol. 10(1):503–524. doi: 10.1146/annurev-virology-012423-110530.
  • Paech F, Messner S, Spickermann J, Wind M, Schmitt-Hoffmann A-H, Witschi AT, Howell BA, Church RJ, Woodhead J, Engelhardt M, et al. 2017. Mechanisms of hepatotoxicity associated with the monocyclic β-lactam antibiotic BAL30072. Arch Toxicol. 91(11):3647–3662.,. doi: 10.1007/s00204-017-1994-x.
  • Page MGP, Dantier C, Desarbre E. 2010. In vitro properties of BAL30072, a novel siderophore sulfactam with activity against multiresistant gram-negative bacilli. Antimicrob Agents Chemother. 54(6):2291–2302. doi: 10.1128/AAC.01525-09.
  • Palau M, Muñoz E, Gusta MF, Larrosa N, Gomis X, Gilabert J, Almirante B, Puntes V, Texidó R, Gavaldà J. 2023. In vitro antibacterial activity of silver nanoparticles conjugated with amikacin and combined with hyperthermia against drug-resistant and biofilm-producing strains. Microbiol Spectr. 11(3):e0028023. doi: 10.1128/spectrum.00280-23.
  • Panáček A, Kvítek L, Smékalová M, Večeřová R, Kolář M, Röderová M, Dyčka F, Šebela M, Prucek R, Tomanec O, et al. 2018. Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol. 13(1):65–71. doi: 10.1038/s41565-017-0013-y.
  • Pandey A, Śmiłowicz D, Boros E. 2021. Galbofloxacin: a xenometal-antibiotic with potentin vitroandin vivoefficacy againstS. aureus. Chem Sci. 12(43):14546–14556. doi: 10.1039/d1sc04283a.
  • Park YJ, Chang L-C, Liang JF, Moon C, Chung C-P, Yang VC. 2005. Nontoxic membrane translocation peptide from protamine, low molecular weight protamine (LMWP), for enhanced intracellular protein delivery: in vitro and in vivo study. Faseb J. 19(11):1555–1557. doi: 10.1096/fj.04-2322fje.
  • Park HY, Chung C, Eiken MK, Baumgartner KV, Fahy KM, Leung KQ, Bouzos E, Asuri P, Wheeler KE, Riley KR. 2023. Silver nanoparticle interactions with glycated and non-glycated human serum albumin mediate toxicity. Front Toxicol. 5:1081753. doi: 10.3389/ftox.2023.1081753.
  • Park CB, Kim MS, Kim SC. 1996. A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem Biophys Res Commun. 218(1):408–413. doi: 10.1006/bbrc.1996.0071.
  • Park SE, Sajid MI, Parang K, Tiwari RK. 2019. Cyclic cell-penetrating peptides as efficient intracellular drug delivery tools. Mol Pharm. 16(9):3727–3743. doi: 10.1021/acs.molpharmaceut.9b00633.
  • Patel MB, Garrad E, Meisel JW, Negin S, Gokel MR, Gokel GW. 2019. Synthetic ionophores as non-resistant antibiotic adjuvants. RSC Adv. 9(4):2217–2230. doi: 10.1039/c8ra07641c.
  • Pawar V, Dhanka M, Srivastava R. 2019. Cefuroxime conjugated chitosan hydrogel for treatment of wound infections. Colloids Surf B Biointerfaces. 173:776–787. doi: 10.1016/j.colsurfb.2018.10.034.
  • Payne SM, Neilands IB. 1988. Iron and virulence in the family enterobacteriaceae. Crit Rev Microbiol. 16(2):81–111. doi: 10.3109/10408418809104468.
  • Peukert C, Vetter AC, Fuchs HLS, Harmrolfs K, Karge B, Stadler M, Brönstrup M. 2023. Siderophore conjugation with cleavable linkers boosts the potency of RNA polymerase inhibitors against multidrug-resistant E. coli. Chem. Sci. 14(20):5490–5502. doi: 10.1039/d2sc06850h.
  • Pfeifer E, Bonnin RA, Rocha EPC. 2022. Phage-plasmids spread antibiotic resistance genes through infection and lysogenic conversion. MBio. 13(5):e0185122. doi: 10.1128/mbio.01851-22.
  • Plota M, Sazakli E, Giormezis N, Gkartziou F, Kolonitsiou F, Leotsinidis M, Antimisiaris SG, Spiliopoulou I. 2021. In vitro anti-biofilm activity of bacteriophage k (Atcc 19685-b1) and daptomycin against staphylococci. Microorganisms. 9(9):1853. doi: 10.3390/microorganisms9091853.
  • Ponnappan N, Budagavi DP, Chugh A. 2017. CyLoP-1: membrane-active peptide with cell-penetrating and antimicrobial properties. Biochim Biophys Acta Biomembr. 1859(2):167–176. doi: 10.1016/j.bbamem.2016.11.002.
  • Pooga M, Hällbrink M, Zorko M, Langel U. 1998. Cell penetration by transportan. Faseb J. 12(1):67–77. doi: 10.1096/fasebj.12.1.67.
  • Popescu M, Van Belleghem JD, Khosravi A, Bollyky PL. 2021. Bacteriophages and the Immune System. Annu Rev Virol. 8(1):415–435. doi: 10.1146/annurev-virology-091919-074551.
  • Porosk L, Gaidutšik I, Langel Ü. 2021. Approaches for the discovery of new cell-penetrating peptides. Expert Opin Drug Discov. 16(5):553–565. doi: 10.1080/17460441.2021.1851187.
  • Post SJ, Shapiro JA, Wuest WM. 2019. Connecting iron acquisition and biofilm formation in the ESKAPE pathogens as a strategy for combatting antibiotic resistance. Medchemcomm. 10(4):505–512. doi: 10.1039/c9md00032a.
  • Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y. 1992. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry. 31(49):12416–12423. doi: 10.1021/bi00164a017.
  • Prasad NK, Seiple IB, Cirz RT, Rosenberg OS. 2022. Leaks in the pipeline: a failure analysis of gram-negative antibiotic development from 2010 to 2020. Antimicrob Agents Chemother. 66(5):e0005422. doi: 10.1128/aac.00054-22.
  • Pujals S, Fernández-Carneado J, Ludevid MD, Giralt E. 2008. A new, noncytotoxic, and fully protease resistant cell-penetrating peptide. ChemMedChem. 3(2):296–301. doi: 10.1002/cmdc.200700267.
  • Qin L, Hu N, Zhang Y, Yang L, Zhang X, Yang Y, Zhang J, Zou Y, Wei K, Zhao C, et al. 2023. Antibody-antibiotic conjugate targeted therapy for orthopedic implant-associated intracellular S. aureus infections. J. Adv. Res. S2090-1232(23):00375–00372. doi: 10.1016/j.jare.2023.12.001.
  • Radek K, Gallo R. 2007. Antimicrobial peptides: natural effectors of the innate immune system. Semin Immunopathol. 29(1):27–43. doi: 10.1007/s00281-007-0064-5.
  • Randhawa HK, Gautam A, Sharma M, Bhatia R, Varshney GC, Raghava GPS, Nandanwar H. 2016. Cell-penetrating peptide and antibiotic combination therapy: a potential alternative to combat drug resistance in methicillin-resistant Staphylococcus aureus. Appl Microbiol Biotechnol. 100(9):4073–4083. doi: 10.1007/s00253-016-7329-7.
  • Rathnayake K, Patel U, Pham C, McAlpin A, Budisalich T, Jayawardena SN. 2020. Targeted delivery of antibiotic therapy to inhibit Pseudomonas aeruginosa using lipid-coated mesoporous silica core-shell nanoassembly. ACS Appl Bio Mater. 3(10):6708–6721. doi: 10.1021/acsabm.0c00622.
  • Ratledge C, Dover LG. 2000. Iron metabolism in pathogenic bacteria. Annu Rev Microbiol. 54(1):881–941. doi: 10.1146/annurev.micro.54.1.881.
  • Ratliff AC, Buchanan SK, Celia H. 2022. The Ton Motor. Front Microbiol. 13:852955. doi: 10.3389/fmicb.2022.852955.
  • Raymond KN, Allred BE, Sia AK. 2015. Coordination chemistry of microbial iron transport. Acc Chem Res. 48(9):2496–2505. doi: 10.1021/acs.accounts.5b00301.
  • Rhomberg PR, Shortridge D, Huband MD, Butler D, West J, Flamm RK. 2017. Multilaboratory broth microdilution MIC reproducibility study for GSK3342830, a novel catechol-cephem, abstr SATURDAY287. ASM Microbe. (1):1.
  • Rodriguez CA, Papanastasiou EA, Juba M, Bishop B. 2014. Covalent modification of a ten-residue cationic antimicrobial peptide with levofloxacin. Front Chem. 2:71. doi: 10.3389/fchem.2014.00071.
  • Rodríguez D, González-Bello C. 2023. Siderophores: chemical tools for precise antibiotic delivery. Bioorg Med Chem Lett. 87:129282. doi: 10.1016/j.bmcl.2023.129282.
  • Roosenberg JM, 2nd, Lin YM, Lu Y, Miller MJ. 2000. Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Curr Med Chem. 7(2):159–197. doi: 10.2174/0929867003375353.
  • Ruczyński J, Rusiecka I, Turecka K, Kozłowska A, Alenowicz M, Gągało I, Kawiak A, Rekowski P, Waleron K, Kocić I. 2019. Transportan 10 improves the pharmacokinetics and pharmacodynamics of vancomycin. Sci Rep. 9(1):3247. doi: 10.1038/s41598-019-40103-w.
  • Rudilla H, Fusté E, Cajal Y, Rabanal F, Vinuesa T, Viñas M. 2016. Synergistic antipseudomonal effects of synthetic peptide AMP38 and carbapenems. Molecules. 21(9):1223. doi: 10.3390/molecules21091223.
  • Sabaeifard P, Abdi-Ali A, Gamazo C, Irache JM, Reza Soudi M. 2017. Improved effect of amikacin-loaded poly(D,L-lactide-co-glycolide) nanoparticles against planktonic and biofilm cells of Pseudomonas aeruginosa. J Med Microbiol. 66(2):137–148. doi: 10.1099/jmm.0.000430.
  • Saha R, Saha N, Donofrio RS, Bestervelt LL. 2013. Microbial siderophores: a mini review. J Basic Microbiol. 53(4):303–317. doi: 10.1002/jobm.201100552.
  • Sahasathian T, Kerdcholpetch T, Chanweroch A, Praphairaksit N, Suwonjandee N, Muangsin N. 2007. Sustained release of amoxicillin from chitosan tablets. Arch Pharm Res. 30(4):526–531. doi: 10.1007/BF02980229.
  • Sahiner M, Yilmaz AS, Ayyala RS, Sahiner N. 2023. Carboxymethyl chitosan microgels for sustained delivery of vancomycin and long-lasting antibacterial effects. Gels. 9(9):708. doi: 10.3390/gels9090708.
  • Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, Cano A, Espina M, Ettcheto M, Camins A, et al. 2020. Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials. 10(2):292. doi: 10.3390/nano10020292.
  • Sargun A, Johnstone TC, Zhi H, Raffatellu M, Nolan EM. 2021. Enterobactin- and salmochelin-β-lactam conjugates induce cell morphologies consistent with inhibition of penicillin-binding proteins in uropathogenicEscherichia coliCFT073. Chem Sci. 12(11):4041–4056. doi: 10.1039/d0sc04337k.
  • Sarma PP, Rai A, Baruah PK. 2024. Recent advances in the development of antibiotics-coated gold nanoparticles to combat antimicrobial resistance. Antibiotics. 13(2):124. doi: 10.3390/antibiotics13020124.
  • Sato T, Yamawaki K. 2019. Cefiderocol: discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin. Clin Infect Dis. 69(Suppl 7):S538–S543. doi: 10.1093/cid/ciz826.
  • Schaenzer AJ, Wright GD. 2020. Antibiotic resistance by enzymatic modi fi cation of antibiotic targets. Trends Mol Med. 26(8):768–782. doi: 10.1016/j.molmed.2020.05.001.
  • Schalk IJ. 2018. Siderophore–antibiotic conjugates: exploiting iron uptake to deliver drugs into bacteria. Clin Microbiol Infect. 24(8):801–802. doi: 10.1016/j.cmi.2018.03.037.
  • Scheeder A, Brockhoff M, Ward EN, Kaminski Schierle GS, Mela I, Kaminski CF. 2023. Molecular Mechanisms of Cationic Fusogenic Liposome Interactions with Bacterial Envelopes. J Am Chem Soc. 145(51):28240–28250. doi: 10.1021/jacs.3c11463.
  • Schiffelers RM, Storm G, Ten Kate MT, Bakker-Woudenberg IAJM. 2001. Therapeutic efficacy of liposome-encapsulated gentamicin in rat Klebsiella pneumoniae pneumonia in relation to impaired host defense and low bacterial susceptibility to gentamicin. Antimicrob Agents Chemother. 45(2):464–470. doi: 10.1128/AAC.45.2.464-470.2001.
  • Schwarze SR, Hruska KA, Dowdy SF. 2000. Protein transduction: unrestricted delivery into all cells? Trends Cell Biol. 10(7):290–295. 2 doi: 10.1016/s0962-8924(00)01771-2.
  • Scriboni AB, Couto VM, De Morais Ribeiro LN, Freires IA, Groppo FC, De Paula E, Franz-Montan M, Cogo-Müller K. 2019. Fusogenic liposomes increase the antimicrobial activity of vancomycin against staphylococcus aureus biofilm. Front Pharmacol. 10:1401. doi: 10.3389/fphar.2019.01401.
  • Shaaban MI, Shaker MA, Mady FM. 2017. Imipenem/cilastatin encapsulated polymeric nanoparticles for destroying carbapenem-resistant bacterial isolates. J Nanobiotechnology. 15(1):29. doi: 10.1186/s12951-017-0262-9.
  • Shankar P. 2016. Book review: tackling drug-resistant infections globally. Arch Pharma Pract. 7(3):110–111. doi: 10.4103/2045-080X.186181.
  • Shariati A, Chegini Z, Ghaznavi-Rad E, Zare EN, Hosseini SM. 2022. PLGA-based nanoplatforms in drug delivery for inhibition and destruction of microbial biofilm. Front Cell Infect Microbiol. 12:926363. doi: 10.3389/fcimb.2022.926363.
  • Sharma A, Kumar Arya D, Dua M, Chhatwal GS, Johri AK. 2012. Nano-technology for targeted drug delivery to combat antibiotic resistance. Expert Opin Drug Deliv. 9(11):1325–1332. doi: 10.1517/17425247.2012.717927.
  • Shirley M. 2019. Amikacin liposome inhalation suspension: a review in mycobacterium avium complex lung disease. Drugs. 79(5):555–562. doi: 10.1007/s40265-019-01095-z.
  • Shukla RK, Badiye A, Vajpayee K, Kapoor N. 2021. Genotoxic potential of nanoparticles: structural and functional modifications in DNA. Front Genet. 12:728250. doi: 10.3389/fgene.2021.728250.
  • Sim S, Wang P, Beyer BN, Cutrona KJ, Radhakrishnan ML, Elmore DE. 2017. Investigating the nucleic acid interactions of histone-derived antimicrobial peptides. FEBS Lett. 591(5):706–717. doi: 10.1002/1873-3468.12574.
  • Simon MJ, Kang WH, Gao S, Banta S, Morrison B. 2011. TAT is not capable of transcellular delivery across an intact endothelial monolayer in vitro. Ann Biomed Eng. 39(1):394–401. doi: 10.1007/s10439-010-0144-x.
  • Simon MJ, Kang WH, Gao S, Banta S, Morrison B.III 2010. Increased delivery of TAT across an endothelial monolayer following ischemic injury. Neurosci Lett. 486(1):1–4. doi: 10.1016/j.neulet.2010.09.029.
  • Simsekli O, Bilinmis I, Celik S, Arık G, Baba AY, Karakucuk A. 2023. Advancing biofilm management through nanoformulation strategies: a review of dosage forms and administration routes. J Drug Target. 31(9):931–949. doi: 10.1080/1061186X.2023.2270619.
  • Slavin YN, Asnis J, Häfeli UO, Bach H. 2017. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnology. 15(1):65. doi: 10.1186/s12951-017-0308-z.
  • Snyder EL, Dowdy SF. 2004. Cell penetrating peptides in drug delivery. Pharm Res. 21(3):389–393. doi: 10.1023/B:PHAM.0000019289.61978.f5.
  • Soe YM, Bedoui S, Stinear TP. 2021. Intracellular Staphylococcus aureus and host cell death pathways. Cell Microbiol. 23(5):e13317. doi: 10.1111/cmi.13317
  • Stabryla LM, Johnston KA, Diemler NA, Cooper VS, Millstone JE, Haig SJ, Gilbertson LM. 2021. Role of bacterial motility in differential resistance mechanisms of silver nanoparticles and silver ions. Nat Nanotechnol. 16(9):996–1003. doi: 10.1038/s41565-021-00929-w.
  • Stone TA, Cole GB, Ravamehr-Lake D, Nguyen HQ, Khan F, Sharpe S, Deber CM. 2019. Positive charge patterning and hydrophobicity of membrane-active antimicrobial peptides as determinants of activity, toxicity, and pharmacokinetic stability. J Med Chem. 62(13):6276–6286. doi: 10.1021/acs.jmedchem.9b00657.
  • Subramaniam S, Joyce P, Thomas N, Prestidge CA. 2021. Bioinspired drug delivery strategies for repurposing conventional antibiotics against intracellular infections. Adv Drug Deliv Rev. 177:113948. doi: 10.1016/j.addr.2021.113948.
  • Su Z, Xiao D, Xie F, Liu L, Wang Y, Fan S, Zhou X, Li S. 2021. Antibody–drug conjugates: recent advances in linker chemistry. Acta Pharm Sin B. 11(12):3889–3907. doi: 10.1016/j.apsb.2021.03.042.
  • Su D, Zhang D. 2021. Linker design impacts antibody-drug conjugate pharmacokinetics and efficacy via modulating the stability and payload release efficiency. Front Pharmacol. 12:687926. doi: 10.3389/fphar.2021.687926.
  • Swayambhu G, Bruno M, Gulick AM, Pfeifer BA. 2021. Siderophore natural products as pharmaceutical agents. Curr Opin Biotechnol. 69:242–251. doi: 10.1016/j.copbio.2021.01.021.
  • Swedan S, Shubair Z, Almaaytah A. 2019. Synergism of cationic antimicrobial peptide WLBU2 with antibacterial agents against biofilms of multi-drug resistant Acinetobacter baumannii and Klebsiella pneumoniae. Infect Drug Resist. 12:2019–2030. doi: 10.2147/IDR.S215084.
  • Taheri-Ledari R, Ahghari MR, Ansari F, Forouzandeh-Malati M, Mirmohammadi SS, Zarei-Shokat S, Ramezanpour S, Zhang W, Tian Y, Maleki A. 2022. Synergies in antimicrobial treatment by a levofloxacin-loaded halloysite and gold nanoparticles with a conjugation to a cell-penetrating peptide. Nanoscale Adv. 4(20):4418–4433. doi: 10.1039/d2na00431c.
  • Tamma PD, Cosgrove SE, Maragakis LL. 2012. Combination therapy for treatment of infections with gram-negative bacteria. Clin Microbiol Rev. 25(3):450–470. doi: 10.1128/CMR.05041-11.
  • Tang X, Yu P, Tang L, Zhou M, Fan C, Lu Y, Mathieu J, Xiong W, Alvarez PJ. 2019. Bacteriophages from arsenic-resistant bacteria transduced resistance genes, which changed arsenic speciation and increased soil toxicity. Environ Sci Technol Lett. 6(11):675–680. doi: 10.1021/acs.estlett.9b00600.
  • Tao F, Ma S, Tao H, Jin L, Luo Y, Zheng J, Xiang W, Deng H. 2021. Chitosan-based drug delivery systems: from synthesis strategy to osteomyelitis treatment – A review. Carbohydr Polym. 251:117063. doi: 10.1016/j.carbpol.2020.117063.
  • Tawre MS, Shiledar A, Satpute SK, Ahire K, Ghosh S, Pardesi K. 2022. Synergistic and antibiofilm potential of Curcuma aromatica derived silver nanoparticles in combination with antibiotics against multidrug-resistant pathogens. Front Chem. 10:1029056. doi: 10.3389/fchem.2022.1029056.
  • Tenero D, Farinola N, Berkowitz EM, Tiffany CA, Qian Y, Xue Z, Raychaudhuri A, Gardiner DF. 2019. Pharmacokinetics, safety, and tolerability evaluation of single and multiple doses of GSK3342830 in healthy volunteers. Clin Pharmacol Drug Dev. 8(6):754–764. doi: 10.1002/cpdd.637.
  • Terrone D, Sang SLW, Roudaia L, Silvius JR. 2003. Penetratin and related cell-penetrating cationic peptides can translocate across lipid bilayers in the presence of a transbilayer potential. Biochemistry. 42(47):13787–13799. doi: 10.1021/bi035293y.
  • Tiburcio E, García-Junceda E, Garrido L, Fernández-Mayoralas A, Revuelta J, Bastida A. 2021. Preparation and characterization of aminoglycoside-loaded chitosan/tripolyphosphate/alginate microspheres against E. coli. Polymers (Basel). 13(19):3326. doi: 10.3390/polym13193326.
  • Tong Z, Zhang Y, Ling J, Ma J, Huang L, Zhang L. 2014. An in vitro study on the effects of nisin on the antibacterial activities of 18 antibiotics against Enterococcus faecalis. PLoS One. 9(2):e89209. doi: 10.1371/journal.pone.0089209.
  • Tsukiura H, Koshiyama H, Knazima H, Organism D. 1964. Danomycin, a new antibiotic. J Antibiot Ser A. 17(2):39–47.
  • Tvilum A, Johansen MI, Glud LN, Ivarsen DM, Khamas AB, Carmali S, Mhatre SS, Søgaard AB, Faddy E, de Vor L. 2023. Antibody-drug conjugates to treat bacterial biofilms via targeting and extracellular drug release. Adv Sci. 10(23):e2301340. doi: 10.1002/advs.202301340
  • Valentin E, Bottomley AL, Chilambi GS, Harry EJ, Amal R, Sotiriou GA, Rice SA, Gunawan C. 2020. Heritable nanosilver resistance in priority pathogen: a unique genetic adaptation and comparison with ionic silver and antibiotics. Nanoscale. 12(4):2384–2392. doi: 10.1039/c9nr08424j.
  • van Houten NE, Zwick MB, Menendez A, Scott JK. 2006. Filamentous phage as an immunogenic carrier to elicit focused antibody responses against a synthetic peptide. Vaccine. 24(19):4188–4200. doi: 10.1016/j.vaccine.2006.01.001.
  • Vasilchenko AS, Vasilchenko AV, Pashkova TM, Smirnova MP, Kolodkin NI, Manukhov IV, Zavilgelsky GB, Sizova EA, Kartashova OL, Simbirtsev AS, et al. 2017. Antimicrobial activity of the indolicidin-derived novel synthetic peptide In-58. J Pept Sci. 23(12):855–863. doi: 10.1002/psc.3049.
  • Vassiliadis G, Destoumieux-Garzón D, Lombard C, Rebuffat S, Peduzzi J. 2010. Isolation and characterization of two members of the siderophore-microcin family, microcins M and H47. Antimicrob Agents Chemother. 54(1):288–297. doi: 10.1128/AAC.00744-09.
  • Wali N, Shabbir A, Wajid N, Abbas N, Naqvi SZH. 2022. Synergistic efficacy of colistin and silver nanoparticles impregnated human amniotic membrane in a burn wound infected rat model. Sci Rep. 12(1):6414. doi: 10.1038/s41598-022-10314-9.
  • Wang Z, Tang M. 2021. Research progress on toxicity, function, and mechanism of metal oxide nanoparticles on vascular endothelial cells. J Appl Toxicol. 41(5):683–700. doi: 10.1002/jat.4121.
  • Wang DY, van der Mei HC, Ren Y, Busscher HJ, Shi L. 2019. Lipid-based antimicrobial delivery-systems for the treatment of bacterial infections. Front Chem. 7:872. doi: 10.3389/fchem.2019.00872.
  • Wang YY, Zhang XY, Zhong XL, Huang YJ, Lin J, Chen WM. 2023. Design and synthesis of 3-hydroxy-pyridin-4(1H)-ones-ciprofloxacin conjugates as dual antibacterial and antibiofilm agents against Pseudomonas aeruginosa. J Med Chem. 66(3):2169–2193. doi: 10.1021/acs.jmedchem.2c02044.
  • Waters V, Ratjen F. 2014. Inhaled liposomal amikacin. Expert Rev Respir Med. 8(4):401–409. doi: 10.1586/17476348.2014.918507.
  • Weaver E, Macartney RA, Irwin R, Uddin S, Hooker A, Burke GA, Wylie MP, Lamprou DA. 2024. Liposomal encapsulation of amoxicillin via microfluidics with subsequent investigation of the significance of PEGylated therapeutics. Int J Pharm. 650:123710. doi: 10.1016/j.ijpharm.2023.123710.
  • Weber MM, Faris R. 2018. Subversion of the endocytic and secretory pathways by bacterial effector proteins. Front Cell Dev Biol. 6:1. doi: 10.3389/fcell.2018.00001.
  • Wencewicz TA, Miller MJ. 2017. Sideromycins as pathogen-targeted antibiotics. Top Med Chem. 26:151–184. doi: 10.1007/7355_201.
  • Wencewicz TA, Long TE, Möllmann U, Miller MJ. 2013. Trihydroxamate siderophore-fluoroquinolone conjugates are selective sideromycin antibiotics that target staphylococcus aureus. Bioconjug Chem. 24(3):473–486. doi: 10.1021/bc300610f.
  • Wencewicz TA, Miller MJ. 2013. Biscatecholate-monohydroxamate mixed ligand siderophore-carbacephalosporin conjugates are selective sideromycin antibiotics that target Acinetobacter baumannii. J Med Chem. 56(10):4044–4052. doi: 10.1021/jm400265k.
  • Wencewicz TA, Möllmann U, Long TE, Miller MJ. 2009. Is drug release necessary for antimicrobial activity of siderophore-drug conjugates? Syntheses and biological studies of the naturally occurring salmycin “trojan Horse” antibiotics and synthetic desferridanoxamine- antibiotic conjugates. Biometals. 22(4):633–648. doi: 10.1007/s10534-009-9218-3.
  • WHO. 2017. WHO publishes list ofbacteria for which newantibiotics are urgently needed.
  • Wieczorek M, Jenssen H, Kindrachuk J, Scott WRP, Elliott M, Hilpert K, Cheng JTJ, Hancock REW, Straus SK. 2010. Structural studies of a peptide with immune modulating and direct antimicrobial activity. Chem Biol. 17(9):970–980. doi: 10.1016/j.chembiol.2010.07.007.
  • Wiguna OD, Waturangi DE, Yogiara. 2022. Bacteriophage DW-EC with the capability to destruct and inhibit biofilm formed by several pathogenic bacteria. Sci Rep. 12(1):18539. doi: 10.1038/s41598-022-22042-1.
  • Wilson B. R., Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. 2016. Siderophores in Iron Metabolism: from Mechanism to Therapy Potential. Trends Mol Med. 22(12):1077–1090. doi: 10.1016/j.molmed.2016.10.005.
  • Winkelmann G. 1990. Structural and stereochemical aspects of iron transport in fungi. Biotechnol Adv. 8(1):207–231. doi: 10.1016/0734-9750(90)90013-2.
  • Woodford N, Ellington MJ. 2007. The emergence of antibiotic resistance by mutation. Clin Microbiol Infect. 13(1):5–18. doi: 10.1111/j.1469-0691.2006.01492.x.
  • World Health Organization. 2019. WHO report on surveillance of antibiotic consumption.
  • Worthington RJ, Melander C. 2013. Combination approaches to combat multi-drug resistant bacteria the problem of multi drug-resistant bacteria. Trends Biotechnol. 31(3):177–184. doi: 10.1016/j.tibtech.2012.12.006.
  • Wroe JA, Johnson CT, García AJ. 2020. Bacteriophage delivering hydrogels reduce biofilm formation in vitro and infection in vivo. J Biomed Mater Res A. 108(1):39–49. doi: 10.1002/jbm.a.36790.
  • Wu Y, Song Z, Wang H, Han H. 2019. Endogenous stimulus-powered antibiotic release from nanoreactors for a combination therapy of bacterial infections. Nat Commun. 10(1):4464. doi: 10.1038/s41467-019-12233-2.
  • Xie J, Bi Y, Zhang H, Dong S, Teng L, Lee RJ, Yang Z. 2020. Cell-penetrating peptides in diagnosis and treatment of human diseases: from preclinical research to clinical application. Front Pharmacol. 11:697. doi: 10.3389/fphar.2020.00697.
  • Xiong MH, Bao Y, Yang XZ, Zhu YH, Wang J. 2014. Delivery of antibiotics with polymeric particles. Adv Drug Deliv Rev. 78:63–76. doi: 10.1016/j.addr.2014.02.002.
  • Xu J, Li Y, Wang H, Zhu M, Feng W, Liang G. 2021. Enhanced antibacterial and anti-biofilm activities of antimicrobial peptides modified silver nanoparticles. Int J Nanomedicine. 16:4831–4846. doi: 10.2147/IJN.S315839.
  • Xu J, Xiang Y. 2017. Membrane penetration by bacterial viruses. J Virol. 91(13):e00162-17. doi: 10.1128/JVI.00162-17.
  • Yacoby I, Bar H, Benhar I. 2007. Targeted drug-carrying bacteriophages as antibacterial nanomedicines. Antimicrob Agents Chemother. 51(6):2156–2163. doi: 10.1128/AAC.00163-07.
  • Yacoby I, Shamis M, Bar H, Shabat D, Benhar I. 2006. Targeting antibacterial agents by using drug-carrying filamentous bacteriophages. Antimicrob Agents Chemother. 50(6):2087–2097. doi: 10.1128/AAC.00169-06.
  • Yan J, Mao J, Xie J. 2014. Bacteriophage polysaccharide depolymerases and biomedical applications. BioDrugs. 28(3):265–274. doi: 10.1007/s40259-013-0081-y.
  • Yang W, Wang L, Mettenbrink EM, Deangelis PL, Wilhelm S. 2021. Nanoparticle Toxicology. Annu Rev Pharmacol Toxicol. 61(1):269–289. doi: 10.1146/annurev-pharmtox-032320-110338.
  • Yeh YC, Huang TH, Yang SC, Chen CC, Fang JY. 2020. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: a review of recent advances. Front Chem. 8:286. doi: 10.3389/fchem.2020.00286.
  • Yousef MI, Abuzreda AA, Kamel MAEN. 2019. Neurotoxicity and inflammation induced by individual and combined exposure to iron oxide nanoparticles and silver nanoparticles. J Taibah Univ Sci. 13(1):570–578. doi: 10.1080/16583655.2019.1602351.
  • Yu R, Wang J, So L-Y, Harvey PJ, Shi J, Liang J, Dou Q, Li X, Yan X, Huang Y-H, et al. 2020. Enhanced activity against multidrug-resistant bacteria through coapplication of an analogue of tachyplesin i and an inhibitor of the QseC/B signaling pathway. J Med Chem. 63(7):3475–3484. doi: 10.1021/acs.jmedchem.9b01563.
  • Zahid M, Robbins PD. 2015. Cell-type specific penetrating peptides: therapeutic promises and challenges. Molecules. 20(7):13055–13070. doi: 10.3390/molecules200713055.
  • Zaid Alkilani A, Hamed R, Musleh B, Sharaire Z. 2024. Breaking boundaries: the advancements in transdermal delivery of antibiotics. Drug Deliv. 31(1):2304251. doi: 10.1080/10717544.2024.2304251
  • Zasloff M. 1987. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 84(15):5449–5453. doi: 10.1073/pnas.84.15.5449.
  • Zeiders SM, Chmielewski J. 2021. Antibiotic–cell-penetrating peptide conjugates targeting challenging drug-resistant and intracellular pathogenic bacteria. Chem Biol Drug Des. 98(5):762–778. doi: 10.1111/cbdd.13930.
  • Zeng P, Yi L, Xu J, Gao W, Xu C, Chen S, Chan KF, Wong KY. 2021. Investigation of antibiofilm activity, antibacterial activity, and mechanistic studies of an amphiphilic peptide against Acinetobacter baumannii. Biochim Biophys Acta Biomembr. 1863(6):183600. doi: 10.1016/j.bbamem.2021.183600.
  • Zhang J, Leifer C, Rose S, Chun DY, Thaisz J, Herr T, Nashed M, Joseph J, Perkins WR, DiPetrillo K. 2018. Amikacin liposome inhalation suspension (ALIS) penetrates non-tuberculous mycobacterial biofilms and enhances amikacin uptake into macrophages. Front Microbiol. 9:915. doi: 10.3389/fmicb.2018.00915.
  • Zhang P, Lock LL, Cheetham AG, Cui H. 2014. Enhanced cellular entry and efficacy of tat conjugates by rational design of the auxiliary segment. Mol Pharm. 11(3):964–973. doi: 10.1021/mp400619v.
  • Zhang W, Mehta A, Tong Z, Esser L, Voelcker NH. 2021. Development of polymeric nanoparticles for blood–brain barrier transfer—strategies and challenges. Adv Sci. 8(10):2003937. doi: 10.1002/advs.202003937
  • Zhang QY, Yan Z, Bin Meng YM, Hong XY, Shao G, Ma JJ, Cheng XR, Liu J, Kang J, Fu CY, et al. 2021. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res. 8(1):48. doi: 10.1186/s40779-021-00343-2
  • Zheng T, Nolan EM. 2015. Evaluation of (acyloxy)alkyl ester linkers for antibiotic release from siderophore-antibiotic conjugates. Bioorg Med Chem Lett. 25(21):4987–4991. doi: 10.1016/j.bmcl.2015.02.034.
  • Zorko M, Langel Ü. 2005. Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev. 57(4):529–545. doi: 10.1016/j.addr.2004.10.010.
  • Zurabov F, Glazunov E, Kochetova T, Uskevich V, Popova V. 2023. Bacteriophages with depolymerase activity in the control of antibiotic resistant Klebsiella pneumoniae biofilms. Sci Rep. 13(1):15188. doi: 10.1038/s41598-023-42505-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.