131
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The crosstalk between SUMOylation and immune system in host-pathogen interactions

, , , &
Received 31 Oct 2023, Accepted 01 Apr 2024, Published online: 15 Apr 2024

References

  • Afrasiabi S, Chiniforush N, Partoazar A, Goudarzi R. 2023. The role of bacterial infections in rheumatoid arthritis development and novel therapeutic interventions: focus on oral infections. J Clin Lab Anal. 37(8):e24897.doi:10.1002/jcla.24897.
  • Albrow VE, Ponder EL, Fasci D, Békés M, Deu E, Salvesen GS, Bogyo M. 2011. Development of small molecule inhibitors and probes of human SUMO deconjugating proteases. Chem Biol. 18(6):722–732.doi:10.1016/j.chembiol.2011.05.008.
  • Amprazi M, Tomatsidou A, Paliogianni D, Fadouloglou VE. 2021. Post-translational modifications: host defence mechanism, pathogenic weapon, and emerged target of anti-infective drugs. In Frontiers in Anti-Infective Drug Discovery, Edited by Atta-ur-Rahman and Muhammad Iqbal Choudhary, Vol. 9. Sharjah: Bentham Science; p. 25–122. doi:10.2174/9781681088297121090004.
  • Aqdas M, Sung MH. 2023. NF-kappaB dynamics in the language of immune cells. Trends Immunol. 44(1):32–43.doi:10.1016/j.it.2022.11.005.
  • Baczyk D, Audette MC, Drewlo S, Levytska K, Kingdom JC. 2017. SUMO-4: a novel functional candidate in the human placental protein SUMOylation machinery. PLoS One. 12(5):e0178056.doi:10.1371/journal.pone.0178056.
  • Ballering AV, van Zon SKR, Olde Hartman TC, Rosmalen JGM, Lifelines Corona Research Initiative. 2022. Persistence of somatic symptoms after COVID-19 in the Netherlands: an observational cohort study. Lancet. 400(10350):452–461.doi:10.1016/s0140-6736(22)01214-4.
  • Barry R, John SW, Liccardi G, Tenev T, Jaco I, Chen C-H, Choi J, Kasperkiewicz P, Fernandes-Alnemri T, Alnemri E, et al. 2018. SUMO-mediated regulation of NLRP3 modulates inflammasome activity. Nat Commun. 9(1):3001.doi:10.1038/s41467-018-05321-2.
  • Bentz GL, Lowrey AJ, Horne DC, Nguyen V, Satterfield AR, Ross TD, Harrod AE, Uchakina ON, McKallip RJ. 2019. Using glycyrrhizic acid to target sumoylation processes during Epstein-Barr virus latency. PLoS One. 14(5):e0217578.doi:10.1371/journal.pone.0217578.
  • Bentz GL, Shackelford J, Pagano JS. 2012. Epstein-Barr virus latent membrane protein 1 regulates the function of interferon regulatory factor 7 by inducing its sumoylation. J Virol. 86(22):12251–12261.doi:10.1128/JVI.01407-12.
  • Bentz GL, Whitehurst CB, Pagano JS. 2011. Epstein-Barr virus latent membrane protein 1 (LMP1) C-terminal-activating region 3 contributes to LMP1-mediated cellular migration via its interaction with Ubc9. J Virol. 85(19):10144–10153.doi:10.1128/JVI.05035-11.
  • Beyer AR, Truchan HK, May LJ, Walker NJ, Borjesson DL, Carlyon JA. 2015. The Anaplasma phagocytophilum effector AmpA hijacks host cell SUMOylation. Cell Microbiol. 17(4):504–519.doi:10.1111/cmi.12380.
  • Bhutta MS, Sausen DG, Gallo ES, Dahari H, Doncel GF, Borenstein R. 2021. Ginkgolic acid inhibits coronavirus strain 229E infection of human epithelial lung cells. Pharmaceuticals (Basel). 14(10):980.doi:10.3390/ph14100980.
  • Borenstein R, Hanson BA, Markosyan RM, Gallo ES, Narasipura SD, Bhutta M, Shechter O, Lurain NS, Cohen FS, Al-Harthi L, et al. 2020. Ginkgolic acid inhibits fusion of enveloped viruses. Sci Rep. 10(1):4746.doi:10.1038/s41598-020-61700-0.
  • Boulanger M, Chakraborty M, Tempé D, Piechaczyk M, Bossis G. 2021. SUMO and transcriptional regulation: the lessons of large-scale proteomic, modifomic and genomic studies. Molecules. 26(4):828.doi:10.3390/molecules26040828.
  • Brackett CM, Blagg BSJ. 2021. Current status of SUMOylation inhibitors. Curr Med Chem. 28(20):3892–3912.doi:10.2174/0929867327666200810135039.
  • Cappadocia L, Lima CD. 2018. Ubiquitin-like protein conjugation: structures, chemistry, and mechanism. Chem Rev. 118(3):889–918.doi:10.1021/acs.chemrev.6b00737.
  • Celen AB, Sahin U. 2020. Sumoylation on its 25th anniversary: mechanisms, pathology, and emerging concepts. FEBS J. 287(15):3110–3140.doi:10.1111/febs.15319.
  • Celoria V, Rosset F, Pala V, Dapavo P, Ribero S, Quaglino P, Mastorino L. 2023. The skin microbiome and its role in psoriasis: a review. Psoriasis (Auckl). 13:71–78.doi:10.2147/PTT.S328439.
  • Chang HM, Yeh ETH. 2020. SUMO: from bench to bedside. Physiol Rev. 100(4):1599–1619.doi:10.1152/physrev.00025.2019.
  • Chen B, Cao J, Liu W, Zhang Y, Liu Y, Wang M, Xiao F, Ma J, Wang J, Zhang X. 2023. Disturbed gut virome with potent interferonogenic property in systemic lupus erythematosus. Sci Bull (Beijing). 68(3):295–304.doi:10.1016/j.scib.2023.01.021.
  • Chen Y, Li Y, Dai RS, Savage JC, Shinde U, Klimek J, David LL, Young EA, Hafner M, Sears RC, et al. 2023. The ubiquitin-specific protease USP36 SUMOylates EXOSC10 and promotes the nucleolar RNA exosome function in rRNA processing. Nucleic Acids Res. 51(8):3934–3949.,.doi:10.1093/nar/gkad140.
  • Chen J, Li G, He H, Li X, Niu W, Cao D, Shen A. 2021. Sumoylation of the carboxy-terminal of human cytomegalovirus DNA polymerase processivity factor UL44 attenuates viral DNA replication. Front Microbiol. 12:652719.doi:10.3389/fmicb.2021.652719.
  • Chen K, Liu J, Cao X. 2017. Regulation of type I interferon signaling in immunity and inflammation: a comprehensive review. J Autoimmun. 83:1–11.doi:10.1016/j.jaut.2017.03.008.
  • Chen DD, Shi Q, Liu X, Liang DL, Wu YZ, Fan Q, Xiao K, Chen C, Dong XP. 2023. Aberrant SENP1-SUMO-Sirt3 signaling causes the disturbances of mitochondrial deacetylation and oxidative phosphorylation in prion-infected animal and cell models. ACS Chem Neurosci. 14(9):1610–1621.doi:10.1021/acschemneuro.2c00786.
  • Cho SJ, Yun SM, Jo C, Lee DH, Choi KJ, Song JC, Park SI, Kim YJ, Koh YH. 2015. SUMO1 promotes Abeta production via the modulation of autophagy. Autophagy. 11(1):100–112.doi:10.4161/15548627.2014.984283.
  • Choi GW, Lee Y, Yun M, Kang J, Lee SB. 2020. Formation of SUMO3-conjugated chains of MAVS induced by poly(dA:dT), a ligand of RIG-I, enhances the aggregation of MAVS that drives the secretion of interferon-beta in human keratinocytes. Biochem Biophys Res Commun. 522(4):939–944.doi:10.1016/j.bbrc.2019.11.189.
  • Coleman KE, Huang TT. 2016. How SUMOylation fine-tunes the fanconi anemia DNA repair pathway. Front Genet. 7:61.doi:10.3389/fgene.2016.00061.
  • Conde JN, Schutt WR, Mladinich M, Sohn SY, Hearing P, Mackow ER. 2020. NS5 sumoylation directs nuclear responses that permit zika virus to persistently infect human brain microvascular endothelial cells. J Virol. 94(19):e01086-20.doi:10.1128/JVI.01086-20.
  • Cossec J-C, Traboulsi T, Sart S, Loe-Mie Y, Guthmann M, Hendriks IA, Theurillat I, Nielsen ML, Torres-Padilla M-E, Baroud CN, et al. 2023. Transient suppression of SUMOylation in embryonic stem cells generates embryo-like structures. Cell Rep. 42(4):112380.doi:10.1016/j.celrep.2023.112380.
  • Cougnoux A, Dalmasso G, Martinez R, Buc E, Delmas J, Gibold L, Sauvanet P, Darcha C, Déchelotte P, Bonnet M, et al. 2014. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut. 63(12):1932–1942.doi:10.1136/gutjnl-2013-305257.
  • Cui Y, Yu H, Zheng X, Peng R, Wang Q, Zhou Y, Wang R, Wang J, Qu B, Shen N, et al. 2017. SENP7 potentiates cGAS activation by relieving SUMO-mediated inhibition of cytosolic DNA sensing. PLoS Pathog. 13(1):e1006156.doi:10.1371/journal.ppat.1006156.
  • Dai YH, Hung LY, Chen RY, Lai CH, Chang KC. 2016. ON 01910.Na inhibits growth of diffuse large B-cell lymphoma by cytoplasmic sequestration of sumoylated C-MYB/TRAF6 complex. Transl Res. 175:129–143.e13.doi:10.1016/j.trsl.2016.04.001.
  • Dai T, Zhang L, Ran Y, Zhang M, Yang B, Lu H, Lin S, Zhang L, Zhou F. 2023. MAVS deSUMOylation by SENP1 inhibits its aggregation and antagonizes IRF3 activation. Nat Struct Mol Biol. 30(6):785–799.doi:10.1038/s41594-023-00988-8.
  • Dang R, Rodgers VGJ, García-Sastre A, Liao J. 2022. Human SUMOylation pathway is critical for influenza B virus. Viruses. 14(2):314.doi:10.3390/v14020314.
  • De La Cruz-Herrera CF, Tatham MH, Siddiqi UZ, Shire K, Marcon E, Greenblatt JF, Hay RT, Frappier L. 2023. Changes in SUMO-modified proteins in Epstein-Barr virus infection identifies reciprocal regulation of TRIM24/28/33 complexes and the lytic switch BZLF1. PLoS Pathog. 19(7):e1011477.doi:10.1371/journal.ppat.1011477.
  • Decque A, Joffre O, Magalhaes JG, Cossec J-C, Blecher-Gonen R, Lapaquette P, Silvin A, Manel N, Joubert P-E, Seeler J-S, et al. 2016. Sumoylation coordinates the repression of inflammatory and anti-viral gene-expression programs during innate sensing. Nat Immunol. 17(2):140–149.doi:10.1038/ni.3342.
  • Dehnavi S, Sadeghi M, Johnston TP, Barreto G, Shohan M, Sahebkar A. 2019. The role of protein SUMOylation in rheumatoid arthritis. J Autoimmun. 102:1–7.doi:10.1016/j.jaut.2019.05.006.
  • Demel UM, Böger M, Yousefian S, Grunert C, Zhang L, Hotz PW, Gottschlich A, Köse H, Isaakidis K, Vonficht D, et al. 2022. Activated SUMOylation restricts MHC class I antigen presentation to confer immune evasion in cancer. J Clin Invest. 132(9):e152383.doi:10.1172/jci152383.
  • Di Bacco A, Gill G. 2006. SUMO-specific proteases and the cell cycle. An essential role for SENP5 in cell proliferation. Cell Cycle. 5(20):2310–2313.doi:10.4161/cc.5.20.3367.
  • Díaz-Hernández M, Javier-Reyna R, Sotto-Ortega I, García-Rivera G, Montaño S, Betanzos A, Zanatta D, Orozco E. 2021. Protein sumoylation is crucial for phagocytosis in Entamoeba histolytica trophozoites. Int J Mol Sci. 22(11):5709.doi:10.3390/ijms22115709.
  • Ding Y, Ding Z, Xu J, Li Y, Chen M. 2022. Pharmacological activities of ginkgolic acids in relation to autophagy. Pharmaceuticals (Basel). 15(12):1469.doi:10.3390/ph15121469.
  • Ding X, Wang A, Ma X, Demarque M, Jin W, Xin H, Dejean A, Dong C. 2016. Protein SUMOylation is required for regulatory T cell expansion and function. Cell Rep. 16(4):1055–1066.doi:10.1016/j.celrep.2016.06.056.
  • Dohlman AB, Arguijo Mendoza D, Ding S, Gao M, Dressman H, Iliev ID, Lipkin SM, Shen X. 2021. The cancer microbiome atlas: a pan-cancer comparative analysis to distinguish tissue-resident microbiota from contaminants. Cell Host Microbe. 29(2):281–298.e5.doi:10.1016/j.chom.2020.12.001.
  • Domingues P, Golebiowski F, Tatham MH, Lopes AM, Taggart A, Hay RT, Hale BG. 2015. Global reprogramming of host SUMOylation during influenza virus infection. Cell Rep. 13(7):1467–1480.doi:10.1016/j.celrep.2015.10.001.
  • Duan H, Zhang X, Figeys D. 2023. An emerging field: post-translational modification in microbiome. Proteomics. 23(3–4):e2100389.doi:10.1002/pmic.202100389.
  • Du L, Liu W, Pichiorri F, Rosen ST. 2022. SUMOylation inhibition enhances multiple myeloma sensitivity to lenalidomide. Cancer Gene Ther. 30(4):567–574.doi:10.1038/s41417-022-00450-9.
  • Du L, Liu W, Rosen ST, Chen Y. 2023. Mechanism of SUMOylation-mediated regulation of type I IFN expression. J Mol Biol. 435(5):167968.doi:10.1016/j.jmb.2023.167968.
  • Dunphy PS, Luo T, McBride JW. 2014. Ehrlichia chaffeensis exploits host SUMOylation pathways to mediate effector-host interactions and promote intracellular survival. Infect Immun. 82(10):4154–4168.doi:10.1128/IAI.01984-14.
  • Eifler K, Vertegaal ACO. 2015. SUMOylation-mediated regulation of cell cycle progression and cancer. Trends Biochem Sci. 40(12):779–793.doi:10.1016/j.tibs.2015.09.006.
  • El Asmi F, Maroui MA, Dutrieux J, Blondel D, Nisole S, Chelbi-Alix MK. 2014. Implication of PMLIV in both intrinsic and innate immunity. PLoS Pathog. 10(2):e1003975.doi:10.1371/journal.ppat.1003975.
  • El-Asmi F, McManus FP, Brantis-de-Carvalho CE, Valle-Casuso JC, Thibault P, Chelbi-Alix MK. 2020. Cross-talk between SUMOylation and ISGylation in response to interferon. Cytokine. 129:155025.doi:10.1016/j.cyto.2020.155025.
  • Everett RD, Rechter S, Papior P, Tavalai N, Stamminger T, Orr A. 2006. PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0. J Virol. 80(16):7995–8005.doi:10.1128/JVI.00734-06.
  • Fiedler M, Ip WH, Hofmann-Sieber H, Wilkens B, Nkrumah FK, Zhang W, Ehrhardt A, Bertzbach LD, Dobner T. 2022. Protein-protein interactions facilitate E4orf6-dependent regulation of E1B-55K SUMOylation in HAdV-C5 infection. Viruses. 14(3):463.doi:10.3390/v14030463.
  • Finkbeiner E, Haindl M, Raman N, Muller S. 2011. SUMO routes ribosome maturation. Nucleus. 2(6):527–532.doi:10.4161/nucl.2.6.17604.
  • Flotho A, Melchior F. 2013. Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem. 82(1):357–385.doi:10.1146/annurev-biochem-061909-093311.
  • Fukuda I, Ito A, Hirai G, Nishimura S, Kawasaki H, Saitoh H, Kimura K, Sodeoka M, Yoshida M. 2009. Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate. Chem Biol. 16(2):133–140.doi:10.1016/j.chembiol.2009.01.009.
  • Fukuda I, Ito A, Uramoto M, Saitoh H, Kawasaki H, Osada H, Yoshida M. 2009. Kerriamycin B inhibits protein SUMOylation. J Antibiot (Tokyo). 62(4):221–224.doi:10.1038/ja.2009.10.
  • Garaude J, Farrás R, Bossis G, Charni S, Piechaczyk M, Hipskind RA, Villalba M. 2008. SUMOylation regulates the transcriptional activity of JunB in T lymphocytes. J Immunol. 180(9):5983–5990.doi:10.4049/jimmunol.180.9.5983.
  • Garcia P, Harrod A, Jha S, Jenkins J, Barnhill A, Lee H, Thompson M, Williams JP, Barefield J, Mckinnon A, et al. 2021. Effects of targeting sumoylation processes during latent and induced Epstein-Barr virus infections using the small molecule inhibitor ML-792. Antiviral Res. 188:105038.doi:10.1016/j.antiviral.2021.105038.
  • Gareau JR, Lima CD. 2010. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol. 11(12):861–871.doi:10.1038/nrm3011.
  • GBD 2019 Antimicrobial Resistance Collaborators. 2022. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 400(10369):2221–2248.doi:10.1016/s0140-6736(22)02185-7.
  • Geiss-Friedlander R, Melchior F. 2007. Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol. 8(12):947–956.doi:10.1038/nrm2293.
  • Göttig L, Weiß C, Stubbe M, Hanrieder L, Hofmann S, Grodziecki A, Stadler D, Carpentier A, Protzer U, Schreiner S. 2023. Apobec3A deamination functions are involved in antagonizing efficient human adenovirus replication and gene expression. mBio. 14(3):e0347822.doi:10.1128/mbio.03478-22.
  • Gu Z, Chen X, Yang W, Qi Y, Yu H, Wang X, Gong Y, Chen Q, Zhong B, Dai L, et al. 2021. The SUMOylation of TAB2 mediated by TRIM60 inhibits MAPK/NF-κB activation and the innate immune response. Cell Mol Immunol. 18(8):1981–1994.doi:10.1038/s41423-020-00564-w.
  • Gujjula R, Veeraiah S, Kumar K, Thakur SS, Mishra K, Kaur R. 2016. Identification of components of the SUMOylation machinery in Candida glabrata: role of the desumoylation peptidase CgUlp2 in virulence. J Biol Chem. 291(37):19573–19589.doi:10.1074/jbc.M115.706044.
  • Guo J, Chen J, Li Y, Li Y, Deng G, Shi J, Liu L, Chen H, Li X. 2022. SUMOylation of matrix protein M1 and filamentous morphology collectively contribute to the replication and virulence of highly pathogenic H5N1 avian influenza viruses in mammals. J Virol. 96(4):e0163021.doi:10.1128/jvi.01630-21.
  • Gupta MK, McLendon PM, Gulick J, James J, Khalili K, Robbins J. 2016. UBC9-mediated sumoylation favorably impacts cardiac function in compromised hearts. Circ Res. 118(12):1894–1905.doi:10.1161/CIRCRESAHA.115.308268.
  • Gu X, Schafer NP, Bueno C, Lu W, Wolynes PG. 2022. A structural dynamics model for how CPEB3 binding to SUMO2 can regulate translational control in dendritic spines. PLoS Comput Biol. 18(11):e1010657.doi:10.1371/journal.pcbi.1010657.
  • Han ZJ, Feng YH, Gu BH, Li YM, Chen H. 2018. The post-translational modification, SUMOylation, and cancer (Review). Int J Oncol. 52(4):1081–1094.doi:10.3892/ijo.2018.4280.
  • Hannoun Z, Maarifi G, Chelbi-Alix MK. 2016. The implication of SUMO in intrinsic and innate immunity. Cytokine Growth Factor Rev. 29:3–16.doi:10.1016/j.cytogfr.2016.04.003.
  • Hay RT. 2005. SUMO: a history of modification. Mol Cell. 18(1):1–12.doi:10.1016/j.molcel.2005.03.012.
  • He X, Riceberg J, Soucy T, Koenig E, Minissale J, Gallery M, Bernard H, Yang X, Liao H, Rabino C, et al. 2017. Probing the roles of SUMOylation in cancer cell biology by using a selective SAE inhibitor. Nat Chem Biol. 13(11):1164–1171.doi:10.1038/nchembio.2463.
  • Hickey CM, Wilson NR, Hochstrasser M. 2012. Function and regulation of SUMO proteases. Nat Rev Mol Cell Biol. 13(12):755–766.doi:10.1038/nrm3478.
  • Hirohama M, Kumar A, Fukuda I, Matsuoka S, Igarashi Y, Saitoh H, Takagi M, Shin-Ya K, Honda K, Kondoh Y, et al. 2013. Spectomycin B1 as a novel SUMOylation inhibitor that directly binds to SUMO E2. ACS Chem Biol. 8(12):2635–2642.doi:10.1021/cb400630z.
  • Hofmann S, Plank V, Groitl P, Skvorc N, Hofmann K, Luther J, Ko C, Zimmerman P, Bruss V, Stadler D, et al. 2023. SUMO modification of hepatitis B virus core mediates nuclear entry, promyelocytic leukemia nuclear body association, and efficient formation of covalently closed circular DNA. Microbiol Spectr. 11(3):e0044623.doi:10.1128/spectrum.00446-23.
  • Hsu CY, Yeh LT, Fu SH, Chien MW, Liu YW, Miaw SC, Chang DM, Sytwu HK. 2018. SUMO-defective c-Maf preferentially transactivates Il21 to exacerbate autoimmune diabetes. J Clin Invest. 128(9):3779–3793.doi:10.1172/jci98786.
  • Hu MM, Yang Q, Xie XQ, Liao CY, Lin H, Liu TT, Yin L, Shu HB. 2016. Sumoylation promotes the stability of the DNA sensor cGAS and the adaptor STING to regulate the kinetics of response to DNA virus. Immunity. 45(3):555–569.doi:10.1016/j.immuni.2016.08.014.
  • Hwang J, Kalejta RF. 2009. Human cytomegalovirus protein pp71 induces Daxx SUMOylation. J Virol. 83(13):6591–6598.doi:10.1128/JVI.02639-08.
  • Imbert F, Leavitt G, Langford D. 2022. SUMOylation and viral infections of the brain. Pathogens. 11(7):818.doi:10.3390/pathogens11070818.
  • Impens F, Radoshevich L, Cossart P, Ribet D. 2014. Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli. Proc Natl Acad Sci U S A. 111(34):12432–12437.doi:10.1073/pnas.1413825111.
  • Imperiale MJ, Akusjnärvi G, Leppard KN. 1995. Post-transcriptional control of adenovirus gene expression. Curr Top Microbiol Immunol. 199 (Pt 2):139–171.doi:10.1007/978-3-642-79499-5_6.
  • Irwan ID, Bogerd HP, Cullen BR. 2022. Epigenetic silencing by the SMC5/6 complex mediates HIV-1 latency. Nat Microbiol. 7(12):2101–2113.doi:10.1038/s41564-022-01264-z.
  • Ishov AM, Sotnikov AG, Negorev D, Vladimirova OV, Neff N, Kamitani T, Yeh ET, Strauss JF, 3rd, Maul GG. 1999. PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol. 147(2):221–234.doi:10.1083/jcb.147.2.221.
  • Islam A, Tebbji F, Mallick J, Regan H, Dumeaux V, Omran RP, Whiteway M. 2019. Mms21: a putative SUMO E3 ligase in Candida albicans that negatively regulates invasiveness and filamentation, and is required for the genotoxic and cellular stress response. Genetics. 211(2):579–595.doi:10.1534/genetics.118.301769.
  • Jaber T, Bohl CR, Lewis GL, Wood C, West JT, Jr., Weldon RA.Jr. 2009. Human Ubc9 contributes to production of fully infectious human immunodeficiency virus type 1 virions. J Virol. 83(20):10448–10459.doi:10.1128/JVI.00237-09.
  • Jalal D, Chalissery J, Hassan AH. 2017. Genome maintenance in Saccharomyces cerevisiae: the role of SUMO and SUMO-targeted ubiquitin ligases. Nucleic Acids Res. 45(5):2242–2261.doi:10.1093/nar/gkw1369.
  • Jansen NS, Vertegaal ACO. 2021. A chain of events: regulating target proteins by SUMO polymers. Trends Biochem Sci. 46(2):113–123.doi:10.1016/j.tibs.2020.09.002.
  • Jin S, He X, Ma L, Zhuang Z, Wang Y, Lin M, Cai S, Wei L, Wang Z, Zhao Z, et al. 2022. Suppression of ACE2 SUMOylation protects against SARS-CoV-2 infection through TOLLIP-mediated selective autophagy. Nat Commun. 13(1):5204.doi:10.1038/s41467-022-32957-y.
  • Jovanovic M, Rooney MS, Mertins P, Przybylski D, Chevrier N, Satija R, Rodriguez EH, Fields AP, Schwartz S, Raychowdhury R, et al. 2015. Immunogenetics. Dynamic profiling of the protein life cycle in response to pathogens. Science. 347(6226):1259038.doi:10.1126/science.1259038.
  • Khoury GA, Baliban RC, Floudas CA. 2011. Proteome-wide post-translational modification statistics: frequency analysis and curation of the Swiss-prot database. Sci Rep. 1(1):90.doi:10.1038/srep00090.
  • Kiboneka A. 2021. Principals of innate and adaptive immunity. Immunity to microbes & fundamental concepts in immunology. World J Adv Res Rev. 10(3):188–197.doi:10.30574/wjarr.2021.10.3.0271.
  • Kim YS, Keyser SG, Schneekloth JS.Jr. 2014. Synthesis of 2’,3’,4’-trihydroxyflavone (2-D08), an inhibitor of protein sumoylation. Bioorg Med Chem Lett. 24(4):1094–1097.doi:10.1016/j.bmcl.2014.01.010.
  • Kim ET, Kim YE, Kim YJ, Lee MK, Hayward GS, Ahn JH. 2014. Analysis of human cytomegalovirus-encoded SUMO targets and temporal regulation of SUMOylation of the immediate-early proteins IE1 and IE2 during infection. PLoS One. 9(7):e103308.doi:10.1371/journal.pone.0103308.
  • Kukkula A, Ojala VK, Mendez LM, Sistonen L, Elenius K, Sundvall M. 2021. Therapeutic potential of targeting the SUMO pathway in cancer. Cancers (Basel). 13(17):4402.doi:10.3390/cancers13174402.
  • Kumar S, Schoonderwoerd MJA, Kroonen JS, de Graaf IJ, Sluijter M, Ruano D, González-Prieto R, Verlaan-de Vries M, Rip J, Arens R, et al. 2022. Targeting pancreatic cancer by TAK-981: a SUMOylation inhibitor that activates the immune system and blocks cancer cell cycle progression in a preclinical model. Gut. 71(11):2266–2283.doi:10.1136/gutjnl-2021-324834.
  • Kumar R, Theiss AL, Venuprasad K. 2021. RORγt protein modifications and IL-17-mediated inflammation. Trends Immunol. 42(11):1037–1050.doi:10.1016/j.it.2021.09.005.
  • Kunz K, Piller T, Müller S. 2018. SUMO-specific proteases and isopeptidases of the SENP family at a glance. J Cell Sci. 131(6):jcs211904.doi:10.1242/jcs.211904.
  • Kurahashi S, Hayakawa F, Miyata Y, Yasuda T, Minami Y, Tsuzuki S, Abe A, Naoe T. 2011. PAX5-PML acts as a dual dominant-negative form of both PAX5 and PML. Oncogene. 30(15):1822–1830.doi:10.1038/onc.2010.554.
  • Kusiak A, Brady G. 2022. Bifurcation of signalling in human innate immune pathways to NF-kB and IRF family activation. Biochem Pharmacol. 205:115246.doi:10.1016/j.bcp.2022.115246.
  • Landau LM, Kagan JC. 2023. Beyond natural biology: rewiring cellular networks to study innate immunity. Curr Opin Immunol. 83:102349.doi:10.1016/j.coi.2023.102349.
  • Lapaquette P, Fritah S, Lhocine N, Andrieux A, Nigro G, Mounier J, Sansonetti P, Dejean A. 2017. Shigella entry unveils a calcium/calpain-dependent mechanism for inhibiting sumoylation. Elife. 6:e27444.doi:10.7554/eLife.27444.
  • Leach MD, Stead DA, Argo E, Brown AJ. 2011. Identification of sumoylation targets, combined with inactivation of SMT3, reveals the impact of sumoylation upon growth, morphology, and stress resistance in the pathogen Candida albicans. Mol Biol Cell. 22(5):687–702.doi:10.1091/mbc.E10-07-0632.
  • Liang JX, Gao W, Zeng XW, Cheng GP, Cai L, Tao KY, Yang X. 2020. SUMO4 small interfering RNA attenuates invasion and migration via the JAK2/STAT3 pathway in non-small cell lung cancer cells. Oncol Lett. 20(5):225.doi:10.3892/ol.2020.12088.
  • Liang YC, Lee CC, Yao YL, Lai CC, Schmitz ML, Yang WM. 2016. SUMO5, a novel poly-SUMO isoform, regulates PML nuclear bodies. Sci Rep. 6(1):26509.doi:10.1038/srep26509.
  • Liberman AC, Druker J, Garcia FA, Holsboer F, Arzt E. 2009. Intracellular molecular signaling. Basis for specificity to glucocorticoid anti-inflammatory actions. Ann N Y Acad Sci. 1153(1):6–13.doi:10.1111/j.1749-6632.2008.03958.x.
  • Li YY, Cen H, Gong BN, Mai S, Wang QL, Mou S, Li Y. 2021. TCR-induced tyrosine phosphorylation at Tyr270 of SUMO protease SENP1 by Lck modulates SENP1 enzyme activity and specificity. Front Cell Dev Biol. 9:789348.doi:10.3389/fcell.2021.789348.
  • Lightcap ES, Yu P, Grossman S, Song K, Khattar M, Xega K, He X, Gavin JM, Imaichi H, Garnsey JJ, et al. 2021. A small-molecule SUMOylation inhibitor activates antitumor immune responses and potentiates immune therapies in preclinical models. Sci Transl Med. 13(611):eaba7791.doi:10.1126/scitranslmed.aba7791.
  • Lima CD, Reverter D. 2008. Structure of the human SENP7 catalytic domain and poly-SUMO deconjugation activities for SENP6 and SENP7. J Biol Chem. 283(46):32045–32055.doi:10.1074/jbc.M805655200.
  • Li W, Qiao J, You Q, Zong S, Peng Q, Liu Y, Hu S, Liu W, Li S, Shu X, et al. 2021. SARS-CoV-2 Nsp5 activates NF-kappaB pathway by upregulating SUMOylation of MAVS. Front Immunol. 12:750969.doi:10.3389/fimmu.2021.750969.
  • Liu X, Chen W, Wang Q, Li L, Wang C. 2013. Negative regulation of TLR inflammatory signaling by the SUMO-deconjugating enzyme SENP6. PLoS Pathog. 9(6):e1003480.doi:10.1371/journal.ppat.1003480.
  • Liu K, Guo C, Lao Y, Yang J, Chen F, Zhao Y, Yang Y, Yang J, Yi J. 2020. A fine-tuning mechanism underlying self-control for autophagy: deSUMOylation of BECN1 by SENP3. Autophagy. 16(6):975–990.doi:10.1080/15548627.2019.1647944.
  • Liu Z, Liu C, Wang X, Li W, Zhou J, Dong P, Xiao MZX, Wang C, Zhang Y, Fu J, et al. 2021. RSK1 SUMOylation is required for KSHV lytic replication. PLoS Pathog. 17(12):e1010123.doi:10.1371/journal.ppat.1010123.
  • Liu B, Mink S, Wong KA, Stein N, Getman C, Dempsey PW, Wu H, Shuai K. 2004. PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nat Immunol. 5(9):891–898.doi:10.1038/ni1104.
  • Liu Z, Wang X, Liu C, Deng H, Li W, Wang X, Xu X, Xiao MZX, Wang C, Zhang Y, et al. 2022. The SUMO E3 ligase activity of ORF45 determines KSHV lytic replication. PLoS Pathog. 18(4):e1010504.doi:10.1371/journal.ppat.1010504.
  • Liu X, Zhang S, Dong Y, Xie Y, Li Q. 2023. SENP1-mediated SUMOylation of SIRT1 affects glioma development through the NF-kappaB pathway. Exp Cell Res. 433(2):113822.doi:10.1016/j.yexcr.2023.113822.
  • Li R, Wang L, Liao G, Guzzo CM, Matunis MJ, Zhu H, Hayward SD. 2012. SUMO binding by the Epstein-Barr virus protein kinase BGLF4 is crucial for BGLF4 function. J Virol. 86(10):5412–5421.doi:10.1128/jvi.00314-12.
  • Li L, Wen J, Tuo QH, Liao DF. 2013. Effects of SUMOylation on the subcellular localization and function of DAXX. Sheng Li Xue Bao. 65(1):89–95.
  • Lu Y, Zhou Q, Shi Y, Liu J, Zhong F, Hao X, Li C, Chen N, Wang W. 2013. SUMOylation of PPARγ by rosiglitazone prevents LPS-induced NCoR degradation mediating down regulation of chemokines expression in renal proximal tubular cells. PLoS One. 8(11):e79815.doi:10.1371/journal.pone.0079815.
  • Lyman M, Forsberg K, Sexton DJ, Chow NA, Lockhart SR, Jackson BR, Chiller T. 2023. Worsening spread of Candida auris in the United States, 2019 to 2021. Ann Intern Med. 176(4):489–495.doi:10.7326/m22-3469.
  • Maarifi G, Fernandez J, Portilho DM, Boulay A, Dutrieux J, Oddos S, Butler-Browne G, Nisole S, Arhel NJ. 2018. RanBP2 regulates the anti-retroviral activity of TRIM5α by SUMOylation at a predicted phosphorylated SUMOylation motif. Commun Biol. 1(1):193.doi:10.1038/s42003-018-0198-0.
  • Madahar V, Dang R, Zhang Q, Liu C, Rodgers VGJ, Liao J. 2023. Human post-translational SUMOylation modification of SARS-CoV-2 nucleocapsid protein enhances its interaction affinity with itself and plays a critical role in its nuclear translocation. Viruses. 15(7):1600.doi:10.3390/v15071600.
  • Maeda A, Lee BH, Yoshimatsu K, Saijo M, Kurane I, Arikawa J, Morikawa S. 2003. The intracellular association of the nucleocapsid protein (NP) of hantaan virus (HTNV) with small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9 (Ubc9). Virology. 305(2):288–297.doi:10.1006/viro.2002.1767.
  • Mak TW, Saunders ME. 2006. Immunity to pathogens. Immune Response. 2006:641–694.
  • Maruthi M, Singh D, Reddy SR, Mastan BS, Mishra S, Kumar KA. 2017. Modulation of host cell SUMOylation facilitates efficient development of Plasmodium berghei and Toxoplasma gondii. Cell Microbiol. 19(7):e12723.doi:10.1111/cmi.12723.
  • Mayer FL, Sánchez-León E, Kronstad JW. 2018. A chemical genetic screen reveals a role for proteostasis in capsule and biofilm formation by Cryptococcus neoformans. Microb Cell. 5(11):495–510.doi:10.15698/mic2018.11.656.
  • Mete B, Pekbilir E, Bilge BN, Georgiadou P, Çelik E, Sutlu T, Tabak F, Sahin U. 2022. Human immunodeficiency virus type 1 impairs sumoylation. Life Sci Alliance. 5(6):e202101103.doi:10.26508/lsa.202101103.
  • Mogensen TH. 2009. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 22(2):240–273.doi:10.1128/CMR.00046-08.
  • Mohapatra G, Gaur P, Mujagond P, Singh M, Rana S, Pratap S, Kaur N, Verma S, Krishnan V, Singh N, et al. 2019. A SUMOylation-dependent switch of RAB7 governs intracellular life and pathogenesis of Salmonella Typhimurium. J Cell Sci. 132(1):jcs222612.doi:10.1242/jcs.222612.
  • Monribot-Villanueva J, Zurita M, Vázquez M. 2017. Developmental transcriptional regulation by SUMOylation, an evolving field. Genesis. 55(3):e23009.doi:10.1002/dvg.23009.
  • Msemburi W, Karlinsky A, Knutson V, Aleshin-Guendel S, Chatterji S, Wakefield J. 2023. The WHO estimates of excess mortality associated with the COVID-19 pandemic. Nature. 613(7942):130–137.doi:10.1038/s41586-022-05522-2.
  • Müller S, Dejean A. 1999. Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption. J Virol. 73(6):5137–5143.doi:10.1128/JVI.73.6.5137-5143.1999.
  • Muromoto R, Ishida M, Sugiyama K, Sekine Y, Oritani K, Shimoda K, Matsuda T. 2006. Sumoylation of Daxx regulates IFN-induced growth suppression of B lymphocytes and the hormone receptor-mediated transactivation. J Immunol. 177(2):1160–1170.doi:10.4049/jimmunol.177.2.1160.
  • Naito M, Morton JB, Pawlowska TE. 2015. Minimal genomes of mycoplasma-related endobacteria are plastic and contain host-derived genes for sustained life within Glomeromycota. Proc Natl Acad Sci U S A. 112(25):7791–7796.doi:10.1073/pnas.1501676112.
  • Nakamura A, Grossman S, Song K, Xega K, Zhang Y, Cvet D, Berger A, Shapiro G, Huszar D. 2022. The SUMOylation inhibitor subasumstat potentiates rituximab activity by IFN1-dependent macrophage and NK cell stimulation. Blood. 139(18):2770–2781.doi:10.1182/blood.2021014267.
  • Nayak A, Müller S. 2014. SUMO-specific proteases/isopeptidases: SENPs and beyond. Genome Biol. 15(7):422.doi:10.1186/s13059-014-0422-2.
  • Netea MG, Schlitzer A, Placek K, Joosten LAB, Schultze JL. 2019. Innate and adaptive immune memory: an evolutionary continuum in the host’s response to pathogens. Cell Host Microbe. 25(1):13–26.doi:10.1016/j.chom.2018.12.006.
  • Nie XY, Xue Y, Li L, Jiang Z, Qin B, Wang Y, Wang S. 2023. A functional intact SUMOylation machinery in Aspergillus flavus contributes to fungal and aflatoxin contamination of food. Int J Food Microbiol. 398:110241.doi:10.1016/j.ijfoodmicro.2023.110241.
  • Nie X, Yu S, Qiu M, Wang X, Wang Y, Bai Y, Zhang F, Wang S. 2016. Aspergillus flavus SUMO contributes to fungal virulence and toxin attributes. J Agric Food Chem. 64(35):6772–6782.doi:10.1021/acs.jafc.6b02199.
  • Okuda K, Silva Costa Franco MM, Yasunaga A, Gazzinelli R, Rabinovitch M, Cherry S, Silverman N. 2022. Leishmania amazonensis sabotages host cell SUMOylation for intracellular survival. iScience. 25(9):104909.doi:10.1016/j.isci.2022.104909.
  • Olsen SK, Capili AD, Lu X, Tan DS, Lima CD. 2010. Active site remodelling accompanies thioester bond formation in the SUMO E1. Nature. 463(7283):906–912.doi:10.1038/nature08765.
  • Owerbach D, McKay EM, Yeh ET, Gabbay KH, Bohren KM. 2005. A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem Biophys Res Commun. 337(2):517–520.doi:10.1016/j.bbrc.2005.09.090.
  • Pan Y, Lei X, Zhang Y. 2022. Association predictions of genomics, proteinomics, transcriptomics, microbiome, metabolomics, pathomics, radiomics, drug, symptoms, environment factor, and disease networks: a comprehensive approach. Med Res Rev. 42(1):441–461.doi:10.1002/med.21847.
  • Pennella MA, Liu Y, Woo JL, Kim CA, Berk AJ. 2010. Adenovirus E1B 55-kilodalton protein is a p53-SUMO1 E3 ligase that represses p53 and stimulates its nuclear export through interactions with promyelocytic leukemia nuclear bodies. J Virol. 84(23):12210–12225.doi:10.1128/jvi.01442-10.
  • Perusina Lanfranca M, van Loben Sels JM, Ly CY, Grams TR, Dhummakupt A, Bloom DC, Davido DJ. 2022. A 77 amino acid region in the N-terminal half of the HSV-1 E3 ubiquitin ligase ICP0 contributes to counteracting an established type 1 interferon response. Microbiol Spectr. 10(4):e0059322.doi:10.1128/spectrum.00593-22.
  • Péter C, Nagy F, Viczián A. 2021. SUMOylation of different targets fine-tunes phytochrome signaling. New Phytol. 232(3):1201–1211.doi:10.1111/nph.17634.
  • Ponce-Cusi R, Bravo L, Paez KJ, Pinto JA, Pilco-Ferreto N. 2024. Host-pathogen interaction: biology and public health. Methods Mol Biol. 2751:3–18.doi:10.1007/978-1-0716-3617-6_1.
  • Ponder EL, Albrow VE, Leader BA, Békés M, Mikolajczyk J, Fonović UP, Shen A, Drag M, Xiao J, Deu E, et al. 2011. Functional characterization of a SUMO deconjugating protease of Plasmodium falciparum using newly identified small molecule inhibitors. Chem Biol. 18(6):711–721.doi:10.1016/j.chembiol.2011.04.010.
  • Portilho DM, Fernandez J, Ringeard M, Machado AK, Boulay A, Mayer M, Müller-Trutwin M, Beignon A-S, Kirchhoff F, Nisole S, et al. 2016. Endogenous TRIM5alpha function is regulated by SUMOylation and nuclear sequestration for efficient innate sensing in dendritic cells. Cell Rep. 14(2):355–369.doi:10.1016/j.celrep.2015.12.039.
  • Retanal C, Ball B, Geddes-McAlister J. 2021. Post-translational modifications drive success and failure of fungal-host interactions. J Fungi (Basel). 7(2):124.doi:10.3390/jof7020124.
  • Ribet D, Hamon M, Gouin E, Nahori MA, Impens F, Neyret-Kahn H, Gevaert K, Vandekerckhove J, Dejean A, Cossart P. 2010. Listeria monocytogenes impairs SUMOylation for efficient infection. Nature. 464(7292):1192–1195.doi:10.1038/nature08963.
  • Rodríguez JA. 2014. Interplay between nuclear transport and ubiquitin/SUMO modifications in the regulation of cancer-related proteins. Semin Cancer Biol. 27:11–19.doi:10.1016/j.semcancer.2014.03.005.
  • Rosonina E, Akhter A, Dou Y, Babu J, Sri Theivakadadcham VS. 2017. Regulation of transcription factors by sumoylation. Transcription. 8(4):220–231.doi:10.1080/21541264.2017.1311829.
  • Ryu HY. 2022. SUMO pathway is required for ribosome biogenesis. BMB Rep. 55(11):535–540.doi:10.5483/BMBRep.2022.55.11.130.
  • Ryu HY, Hochstrasser M. 2021. Histone sumoylation and chromatin dynamics. Nucleic Acids Res. 49(11):6043–6052.doi:10.1093/nar/gkab280.
  • Ryu HY, Zhao D, Li J, Su D, Hochstrasser M. 2020. Histone sumoylation promotes Set3 histone-deacetylase complex-mediated transcriptional regulation. Nucleic Acids Res. 48(21):12151–12168.doi:10.1093/nar/gkaa1093.
  • Sahin U, Ferhi O, Carnec X, Zamborlini A, Peres L, Jollivet F, Vitaliano-Prunier A, de Thé H, Lallemand-Breitenbach V. 2014. Interferon controls SUMO availability via the Lin28 and let-7 axis to impede virus replication. Nat Commun. 5(1):4187.doi:10.1038/ncomms5187.
  • Sahu MS, Patra S, Kumar K, Kaur R. 2020. SUMOylation in human pathogenic fungi: role in physiology and virulence. J Fungi (Basel). 6(1):32.doi:10.3390/jof6010032.
  • Sajeev TK, Joshi G, Arya P, Mahajan V, Chaturvedi A, Mishra RK. 2021. SUMO and SUMOylation pathway at the forefront of host immune response. Front Cell Dev Biol. 9:681057.doi:10.3389/fcell.2021.681057.
  • Salahuddin S, Fath EK, Biel N, Ray A, Moss CR, Patel A, Patel S, Hilding L, Varn M, Ross T, et al. 2019. Epstein-Barr virus latent membrane protein-1 induces the expression of SUMO-1 and SUMO-2/3 in LMP1-positive lymphomas and cells. Sci Rep. 9(1):208.doi:10.1038/s41598-018-36312-4.
  • Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, Alqumber MAA. 2023. Antimicrobial resistance: a growing serious threat for global public health. Healthcare (Basel). 11(13):1946.doi:10.3390/healthcare11131946.
  • Sá-Pessoa J, Przybyszewska K, Vasconcelos FN, Dumigan A, Frank CG, Hobley L, Bengoechea JA. 2020. Klebsiella pneumoniae reduces SUMOylation to limit host defense responses. mBio. 11(5):e01733-20.doi:10.1128/mBio.01733-20.
  • Schulz S, Chachami G, Kozaczkiewicz L, Winter U, Stankovic-Valentin N, Haas P, Hofmann K, Urlaub H, Ovaa H, Wittbrodt J, et al. 2012. Ubiquitin-specific protease-like 1 (USPL1) is a SUMO isopeptidase with essential, non-catalytic functions. EMBO Rep. 13(10):930–938.doi:10.1038/embor.2012.125.
  • Selby TL, Biel N, Varn M, Patel S, Patel A, Hilding L, Ray A, Ross T, Cramblet WT, Moss CR, et al. 2019. The Epstein-Barr virus oncoprotein, LMP1, regulates the function of SENP2, a SUMO-protease. Sci Rep. 9(1):9523.doi:10.1038/s41598-019-45825-5.
  • Sen R, Nayak L, De RK. 2016. A review on host-pathogen interactions: classification and prediction. Eur J Clin Microbiol Infect Dis. 35(10):1581–1599.doi:10.1007/s10096-016-2716-7.
  • Sheban D, Shani T, Maor R, Aguilera-Castrejon A, Mor N, Oldak B, Shmueli MD, Eisenberg-Lerner A, Bayerl J, Hebert J, et al. 2022. SUMOylation of linker histone H1 drives chromatin condensation and restriction of embryonic cell fate identity. Mol Cell. 82(1):106–122.e9.doi:10.1016/j.molcel.2021.11.011.
  • Shen R, Lü D, Chen G, Liu M, Pu S, Zhang Y, Wang Q, Qian P, Tang X. 2022. SUMOylation regulates BmNPV replication by moderating PKIP intracellular localization. Processes. 10(2):261.doi:10.3390/pr10020261.
  • Shimshon L, Michaeli A, Hadar R, Nutt SL, David Y, Navon A, Waisman A, Tirosh B. 2011. SUMOylation of Blimp-1 promotes its proteasomal degradation. FEBS Lett. 585(15):2405–2409.doi:10.1016/j.febslet.2011.06.022.
  • Shin EJ, Shin HM, Nam E, Kim WS, Kim JH, Oh BH, Yun Y. 2012. DeSUMOylating isopeptidase: a second class of SUMO protease. EMBO Rep. 13(4):339–346.doi:10.1038/embor.2012.3.
  • Shirinian M, Kfoury Y, Dassouki Z, El-Hajj H, Bazarbachi A. 2013. Tax-1 and Tax-2 similarities and differences: focus on post-translational modifications and NF-κB activation. Front Microbiol. 4:231.doi:10.3389/fmicb.2013.00231.
  • Sidik SM, Salsman J, Dellaire G, Rohde JR. 2015. Shigella infection interferes with SUMOylation and increases PML-NB number. PLoS One. 10(4):e0122585.doi:10.1371/journal.pone.0122585.
  • Sinigalia E, Alvisi G, Segré CV, Mercorelli B, Muratore G, Winkler M, Hsiao H-H, Urlaub H, Ripalti A, Chiocca S, et al. 2012. The human cytomegalovirus DNA polymerase processivity factor UL44 is modified by SUMO in a DNA-dependent manner. PLoS One. 7(11):e49630.doi:10.1371/journal.pone.0049630.
  • Su J, Richter K, Zhang C, Gu Q, Li L. 2007. Differential regulation of interleukin-1 receptor associated kinase 1 (IRAK1) splice variants. Mol Immunol. 44(5):900–905.doi:10.1016/j.molimm.2006.03.021.
  • Sugiokto FG, Saiada F, Zhang K, Li R. 2024. SUMOylation of the m6A reader YTHDF2 by PIAS1 promotes viral RNA decay to restrict EBV replication. mBio. 15(2):e03168-23.doi:10.1128/mbio.03168-23.
  • Sumam de Oliveira D, Kronenberger T, Palmisano G, Wrenger C, de Souza EE. 2021. Targeting SUMOylation in Plasmodium as a potential target for malaria therapy. Front Cell Infect Microbiol. 11:685866.doi:10.3389/fcimb.2021.685866.
  • Sun W, Gao C, Hartana CA, Osborn MR, Einkauf KB, Lian X, Bone B, Bonheur N, Chun T-W, Rosenberg ES, et al. 2023. Phenotypic signatures of immune selection in HIV-1 reservoir cells. Nature. 614(7947):309–317.doi:10.1038/s41586-022-05538-8.
  • Sun L, Kong H, Yu M, Zhang Z, Zhang H, Na L, Qu Y, Zhang Y, Chen H, Wang X. 2023. The SUMO-interacting motif in NS2 promotes adaptation of avian influenza virus to mammals. Sci Adv. 9(28):eadg5175.doi:10.1126/sciadv.adg5175.
  • Tempé D, Vives E, Brockly F, Brooks H, De Rossi S, Piechaczyk M, Bossis G. 2014. SUMOylation of the inducible (c-Fos:c-Jun)/AP-1 transcription complex occurs on target promoters to limit transcriptional activation. Oncogene. 33(7):921–927.doi:10.1038/onc.2013.4.
  • Tripathi L, Ntui VO, Tripathi JN. 2022. Control of bacterial diseases of banana using CRISPR/Cas-based gene editing. Int J Mol Sci. 23(7):3619.doi:10.3390/ijms23073619.
  • Van Nguyen T, Angkasekwinai P, Dou H, Lin FM, Lu LS, Cheng J, Chin YE, Dong C, Yeh ET. 2012. SUMO-specific protease 1 is critical for early lymphoid development through regulation of STAT5 activation. Mol Cell. 45(2):210–221.doi:10.1016/j.molcel.2011.12.026.
  • Verma S, Mohapatra G, Ahmad SM, Rana S, Jain S, Khalsa JK, Srikanth CV. 2015. Salmonella engages host microRNAs to modulate SUMOylation: a new arsenal for intracellular survival. Mol Cell Biol. 35(17):2932–2946.doi:10.1128/mcb.00397-15.
  • Vertegaal ACO. 2022. Signalling mechanisms and cellular functions of SUMO. Nat Rev Mol Cell Biol. 23(11):715–731.doi:10.1038/s41580-022-00500-y.
  • Wang G, Zhao Y, Zhou Y, Jiang L, Liang L, Kong F, Yan Y, Wang X, Wang Y, Wen X, et al. 2022. PIAS1-mediated SUMOylation of influenza A virus PB2 restricts viral replication and virulence. PLoS Pathog. 18(4):e1010446.doi:10.1371/journal.ppat.1010446.
  • Weger S, Hammer E, Heilbronn R. 2004. SUMO-1 modification regulates the protein stability of the large regulatory protein Rep78 of adeno associated virus type 2 (AAV-2). Virology. 330(1):284–294.doi:10.1016/j.virol.2004.09.028.
  • Wilkinson KA, Henley JM. 2010. Mechanisms, regulation and consequences of protein SUMOylation. Biochem J. 428(2):133–145.doi:10.1042/bj20100158.
  • Wimmer P, Schreiner S, Dobner T. 2012. Human pathogens and the host cell SUMOylation system. J Virol. 86(2):642–654.doi:10.1128/jvi.06227-11.
  • Won TJ, Lee YJ, Hyung KE, Yang E, Sohn UD, Min HY, Lee DI, Park SY, Hwang KW. 2015. SUMO2 overexpression enhances the generation and function of interleukin-17-producing CD8+ T cells in mice. Cell Signal. 27(6):1246–1252.doi:10.1016/j.cellsig.2015.03.001.
  • Wu L, Pan T, Zhou M, Chen T, Wu S, Lv X, Liu J, Yu F, Guan Y, Liu B, et al. 2022. CBX4 contributes to HIV-1 latency by forming phase-separated nuclear bodies and SUMOylating EZH2. EMBO Rep. 23(7):e53855.doi:10.15252/embr.202153855.
  • Xia C, Su J, Liu C, Mai Z, Yin S, Yang C, Fu L. 2023. Human microbiomes in cancer development and therapy. MedComm (2020). 4(2):e221.doi:10.1002/mco2.221.
  • Xiao N, Li H, Mei W, Cheng J. 2015. SUMOylation attenuates human β-arrestin 2 inhibition of IL-1R/TRAF6 signaling. J Biol Chem. 290(4):1927–1935.doi:10.1074/jbc.M114.608703.
  • Xiao Y, Qureischi M, Dietz L, Vaeth M, Vallabhapurapu SD, Klein-Hessling S, Klein M, Liang C, König A, Serfling E, et al. 2021. Lack of NFATc1 SUMOylation prevents autoimmunity and alloreactivity. J Exp Med. 218(1):e20181853.doi:10.1084/jem.20181853.
  • Yau TY, Sander W, Eidson C, Courey AJ. 2021. SUMO interacting motifs: structure and function. Cells. 10(11):2825.doi:10.3390/cells10112825.
  • Youssouf N, Recasens-Zorzo C, Molle V, Bossis G, Soubeyran P, Gannoun-Zaki L. 2021. Staphylococcus aureus decreases SUMOylation host response to promote intramacrophage survival. Int J Mol Sci. 22(15):8108.doi:10.3390/ijms22158108.
  • Yu F, Wang L, Wang H, Sheng J, Lu L. 2017. Repression of SUMOylation pathway by grass carp reovirus contributes to the upregulation of PKR in an IFN-independent manner. Oncotarget. 8(42):71500–71511.doi:10.18632/oncotarget.20309.
  • Zhang Z, Xia S, Wang Z, Yin N, Chen J, Shao L. 2023. The SUMOylation of human cytomegalovirus capsid assembly protein precursor (UL80.5) affects its interaction with major capsid protein (UL86) and viral replication. Viruses. 15(4):931.doi:10.3390/v15040931.
  • Zhou Y, He C, Wang L, Ge B. 2017. Post-translational regulation of antiviral innate signaling. Eur J Immunol. 47(9):1414–1426.doi:10.1002/eji.201746959.
  • Zhu Z, Chu H, Wen L, Yuan S, Chik KK-H, Yuen TT-T, Yip CC-Y, Wang D, Zhou J, Yin F, et al. 2019. Targeting SUMO modification of the non-structural protein 5 of zika virus as a host-targeting antiviral strategy. Int J Mol Sci. 20(2):392.doi:10.3390/ijms20020392.
  • Zhu X, Qiu C, Wang Y, Jiang Y, Chen Y, Fan L, Ren R, Wang Y, Chen Y, Feng Y, et al. 2022. FGFR1 SUMOylation coordinates endothelial angiogenic signaling in angiogenesis. Proc Natl Acad Sci U S A. 119(26):e2202631119.doi:10.1073/pnas.2202631119.
  • Zinngrebe J, Montinaro A, Peltzer N, Walczak H. 2014. Ubiquitin in the immune system. EMBO Rep. 15(1):28–45.doi:10.1002/embr.201338025.
  • Zuo Y, Cheng JK. 2009. Small ubiquitin-like modifier protein-specific protease 1 and prostate cancer. Asian J Androl. 11(1):36–38.doi:10.1038/aja.2008.45.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.