357
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Activation of the lysosomal damage response and selective autophagy: the coordinated actions of galectins, TRIM proteins, and CGAS-STING1 in providing immunity against Mycobacterium tuberculosis

, , , , , , , & ORCID Icon show all
Received 04 Aug 2023, Accepted 14 Feb 2024, Published online: 12 Mar 2024

References

  • Ahmad F, Rani A, Alam A, Zarin S, Pandey S, Singh H, Hasnain SE, Ehtesham NZ. 2022. Macrophage: a cell with many faces and functions in tuberculosis. Front Immunol. 13:747799. doi: 10.3389/fimmu.2022.747799.
  • Ankley L, Thomas S, Olive AJ. 2020. Fighting persistence: how chronic infections with Mycobacterium tuberculosis evade T cell-mediated clearance and new strategies to defeat them. Infect Immun. 88(7):e00916–19. doi: 10.1128/IAI.00916-19.
  • Astorgues-Xerri L, Riveiro ME, Tijeras-Raballand A, Serova M, Rabinovich GA, Bieche I, Vidaud M, de Gramont A, Martinet M, Cvitkovic E, et al. 2014. OTX008, a selective small-molecule inhibitor of galectin-1, downregulates cancer cell proliferation, invasion and tumour angiogenesis. Eur J Cancer. 50(14):2463–2477. doi: 10.1016/j.ejca.2014.06.015.
  • Augenstreich J, Arbues A, Simeone R, Haanappel E, Wegener A, Sayes F, et al. 2017. ESX-1 and phthiocerol dimycocerosates of Mycobacterium tuberculosis act in concert to cause phagosomal rupture and host cell apoptosis. Cell Microbiol. 19(7):e12726. doi: 10.1111/cmi.12726.
  • Bai J, Liu F. 2019. The cGAS-cGAMP-STING pathway: A molecular link between immunity and metabolism. Diabetes. 68(6):1099–1108. doi: 10.2337/dbi18-0052.
  • Bakula D, Müller AJ, Zuleger T, Takacs Z, Franz-Wachtel M, Thost A-K, Brigger D, Tschan MP, Frickey T, Robenek H, et al. 2017. WIPI3 and WIPI4 beta-propellers are scaffolds for LKB1-AMPK-TSC signalling circuits in the control of autophagy. Nat Commun. 8(1):15637. doi: 10.1038/ncomms15637.
  • Barboni E, Coade S, Fiori A. 2005. The binding of mycolic acids to galectin-3: a novel interaction between a host soluble lectin and trafficking mycobacterial lipids? FEBS Lett. 579(30):6749–6755. doi: 10.1016/j.febslet.2005.11.005.
  • Barczak AK, Avraham R, Singh S, Luo SS, Zhang WR, Bray M-A, Hinman AE, Thompson M, Nietupski RM, Golas A, et al. 2017. Systematic, multiparametric analysis of Mycobacterium tuberculosis intracellular infection offers insight into coordinated virulence. PLoS Pathog. 13(5):e1006363. doi: 10.1371/journal.ppat.1006363.
  • Baskaran S, Carlson L-A, Stjepanovic G, Young LN, Kim DJ, Grob P, Stanley RE, Nogales E, Hurley JH. 2014. Architecture and dynamics of the autophagic phosphatidylinositol 3-kinase complex. Elife. 3:e05115. doi: 10.7554/eLife.05115.
  • Basu S, Fowler BJ, Kerur N, Arnvig KB, Rao NA. 2018. NLRP3 inflammasome activation by mycobacterial ESAT-6 and dsRNA in intraocular tuberculosis. Microb Pathog. 114:219–224. doi: 10.1016/j.micpath.2017.11.044.
  • Beatty WL, Rhoades ER, Hsu DK, Liu FT, Russell DG. 2002. Association of a macrophage galactoside-binding protein with Mycobacterium-containing phagosomes. Cell Microbiol. 4(3):167–176. doi: 10.1046/j.1462-5822.2002.00183.x.
  • Bell SL, Lopez KL, Cox JS, Patrick KL, Watson RO. 2021. Galectin-8 senses phagosomal damage and recruits selective autophagy adapter TAX1BP1 to control Mycobacterium tuberculosis infection in macrophages. mBio. 12(4):e0187120. doi: 10.1128/mBio.01871-20.
  • Berry MPR, Graham CM, McNab FW, Xu Z, Bloch SAA, Oni T, Wilkinson KA, Banchereau R, Skinner J, Wilkinson RJ, et al. 2010. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature. 466(7309):973–977. doi: 10.1038/nature09247.
  • Bhowmick S, Saha A, AlFaris NA, ALTamimi JZ, ALOthman ZA, Aldayel TS, Wabaidur SM, Islam MA. 2022. Structure-based identification of galectin-1 selective modulators in dietary food polyphenols: a pharmacoinformatics approach. Mol Divers. 26(3):1697–1714. doi: 10.1007/s11030-021-10297-1.
  • Bodur C, Kazyken D, Huang K, Ekim Ustunel B, Siroky KA, Tooley AS, Gonzalez IE, Foley DH, Acosta-Jaquez HA, Barnes TM, et al. 2018. The IKK-related kinase TBK1 activates mTORC1 directly in response to growth factors and innate immune agonists. Embo J. 37(1):19–38. doi: 10.15252/embj.201696164.
  • Briken V, Ahlbrand SE, Shah S. 2013. Mycobacterium tuberculosis and the host cell inflammasome: a complex relationship. Front Cell Infect Microbiol. 3:62. doi: 10.3389/fcimb.2013.00062.
  • Bunduc CM, Ding Y, Kuijl C, Marlovits TC, Bitter W, Houben ENG. 2023. Reconstitution of a minimal ESX-5 type VII secretion system suggests a role for PPE proteins in the outer membrane transport of proteins. mSphere. 8(5):e0040223. doi: 10.1128/msphere.00402-23.
  • Bussi C, Gutierrez MG. 2019. Mycobacterium tuberculosis infection of host cells in space and time. FEMS Microbiol Rev. 43(4):341–361. doi: 10.1093/femsre/fuz006.
  • Camacho LR, Ensergueix D, Perez E, Gicquel B, Guilhot C. 1999. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol. 34(2):257–267. doi: 10.1046/j.1365-2958.1999.01593.x.
  • Cambier CJ, Falkow S, Ramakrishnan L. 2014. Host evasion and exploitation schemes of Mycobacterium tuberculosis. Cell. 159(7):1497–1509. doi: 10.1016/j.cell.2014.11.024.
  • Chai Q, Wang L, Liu CH, Ge B. 2020. New insights into the evasion of host innate immunity by Mycobacterium tuberculosis. Cell Mol Immunol. 17(9):901–913. doi: 10.1038/s41423-020-0502-z.
  • Chai Q, Wang X, Qiang L, Zhang Y, Ge P, Lu Z, Zhong Y, Li B, Wang J, Zhang L, et al. 2019. A Mycobacterium tuberculosis surface protein recruits ubiquitin to trigger host xenophagy. Nat Commun. 10(1):1973. doi: 10.1038/s41467-019-09955-8.
  • Chai Q, Yu S, Zhong Y, Lu Z, Qiu C, Yu Y, Zhang X, Zhang Y, Lei Z, Qiang L, et al. 2022. A bacterial phospholipid phosphatase inhibits host pyroptosis by hijacking ubiquitin. Science. 378(6616):eabq0132. doi: 10.1126/science.abq0132.
  • Chakaya J, Khan M, Ntoumi F, Aklillu E, Fatima R, Mwaba P, Kapata N, Mfinanga S, Hasnain SE, Katoto PDMC, et al. 2021. Global tuberculosis report 2020 - Reflections On The Global TB burden, treatment and prevention efforts. Int J Infect Dis. 113 Suppl 1(Suppl 1):S7–S12. doi: 10.1016/j.ijid.2021.02.107.
  • Chakaya JM, Marais B, Du Cros P, Ntoumi F, Mfinanga S, Kapata N, Hasnain SE, Nathavitharana R, Zumla A. 2020. Programmatic versus personalised approaches to managing the global epidemic of multidrug-resistant tuberculosis. Lancet Respir Med. 8(4):334–335. doi: 10.1016/S2213-2600(20)30104-1.
  • Chandra P, Grigsby SJ, Philips JA. 2022. Immune evasion and provocation by Mycobacterium tuberculosis. Nat Rev Microbiol. 20(12):750–766. doi: 10.1038/s41579-022-00763-4.
  • Chauhan S, Kumar S, Jain A, Ponpuak M, Mudd MH, Kimura T, Choi SW, Peters R, Mandell M, Bruun J-A, et al. 2016. TRIMs and galectins globally cooperate and TRIM16 and galectin-3 co-direct autophagy in endomembrane damage homeostasis. Dev Cell. 39(1):13–27. doi: 10.1016/j.devcel.2016.08.003.
  • Chávez-Galán L, Ramon-Luing L, Carranza C, Garcia I, Sada-Ovalle I. 2017. Lipoarabinomannan decreases Galectin-9 expression and tumor necrosis factor pathway in macrophages favoring Mycobacterium tuberculosis intracellular growth. Front Immunol. 8:1659. doi: 10.3389/fimmu.2017.01659.
  • Chen WS, Cao Z, Leffler H, Nilsson UJ, Panjwani N. 2017. Galectin-3 inhibition by a small-molecule inhibitor reduces both pathological corneal neovascularization and fibrosis. Invest Ophthalmol Vis Sci. 58(1):9–20. doi: 10.1167/iovs.16-20009.
  • Cheng Z, Dai T, He X, Zhang Z, Xie F, Wang S, et al. 2020. The interactions between cGAS-STING pathway and pathogens. Signal Transduct Target Ther. 5(1):91.
  • Cheng Y, Schorey JS. 2018. Mycobacterium tuberculosis-induced IFN-beta production requires cytosolic DNA and RNA sensing pathways. J Exp Med. 215(11):2919–2935. doi: 10.1084/jem.20180508.
  • Chen HY, Weng IC, Hong MH, Liu FT. 2014. Galectins as bacterial sensors in the host innate response. Curr Opin Microbiol. 17:75–81. doi: 10.1016/j.mib.2013.11.006.
  • Coers J. 2017. Sweet host revenge: galectins and GBPs join forces at broken membranes. Cell Microbiol. 19(12):e12793. doi: 10.1111/cmi.12793.
  • Collins AC, Cai H, Li T, Franco LH, Li X-D, Nair VR, Scharn CR, Stamm CE, Levine B, Chen ZJ, et al. 2015. Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. Cell Host Microbe. 17(6):820–828. doi: 10.1016/j.chom.2015.05.005.
  • Corn JE, Vucic D. 2014. Ubiquitin in inflammation: the right linkage makes all the difference. Nat Struct Mol Biol. 21(4):297–300. doi: 10.1038/nsmb.2808.
  • Cox JS, Chen B, McNeil M, Jacobs WR.Jr. 1999. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature. 402(6757):79–83. doi: 10.1038/47042.
  • D’Amico F, Mukhopadhyay R, Ovaa H, Mulder MPC. 2021. Targeting TRIM proteins: A quest towards drugging an emerging protein class. Chembiochem. 22(12):2011–2031. doi: 10.1002/cbic.202000787.
  • Deng L, Meng T, Chen L, Wei W, Wang P. 2020. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 5(1):11.
  • Deretic V, Levine B. 2009. Autophagy, immunity, and microbial adaptations. Cell Host Microbe. 5(6):527–549. doi: 10.1016/j.chom.2009.05.016.
  • Deretic V, Saitoh T, Akira S. 2013. Autophagy in infection, inflammation and immunity. Nat Rev Immunol. 13(10):722–737. doi: 10.1038/nri3532.
  • Dey B, Dey RJ, Cheung LS, Pokkali S, Guo H, Lee J-H, Bishai WR. 2015. A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nat Med. 21(4):401–406. doi: 10.1038/nm.3813.
  • Dey RJ, Dey B, Zheng Y, Cheung LS, Zhou J, Sayre D, Kumar P, Guo H, Lamichhane G, Sintim HO, et al. 2017. Inhibition of innate immune cytosolic surveillance by an M. tuberculosis phosphodiesterase. Nat Chem Biol. 13(2):210–217. doi: 10.1038/nchembio.2254.
  • Di Rienzo M, Romagnoli A, Antonioli M, Piacentini M, Fimia GM. 2020. TRIM proteins in autophagy: selective sensors in cell damage and innate immune responses. Cell Death Differ. 27(3):887–902. doi: 10.1038/s41418-020-0495-2.
  • Diner EJ, Burdette DL, Wilson SC, Monroe KM, Kellenberger CA, Hyodo M, Hayakawa Y, Hammond MC, Vance RE. 2013. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep. 3(5):1355–1361. doi: 10.1016/j.celrep.2013.05.009.
  • Duran A, Amanchy R, Linares JF, Joshi J, Abu-Baker S, Porollo A, Hansen M, Moscat J, Diaz-Meco MT. 2011. p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell. 44(1):134–146. doi: 10.1016/j.molcel.2011.06.038.
  • Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES. 2009. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature. 458(7237):509–513. doi: 10.1038/nature07710.
  • Franco LH, Nair VR, Scharn CR, Xavier RJ, Torrealba JR, Shiloh MU, Levine B. 2017. The ubiquitin ligase Smurf1 functions in selective autophagy of Mycobacterium tuberculosis and anti-tuberculous host defense. Cell Host Microbe. 22(3):421–423. doi: 10.1016/j.chom.2017.08.005.
  • Franco LH, Nair VR, Scharn CR, Xavier RJ, Torrealba JR, Shiloh MU, Levine B. 2017. The ubiquitin ligase Smurf1 functions in selective autophagy of Mycobacterium tuberculosis and anti-tuberculous host defense. Cell Host Microbe. 21(1):59–72. doi: 10.1016/j.chom.2016.11.002.
  • Ganley IG, Lam Du H, Wang J, Ding X, Chen S, Jiang X. 2009. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem. 284(18):12297–12305. doi: 10.1074/jbc.M900573200.
  • Gong Z, Kuang Z, Li H, Li C, Ali MK, Huang F, Li P, Li Q, Huang X, Ren S, et al. 2019. Regulation of host cell pyroptosis and cytokines production by Mycobacterium tuberculosis effector PPE60 requires LUBAC mediated NF-kappaB signaling. Cell Immunol. 335:41–50. doi: 10.1016/j.cellimm.2018.10.009.
  • Gui X, Yang H, Li T, Tan X, Shi P, Li M, Du F, Chen ZJ. 2019. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature. 567(7747):262–266. doi: 10.1038/s41586-019-1006-9.
  • Haakonsen DL, Rape M. 2019. Branching out: improved signaling by heterotypic ubiquitin chains. Trends Cell Biol. 29(9):704–716. doi: 10.1016/j.tcb.2019.06.003.
  • Hasan M, Gonugunta VK, Dobbs N, Ali A, Palchik G, Calvaruso MA, DeBerardinis RJ, Yan N. 2017. Chronic innate immune activation of TBK1 suppresses mTORC1 activity and dysregulates cellular metabolism. Proc Natl Acad Sci U S A. 114(4):746–751. doi: 10.1073/pnas.1611113114.
  • Hinman AE, Jani C, Pringle SC, Zhang WR, Jain N, Martinot AJ, Barczak AK. 2021. Mycobacterium tuberculosis canonical virulence factors interfere with a late component of the TLR2 response. Elife. 10:e73984. doi: 10.7554/eLife.73984.
  • Hoffpauir CT, Bell SL, West KO, Jing T, Wagner AR, Torres-Odio S, Cox JS, West AP, Li P, Patrick KL, et al. 2020. TRIM14 is a key regulator of the type I IFN response during Mycobacterium tuberculosis infection. J Immunol. 205(1):153–167. doi: 10.4049/jimmunol.1901511.
  • Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA. 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 458(7237):514–518. doi: 10.1038/nature07725.
  • Humphreys LM, Smith P, Chen Z, Fouad S, D’Angiolella V. 2021. The role of E3 ubiquitin ligases in the development and progression of glioblastoma. Cell Death Differ. 28(2):522–537. doi: 10.1038/s41418-020-00696-6.
  • Ikeda F, Dikic I. 2008. Atypical ubiquitin chains: new molecular signals. ‘Protein Modifications: beyond the Usual Suspects’ review series. EMBO Rep. 9(6):536–542. doi: 10.1038/embor.2008.93.
  • Ishikawa H, Ma Z, Barber GN. 2009. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 461(7265):788–792. doi: 10.1038/nature08476.
  • Jaiswal S, Srivastava KK. 2018. Protein tyrosine kinase A modulates intracellular survival of mycobacteria through Galectin 3. Biochem Biophys Res Commun. 498(4):884–890. doi: 10.1016/j.bbrc.2018.03.075.
  • Jani C, Marsh A, Uchil P, Jain N, Baskir ZR, Glover OT, Root DE, Doench JG, Barczak AK. 2023. Vps18 contributes to phagosome membrane integrity in Mycobacterium tuberculosis -infected macrophages. bioRxiv [Preprint]. doi: 10.1101/2023.10.01.560397.
  • Ji DX, Yamashiro LH, Chen KJ, Mukaida N, Kramnik I, Darwin KH, Vance RE. 2019. Type I interferon-driven susceptibility to Mycobacterium tuberculosis is mediated by IL-1Ra. Nat Microbiol. 4(12):2128–2135. doi: 10.1038/s41564-019-0578-3.
  • Jia J, Abudu YP, Claude-Taupin A, Gu Y, Kumar S, Choi SW, Peters R, Mudd MH, Allers L, Salemi M, et al. 2018. Galectins control mTOR in response to endomembrane damage. Mol Cell. 70(1):120–135 e8. doi: 10.1016/j.molcel.2018.03.009.
  • Jia J, Bissa B, Brecht L, Allers L, Choi SW, Gu Y, Zbinden M, Burge MR, Timmins G, Hallows K, et al. 2020. AMPK is activated during lysosomal damage via a galectin-ubiquitin signal transduction system. Autophagy. 16(8):1550–1552. doi: 10.1080/15548627.2020.1788890.
  • Jia J, Bissa B, Brecht L, Allers L, Choi SW, Gu Y, Zbinden M, Burge MR, Timmins G, Hallows K, et al. 2020. AMPK, a regulator of metabolism and autophagy, is activated by lysosomal damage via a novel galectin-directed ubiquitin signal transduction system. Mol Cell. 77(5):951–969 e9. doi: 10.1016/j.molcel.2019.12.028.
  • Jia J, Claude-Taupin A, Gu Y, Choi SW, Peters R, Bissa B, Mudd MH, Allers L, Pallikkuth S, Lidke KA, et al. 2020. Galectin-3 coordinates a cellular system for lysosomal repair and removal. Dev Cell. 52(1):69–87 e8. doi: 10.1016/j.devcel.2019.10.025.
  • Jia J, Claude-Taupin A, Gu Y, Choi SW, Peters R, Bissa B, Mudd MH, Allers L, Pallikkuth S, Lidke KA, et al. 2020. MERIT, a cellular system coordinating lysosomal repair, removal and replacement. Autophagy. 16(8):1539–1541. doi: 10.1080/15548627.2020.1779451.
  • Johansen T, Lamark T. 2011. Selective autophagy mediated by autophagic adapter proteins. Autophagy. 7(3):279–296. doi: 10.4161/auto.7.3.14487.
  • Johnson JR, Parry T, Repasy T, Geiger KM, Verschueren E, Budzik JM, et al. 2020. Comparative analysis of macrophage post-translational modifications during intracellular bacterial pathogen infection. bioRxiv [Preprint]. doi: 10.1101/2020.05.27.116772.
  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. 2000. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J. 19(21):5720–5728. doi: 10.1093/emboj/19.21.5720.
  • Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W, Liu R, Zhong Q, Guan K-L. 2013. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell. 152(1-2):290–303. doi: 10.1016/j.cell.2012.12.016.
  • Kim J, Kundu M, Viollet B, Guan KL. 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 13(2):132–141. doi: 10.1038/ncb2152.
  • Kim JK, Silwal P, Jo EK. 2020. Host-pathogen dialogues in autophagy, apoptosis, and necrosis during mycobacterial infection. Immune Netw. 20(5):e37. doi: 10.4110/in.2020.20.e37.
  • Kimura T, Jia J, Kumar S, Choi SW, Gu Y, Mudd M, Dupont N, Jiang S, Peters R, Farzam F, et al. 2017. Dedicated SNAREs and specialized TRIM cargo receptors mediate secretory autophagy. Embo J. 36(1):42–60. doi: 10.15252/embj.201695081.
  • Kleinnijenhuis J, Oosting M, Joosten LA, Netea MG, Van Crevel R. 2011. Innate immune recognition of Mycobacterium tuberculosis. Clin Dev Immunol. 2011:405310–405312. doi: 10.1155/2011/405310.
  • Komander D, Rape M. 2012. The ubiquitin code. Annu Rev Biochem. 81(1):203–229. doi: 10.1146/annurev-biochem-060310-170328.
  • Konno H, Konno K, Barber GN. 2013. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell. 155(3):688–698. doi: 10.1016/j.cell.2013.09.049.
  • Kumar S, Chauhan S, Jain A, Ponpuak M, Choi SW, Mudd M, Peters R, Mandell MA, Johansen T, Deretic V, et al. 2017. Galectins and TRIMs directly interact and orchestrate autophagic response to endomembrane damage. Autophagy. 13(6):1086–1087. doi: 10.1080/15548627.2017.1307487.
  • Kupz A, Zedler U, Stäber M, Perdomo C, Dorhoi A, Brosch R, Kaufmann SHE. 2016. ESAT-6-dependent cytosolic pattern recognition drives noncognate tuberculosis control in vivo. J Clin Invest. 126(6):2109–2122. doi: 10.1172/JCI84978.
  • LeBlanc N, Mallette E, Zhang W. 2021. Targeted modulation of E3 ligases using engineered ubiquitin variants. Febs J. 288(7):2143–2165. doi: 10.1111/febs.15536.
  • Levine B, Kroemer G. 2019. Biological functions of autophagy genes: a disease perspective. Cell. 176(1–2):11–42. doi: 10.1016/j.cell.2018.09.048.
  • Li CS, Lo TH, Tu TJ, Chueh DY, Yao CI, Lin CH, et al. 2023. Cytosolic galectin-4 enchains bacteria, restricts their motility, and promotes inflammasome activation in intestinal epithelial cells. Proc Natl Acad Sci U S A. 120(5):e2207091120.
  • Liang Q, Seo GJ, Choi YJ, Kwak M-J, Ge J, Rodgers MA, Shi M, Leslie BJ, Hopfner K-P, Ha T, et al. 2014. Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses. Cell Host Microbe. 15(2):228–238. doi: 10.1016/j.chom.2014.01.009.
  • Lin C-Y, Nozawa T, Minowa-Nozawa A, Toh H, Hikichi M, Iibushi J, Nakagawa I. 2020. Autophagy Receptor Tollip Facilitates Bacterial Autophagy by Recruiting Galectin-7 in Response to Group A Streptococcus Infection. Front Cell Infect Microbiol. 10:583137. doi: 10.3389/fcimb.2020.583137.
  • Liu S, Guan L, Peng C, Cheng Y, Cheng H, Wang F, Ma M, Zheng R, Ji Z, Cui P, et al. 2023. Mycobacterium tuberculosis suppresses host DNA repair to boost its intracellular survival. Cell Host Microbe. 31(11):1820–1836.e10. doi: 10.1016/j.chom.2023.09.010.
  • Liu X, Lieberman J. 2017. A mechanistic understanding of pyroptosis: the fiery death triggered by invasive infection. Adv Immunol. 135:81–117.
  • Liu CH, Liu H, Ge B. 2017. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol. 14(12):963–975. doi: 10.1038/cmi.2017.88.
  • Liu L, Zhai K, Chen Y, Chen X, Wang G, Wu L. 2021. Effect and mechanism of Mycobacterium tuberculosis lipoprotein LpqH in NLRP3 inflammasome activation in mouse Ana-1 macrophage. Biomed Res Int. 2021:8239135. doi: 10.1155/2021/8239135.
  • Liu H, Zhu T, Li Q, Xiong X, Wang J, Zhu X, Zhou X, Zhang L, Zhu Y, Peng Y, et al. 2020. TRIM25 upregulation by Mycobacterium tuberculosis infection promotes intracellular survival of M.tb in RAW264.7 cells. Microb Pathog. 148:104456. doi: 10.1016/j.micpath.2020.104456.
  • Malik AA, Sheikh JA, Ehtesham NZ, Hira S, Hasnain SE. 2022. Can Mycobacterium tuberculosis infection lead to cancer? Call for a paradigm shift in understanding TB and cancer. Int J Med Microbiol. 312(5):151558. doi: 10.1016/j.ijmm.2022.151558.
  • Manzanillo PS, Ayres JS, Watson RO, Collins AC, Souza G, Rae CS, Schneider DS, Nakamura K, Shiloh MU, Cox JS, et al. 2013. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature. 501(7468):512–516. doi: 10.1038/nature12566.
  • Manzanillo PS, Shiloh MU, Portnoy DA, Cox JS. 2012. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe. 11(5):469–480. doi: 10.1016/j.chom.2012.03.007.
  • Mao H, Du Y, Zhang Z, Cao B, Zhao J, Zhou H, Mao X. 2017. Nitroxoline shows antimyeloma activity by targeting the TRIM25/p53 axle. Anticancer Drugs. 28(4):376–383. doi: 10.1097/CAD.0000000000000466.
  • Marinho FV, Benmerzoug S, Rose S, Campos PC, Marques JT, Báfica A, Barber G, Ryffel B, Oliveira SC, Quesniaux VFJ, et al. 2018. The cGAS/STING pathway is important for dendritic cell activation but is not essential to induce protective immunity against Mycobacterium tuberculosis infection. J Innate Immun. 10(3):239–252. doi: 10.1159/000488952.
  • Mayer-Barber KD, Andrade BB, Oland SD, Amaral EP, Barber DL, Gonzales J, Derrick SC, Shi R, Kumar NP, Wei W, et al. 2014. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature. 511(7507):99–103. doi: 10.1038/nature13489.
  • Mehra A, Zahra A, Thompson V, Sirisaengtaksin N, Wells A, Porto M, Köster S, Penberthy K, Kubota Y, Dricot A, et al. 2013. Mycobacterium tuberculosis type VII secreted effector EsxH targets host ESCRT to impair trafficking. PLoS Pathog. 9(10):e1003734. doi: 10.1371/journal.ppat.1003734.
  • Mishra BB, Moura-Alves P, Sonawane A, Hacohen N, Griffiths G, Moita LF, Anes E. 2010. Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell Microbiol. 12(8):1046–1063. doi: 10.1111/j.1462-5822.2010.01450.x.
  • Mittal E, Skowyra ML, Uwase G, Tinaztepe E, Mehra A, Köster S, Hanson PI, Philips JA. 2018. Mycobacterium tuberculosis Type VII secretion system effectors differentially impact the ESCRT endomembrane damage response. mBio. 9(6):e01765–18. doi: 10.1128/mBio.01765-18.
  • Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y. 1998. A protein conjugation system essential for autophagy. Nature. 395(6700):395–398. doi: 10.1038/26506.
  • Mizushima N, Yoshimori T, Ohsumi Y. 2011. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 27(1):107–132. doi: 10.1146/annurev-cellbio-092910-154005.
  • Morrison HM, Craft J, Rivera-Lugo R, Johnson JR, Golovkine GR, Bell SL, Dodd CE, Van Dis E, Beatty WL, Margolis SR, et al. 2023. Deficiency in Galectin-3, -8, and -9 impairs immunity to chronic Mycobacterium tuberculosis infection but not acute infection with multiple intracellular pathogens. PLoS Pathog. 19(6):e1011088. doi: 10.1371/journal.ppat.1011088.
  • Nehvi IB, Quadir N, Khubaib M, Sheikh JA, Shariq M, Mohareer K, Banerjee S, Rahman SA, Ehtesham NZ, Hasnain SE, et al. 2022. ArgD of Mycobacterium tuberculosis is a functional N-acetylornithine aminotransferase with moonlighting function as an effective immune modulator. Int J Med Microbiol. 312(1):151544. doi: 10.1016/j.ijmm.2021.151544.
  • Padilla ST, Niki T, Furushima D, Bai G, Chagan-Yasutan H, Telan EF, Tactacan-Abrenica RJ, Maeda Y, Solante R, Hattori T, et al. 2020. Plasma levels of a cleaved form of Galectin-9 are the most sensitive biomarkers of acquired immune deficiency syndrome and tuberculosis coinfection. Biomolecules. 10(11):1495. doi: 10.3390/biom10111495.
  • Pei G, Buijze H, Liu H, Moura-Alves P, Goosmann C, Brinkmann V, Kawabe H, Dorhoi A, Kaufmann SHE. 2017. The E3 ubiquitin ligase NEDD4 enhances killing of membrane-perturbing intracellular bacteria by promoting autophagy. Autophagy. 13(12):2041–2055. doi: 10.1080/15548627.2017.1376160.
  • Philips JA, Porto MC, Wang H, Rubin EJ, Perrimon N. 2008. ESCRT factors restrict mycobacterial growth. Proc Natl Acad Sci U S A. 105(8):3070–3075. doi: 10.1073/pnas.0707206105.
  • Pickart CM, Eddins MJ. 2004. Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta. 1695(1-3):55–72. doi: 10.1016/j.bbamcr.2004.09.019.
  • Portal-Celhay C, Tufariello JM, Srivastava S, Zahra A, Klevorn T, Grace PS, Mehra A, Park HS, Ernst JD, Jacobs WR, et al. 2016. Mycobacterium tuberculosis EsxH inhibits ESCRT-dependent CD4(+) T-cell activation. Nat Microbiol. 2(2):16232. doi: 10.1038/nmicrobiol.2016.232.
  • Qu Z, Zhou J, Zhou Y, Xie Y, Jiang Y, Wu J, Luo Z, Liu G, Yin L, Zhang X-L, et al. 2020. Mycobacterial EST12 activates a RACK1-NLRP3-gasdermin D pyroptosis-IL-1beta immune pathway. Sci Adv. 6(43):eaba4733. doi: 10.1126/sciadv.aba4733.
  • Quadir N, Shariq M, Sheikh JA, Singh J, Sharma N, Hasnain SE, Ehtesham NZ. 2023. Mycobacterium tuberculosis protein MoxR1 enhances virulence by inhibiting host cell death pathways and disrupting cellular bioenergetics. Virulence. 14(1):2180230. doi: 10.1080/21505594.2023.2180230.
  • Queval CJ, Brosch R, Simeone R. 2017. The macrophage: a disputed fortress in the battle against Mycobacterium tuberculosis. Front Microbiol. 8:2284. doi: 10.3389/fmicb.2017.02284.
  • Quigley J, Hughitt VK, Velikovsky CA, Mariuzza RA, El-Sayed NM, Briken V. 2017. The cell wall lipid PDIM contributes to phagosomal escape and host cell exit of Mycobacterium tuberculosis. mBio. 8(2). doi: 10.1128/mBio.00148-17.
  • Rani A, Alam A, Ahmad F, P M, Saurabh A, Zarin S, Mitra DK, Hasnain SE, Ehtesham NZ. 2022. Mycobacterium tuberculosis methyltransferase Rv1515c can suppress host defense mechanisms by modulating immune functions utilizing a multipronged mechanism. Front Mol Biosci. 9:906387. doi: 10.3389/fmolb.2022.906387.
  • Rastogi S, Ellinwood S, Augenstreich J, Mayer-Barber KD, Briken V. 2021. Mycobacterium tuberculosis inhibits the NLRP3 inflammasome activation via its phosphokinase PknF. PLoS Pathog. 17(7):e1009712. doi: 10.1371/journal.ppat.1009712.
  • Reggiori F, Gabius H-J, Aureli M, Römer W, Sonnino S, Eskelinen E-L. 2021. Glycans in autophagy, endocytosis and lysosomal functions. Glycoconj J. 38(5):625–647. doi: 10.1007/s10719-021-10007-x.
  • Romagnoli A, Di Rienzo M, Petruccioli E, Fusco C, Palucci I, Micale L, Mazza T, Delogu G, Merla G, Goletti D, et al. 2023. The ubiquitin ligase TRIM32 promotes the autophagic response to Mycobacterium tuberculosis infection in macrophages. Cell Death Dis. 14(8):505. doi: 10.1038/s41419-023-06026-1.
  • Rusmini P, Cortese K, Crippa V, Cristofani R, Cicardi ME, Ferrari V, Vezzoli G, Tedesco B, Meroni M, Messi E, et al. 2019. Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy. 15(4):631–651. doi: 10.1080/15548627.2018.1535292.
  • Sada-Ovalle I, Chávez-Galán L, Torre-Bouscoulet L, Nava-Gamiño L, Barrera L, Jayaraman P, Torres-Rojas M, Salazar-Lezama MA, Behar SM. 2012. The Tim3-galectin 9 pathway induces antibacterial activity in human macrophages infected with Mycobacterium tuberculosis. J Immunol. 189(12):5896–5902. doi: 10.4049/jimmunol.1200990.
  • Sakowski ET, Koster S, Portal Celhay C, Park HS, Shrestha E, Hetzenecker SE, Maurer K, Cadwell K, Philips JA. 2015. Ubiquilin 1 promotes IFN-gamma-induced xenophagy of Mycobacterium tuberculosis. PLoS Pathog. 11(7):e1005076. doi: 10.1371/journal.ppat.1005076.
  • Selvapandiyan A, Puri N, Kumar P, Alam A, Ehtesham NZ, Griffin G, et al. 2023. Zooming in on common immune evasion mechanisms of pathogens in phagolysosomes: potential broad-spectrum therapeutic targets against infectious diseases. FEMS Microbiol Rev. 47(1):fuac041.
  • Shariq M, Quadir N, Alam A, Zarin S, Sheikh JA, Sharma N, Samal J, Ahmad U, Kumari I, Hasnain SE, et al. 2023. The exploitation of host autophagy and ubiquitin machinery by Mycobacterium tuberculosis in shaping immune responses and host defense during infection. Autophagy. 19(1):3–23. doi: 10.1080/15548627.2021.2021495.
  • Sharma T, Alam A, Ehtram A, Rani A, Grover S, Ehtesham NZ, et al. 2022. The Mycobacterium tuberculosis PE_PGRS protein family acts as an immunological decoy to subvert host immune response. Int J Mol Sci. 23(1):525. doi: 10.3390/ijms23010525.
  • Sheikh JA, Ehtesham NZ, Hasnain SE. 2020. Revisiting BCG to control tuberculosis: mucosal delivery and delipidation? Lancet Infect Dis. 20(3):272–273. doi: 10.1016/S1473-3099(19)30702-9.
  • Sheikh JA, Malik AA, Quadir N, Ehtesham NZ, Hasnain SE. 2022. Learning from COVID-19 to tackle TB pandemic: from despair to hope. Lancet Reg Health Southeast Asia. 2:100015. doi: 10.1016/j.lansea.2022.05.004.
  • Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F, et al. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 526(7575):660–665. doi: 10.1038/nature15514.
  • Sia JK, Rengarajan J. 2019. Immunology of Mycobacterium tuberculosis infections. Microbiol Spectr. 7(4). doi: 10.1128/microbiolspec.GPP3-0022-2018.
  • Simeone R, Bobard A, Lippmann J, Bitter W, Majlessi L, Brosch R, Enninga J. 2012. Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog. 8(2):e1002507. doi: 10.1371/journal.ppat.1002507.
  • Siqueira MDS, Ribeiro RM, Travassos LH. 2018. Autophagy and its interaction with intracellular bacterial pathogens. Front Immunol. 9:935. doi: 10.3389/fimmu.2018.00935.
  • Skowyra ML, Schlesinger PH, Naismith TV, Hanson PI. 2018. Triggered recruitment of ESCRT machinery promotes endolysosomal repair. Science. 360(6384):eaar5078. doi: 10.1126/science.aar5078.
  • Slack RJ, Mills R, Mackinnon AC. 2021. The therapeutic potential of galectin-3 inhibition in fibrotic disease. Int J Biochem Cell Biol. 130:105881. doi: 10.1016/j.biocel.2020.105881.
  • Stanley SA, Johndrow JE, Manzanillo P, Cox JS. 2007. The Type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J Immunol. 178(5):3143–3152. doi: 10.4049/jimmunol.178.5.3143.
  • Stanley SA, Raghavan S, Hwang WW, Cox JS. 2003. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci U S A. 100(22):13001–13006. doi: 10.1073/pnas.2235593100.
  • Stolz A, Ernst A, Dikic I. 2014. Cargo recognition and trafficking in selective autophagy. Nat Cell Biol. 16(6):495–501. doi: 10.1038/ncb2979.
  • Subbarao S, Sanchez-Garrido J, Krishnan N, Shenoy AR, Robertson BD. 2020. Genetic and pharmacological inhibition of inflammasomes reduces the survival of Mycobacterium tuberculosis strains in macrophages. Sci Rep. 10(1):3709. doi: 10.1038/s41598-020-60560-y.
  • Sun L, Wu J, Du F, Chen X, Chen ZJ. 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 339(6121):786–791. doi: 10.1126/science.1232458.
  • Sun Y, Zhang W, Dong C, Xiong S. 2020. Mycobacterium tuberculosis MmsA (Rv0753c) interacts with STING and blunts the type I interferon response. mBio. 11(6):e03254–19. doi: 10.1128/mBio.03254-19.
  • Tan T, Lee WL, Alexander DC, Grinstein S, Liu J. 2006. The ESAT-6/CFP-10 secretion system of Mycobacterium marinum modulates phagosome maturation. Cell Microbiol. 8(9):1417–1429. doi: 10.1111/j.1462-5822.2006.00721.x.
  • Thada S, Burkert S, Sivangala R, Hussain A, Sur S, Dittrich N, Conrad ML, Slevogt H, Latha Gaddam S, Schumann RR, et al. 2020. A SNP upstream of the cyclic GMP-AMP synthase (cGAS) gene protects from relapse and extra-pulmonary TB and relates to BCG vaccination status in an Indian cohort. Genes Immun. 21(1):13–26. doi: 10.1038/s41435-019-0080-1.
  • Thurston TL, Wandel MP, von Muhlinen N, Foeglein A, Randow F. 2012. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature. 482(7385):414–418. doi: 10.1038/nature10744.
  • van de Veerdonk FL, Netea MG, Dinarello CA, Joosten LA. 2011. Inflammasome activation and IL-1beta and IL-18 processing during infection. Trends Immunol. 32(3):110–116. doi: 10.1016/j.it.2011.01.003.
  • van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M, Pierson J, Brenner M, Peters PJ. 2007. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell. 129(7):1287–1298. doi: 10.1016/j.cell.2007.05.059.
  • Vucic D, Dixit VM, Wertz IE. 2011. Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat Rev Mol Cell Biol. 12(7):439–452. doi: 10.1038/nrm3143.
  • Warner DF, Mizrahi V. 2007. The survival kit of Mycobacterium tuberculosis. Nat Med. 13(3):282–284. doi: 10.1038/nm0307-282.
  • Wassermann R, Gulen MF, Sala C, Perin SG, Lou Y, Rybniker J, Schmid-Burgk JL, Schmidt T, Hornung V, Cole ST, et al. 2015. Mycobacterium tuberculosis differentially activates cGAS- and inflammasome-dependent intracellular immune responses through ESX-1. Cell Host Microbe. 17(6):799–810. doi: 10.1016/j.chom.2015.05.003.
  • Watson RO, Bell SL, MacDuff DA, Kimmey JM, Diner EJ, Olivas J, Vance RE, Stallings CL, Virgin HW, Cox JS, et al. 2015. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe. 17(6):811–819. doi: 10.1016/j.chom.2015.05.004.
  • Watson RO, Manzanillo PS, Cox JS. 2012. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell. 150(4):803–815. doi: 10.1016/j.cell.2012.06.040.
  • Weng I-C, Chen H-L, Lo T-H, Lin W-H, Chen H-Y, Hsu DK, Liu F-T. 2018. Cytosolic galectin-3 and -8 regulate antibacterial autophagy through differential recognition of host glycans on damaged phagosomes. Glycobiology. 28(6):392–405. doi: 10.1093/glycob/cwy017.
  • Wong D, Li W, Chao JD, Zhou P, Narula G, Tsui C, Ko M, Xie J, Martinez-Frailes C, Av-Gay Y, et al. 2018. Protein tyrosine kinase, PtkA, is required for Mycobacterium tuberculosis growth in macrophages. Sci Rep. 8(1):155. doi: 10.1038/s41598-017-18547-9.
  • Wu X, Wu Y, Zheng R, Tang F, Qin L, Lai D, et al. 2021. Sensing of mycobacterial arabinogalactan by Galectin-9 exacerbates mycobacterial infection. EMBO Rep. 22(7):e51678.
  • Yang Y, Xu P, He P, Shi F, Tang Y, Guan C, Zeng H, Zhou Y, Song Q, Zhou B, et al. 2020. Mycobacterial PPE13 activates inflammasome by interacting with the NATCH and LRR domains of NLRP3. Faseb J. 34(9):12820–12833. doi: 10.1096/fj.202000200RR.
  • Zhang P, Elabd S, Hammer S, Solozobova V, Yan H, Bartel F, Inoue S, Henrich T, Wittbrodt J, Loosli F, et al. 2015. TRIM25 has a dual function in the p53/Mdm2 circuit. Oncogene. 34(46):5729–5738. doi: 10.1038/onc.2015.21.
  • Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu YJ. 2011. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol. 12(10):959–965. doi: 10.1038/ni.2091.
  • Zhao Z, Fux B, Goodwin M, Dunay IR, Strong D, Miller BC, Cadwell K, Delgado MA, Ponpuak M, Green KG, et al. 2008. Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe. 4(5):458–469. doi: 10.1016/j.chom.2008.10.003.
  • Zou L, Liao M, Zhen Y, Zhu S, Chen X, Zhang J, Hao Y, Liu B. 2022. Autophagy and beyond: unraveling the complexity of UNC-51-like kinase 1 (ULK1) from biological functions to therapeutic implications. Acta Pharm Sin B. 12(10):3743–3782. doi: 10.1016/j.apsb.2022.06.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.