342
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Formation of Pyrogenic Silica: Spectroscopic and Quantum Chemical Insight

, &
Pages 47-65 | Published online: 09 Jun 2011

REFERENCES

  • Cheng , H.-P. , Wang , L.-L. , Du , M.-H. , Cao , C. , Wan , Y.-X. , He , Y. , Muralidharan , K. , Greenlee , G. and Kolchin , A. 2006 . Quantum, classical, and multi-scale simulation of silica–water interaction: molecules, clusters, and extended systems . J. Comput.-Aided Mater. , 13 : 161
  • Thi Xuan Huynh , N. , Van Hoang , V. and Zung , H. 2008 . Microstructural analysis of liquid and amorphous SiO2 nanoparticles . Physica B , 403 : 3199
  • Van Hoang , V. 2007 . Molecular dynamics simulation of amorphous SiO2 nanoparticles . J. Phys. Chem. B , 111 : 12649
  • Ulrich , G. D. 1971 . Theory of particle formation and growth in oxide synthesis flame . Combust. Sci. Technol. , 4 : 47
  • Ulrich , G. D. and Riehl , J. W. 1982 . Aggregation and growth of submicron oxide particles in flames . J. Colloid Interf. Sci. , 87 : 257
  • Ulrich , G. D. , Milnes , B. A. and Subramanian , N. S. 1976 . Particle growth in flames. II: Experimental results for silica particles . Combust. Sci. Technol. , 14 : 243
  • Ulrich , G. D. and Subramanian , N. S. 1977 . Particle growth in flames. III: Coalescence as a rate-controlling process . Combust. Sci. Technol. , 17 : 119
  • Camenzind , A. , Caseri , W. R. and Pratsinis , S. E. 2010 . Flame-made nanoparticles for nanocomposites . Nano Today , 5 : 48
  • Stark , W. J. and Pratsinis , S. E. 2002 . Aerosol flame reactors for manufacture of nanoparticles . Powder Technol. , 126 : 103
  • Tandon , P. 2005 . Fundamental understanding of processes involved in optical fiber manufacturing using outside vapor deposition method . Int. J. Appl. Ceram. Tech. , 2 : 504
  • Kätzel , U. , Bedrich , R. , Stintz , M. , Ketzmerick , R. , Gottschalk-Gaudig , T. and Barthel , H. 2008 . Dynamic light scattering for the characterization of polydisperse fractal systems: I. simulation of the diffusional behavior . Part. Part. Syst. Charact. , 25 : 9
  • Mendoza Gonzalez , N. Y. , El Morsli , M. and Proulx , P. 2008 . Production of Nanoparticles in Thermal Plasmas: A Model Including Evaporation, Nucleation, Condensation, and Fractal Aggregation . J. Therm. Spray Techn. , 17 : 533
  • Mueller , R. , Kammler , H. K. , Pratsinis , S. E. , Vital , A. , Beaucage , G. and Burtscher , P. 2004 . Non-agglomerated dry silica nanoparticles . Powder Technol. , 140 : 40
  • Artelt , C. , Schmid , H.-J. and Peukert , W. 2003 . On the relevance of accountingfor the evolution of the fractal dimension in aerosol process simulations . J. Aerosol Sci. , 34 : 511
  • Heine , M. C. and Pratsinis , S. E. 2006 . High concentration agglomerate dynamics at high temperatures . Langmuir , 22 : 10238
  • Tsantilis , S. and Pratsinis , S. E. 2004 . Soft- and hard-agglomerate aerosols made at high temperatures . Langmuir , 20 : 5933
  • Patil , K. C. , Aruna , S. T. and Ekambaram , S. 1997 . Combustion synthesis . Curr. Opin. Solid St. M. , 2 : 158
  • Ferch , H. 1981 . Amorphous synthetic silica products in powder form: production and characterization . Prog. Org. Coat. , 9 : 135
  • Teoh , W. Y. , Amal , R. and Mädler , L. 2010 . Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication . Nanoscale , 2 : 1324
  • Chang , H. , Park , J.-H. and Jang , H. D. 2008 . Flame synthesis of silica nanoparticles by adopting two-fluid nozzle spray . Colloid. Surface A , 313–314 : 140
  • Ahn , K. H. , Jung , C. H. , Choi , M. and Lee , J. S. 2001 . Particle sampling and real time size distribution measurement in H2/O2/TEOS diffusion flame . J. Nanopart. Res. , 3 : 161
  • Pristavita , R. , Munz , R. J. and Addona , Tony . 2008 . Transferred arc production of fumed silica: rheological properties . Ind. Eng. Chem. Res. , 47 : 6790
  • Site of AEROSIL® fumed silica by EVONIC Industries. www.aerosil.com (accessed April 19, 2011).
  • Barthel , H. , Heinemann , M. , Stintz , M. and Wessely , B. 1999 . Particle sizes of fumed silica . Part. Part. Syst. Char. , 16 : 169
  • Khavryutchenko , V. , Garapon , J. and Poumellec , B. 2001 . Structure simulation of silica glasses: approach to CVD . Modelling Simul. Mater. Sci. Eng. , 9 : 465
  • Golant , K. M. 2000 . “ Bulk silicas prepared by low pressure plasma CVD: formation of structure and point defects ” . In Defects in SiO2 and Related Dielectrics: Science and Technology , Series II: Mathematical and Physical Chemistry Edited by: Pacchioni , G. , Skuja , L. and Griscom , D. L. Vol. 2 , 427 Dordrecht , , The Netherlands : Kluwer Academic Publishers .
  • Khavryutchenko , V. D. , Barthel , H. and Nikitina , E. 2001 . Fumed silica synthesis: From molecules, protoparticles and primary particles to aggregates and agglomerates . Macromol. Symp. , 169 : 7
  • Khavryuchenko , O. V. , Khavryuchenko , V. D. , Roszinski , J. O. , Brusilovets , A. I. , Friede , B. and Lisnyak , V. V. 2006 . Spectral and quantum chemical examination of the Si clusters nascent inside SiO bulk . Thin Solid Films , 515 : 1280
  • Iler , R. K. 1979 . The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry , Wiley-Interscience .
  • Schnöckel , H. 1978 . IR spectroscopic detection of molecular SiO2 . Angew. Chem. Int. Ed. Engl. , 17 : 616
  • Schubert , U. and Wieder , T. 2003 . “ Structure and reactivity of solid SiO ” . In Silicon Chemistry. From the Atom to Extended Systems , Edited by: Jutzi , P. and Schubert , U. 242 – 252 . Wiley-VCH, Weinheim .
  • Mehner , T. , Göcke , H. J. , Schunck , S. and Schnöckel , H. 1990 . Dimeres SiO2 matrix-IR-untersuchungen und ab initio SCF-Rechnungen . Z. Anorg. Allg. Chem. , 580 : 121
  • Sushko , R. , Tarasevitch , Y. , Khoma , M. , Sobolev , V. and Haber , N. 1977 . Formation of aerosil surfaces during the pyrogenous synthesis of silica . Adsorbtsiya i adsorbenty (Adsorption and Adsorbents) , 5 : 32 (in Russian)
  • Junker , M. , Wilkening , A. , Binnewies , M. and Schnöckel , H. 1999 . The detection of O˭SiCl2 as an intermediate during the combustion process of SiCl4 with O2 . Eur. J. Inorg. Chem. , 1529
  • Glumac , N. G. 2001 . Formation and consumption of SiO in powder synthesis flames . Combust. Flame , 124 : 702
  • Withnall , R. and Andrew , L. 1985 . Matrix reactions of silane and oxygen atoms. Infrared spectroscopic evidence for the silanol, silanone, and silanoic and silicic acid molecules . J. Phys. Chem. , 89 : 3261
  • Hannebauer , B. and Menzel , F. 2003 . The combustion of SiCl4 in hot O2/H2 flames . Z. Anorg. Allg. Chem. , 629 : 1485
  • Moore , T. , Brady , B. and Martin , L. R. 2006 . Measurements and modeling of SiCl4 combustion in a low-pressure H2/O2 flame . Combust. Flame , 146 : 407
  • 2002 . “ Personal communication from the PREMIS technologies ” . France http://www.premis.com
  • Schulz , G. , Braun , M. and Geissler , H. 1995 . Contributions to the structural and chemical composition of plasma-chemically synthesized silica powders . J. Non-Cryst. Solids , 183 : 31
  • Catoire , L. , Mevel , R. , Kunz , A. and Roth , P. 2010 . Elementary kinetics for gas phase combustion of SiCl4 based mixtures . P. Combust. Inst. , 33 : 477
  • Gun’ko , V. M. , Zarko , V. I. , Turov , V. V. , Oranska , O. I. , Goncharuk , E. V. , Nychiporuk , Y. M. , Pakhlov , E. M. , Yurchenko , G. R. , Leboda , R. , Skubiszewska-Ziêba , J. , Osovskii , V. D. , Ptushinskii , Y. G. , Derzhypolskyi , A. G. , Melenevsky , D. A. and Blitz , J. P. 2009 . Morphological and structural features of individual and composite nanooxides with alumina, silica, and titania in powders and aqueous suspensions . Powder Technol. , 195 : 245
  • Liu , C. C. and Maciel , G. E. 1996 . Structure of the fumed silica surface: A study by NMR . J. Am. Chem. Soc. , 118 : 5103
  • Razzano , J. S. 1988 . Method for increasing bulk density of fillers . U.S. Patent No. 4780108 ,
  • Briesen , H. , Fuhrmann , A. and Pratsinis , S. E. 1998 . The effect of precursor in flame synthesis of SiO2 . Chem. Eng. Sci. , 53 : 4105
  • Hurd , A. J. and Flower , W. L. 1988 . In situ growth and structure of fractal silica aggregates in a flame . J. Colloid Interf. Sci. , 122 : 178
  • Seipenbusch , M. , Rothenbacher , S. , Kirchhoff , M. , Schmid , H.-J. , Kasper , G. and Weber , A. P. 2010 . Interparticle forces in silica nanoparticle agglomerates . J. Nanopart. Res. , 12 : 2037
  • Wooldridge , M. S. , Danczyk , S. A. and Wu , J. 1999 . Demonstration of gas-phase combustion synthesis of nanosized particles using a hybrid burner . Nanostruct. Mater. , 11 : 955
  • Skandan , G. , Chen , Y.-J. , Glumac , N. and Kear , B. H. 1999 . Synthesis of oxide nanoparticles in low pressure flames . Nanostruct. Mater. , 11 : 149
  • Coclite , A. M. , Milella , A. , d’Agostino , R. and Palumbo , F. 2010 . On the relationship between the structure and the barrier performance of plasma deposited silicon dioxide-like films . Surf. Coat. Technol. , 204 : 4012
  • Satomi , A. , Mio , M. , Tanaka , K. and Kogoma , M. 2008 . Silica nano powder formation using ICP plasma and evaluation of its adsorption ability for biotic substances . J. Photopolym. Sci. Tech. , 21 : 213
  • Barron , A. R. 1996 . CVD of SiO2, and related materials: an overview . Adv. Mater. Opt. Electr. , 6 : 101
  • Paschotta , R. 2008 . Encyclopedia of Laser Physics and Technology , Vol. XII , 856 Wiley-VCH, Weinheim .
  • Nagel , S. , MacChesney , J. and Walker , K. 1982 . An overview of the modified chemical vapor deposition (MCVD) process and performance . IEEE J. Quantum Electron. , 18 : 459
  • Gambling , W. A. 2000 . The rise and rise of optical fibers (an informative review on the development of glass fibers) . IEEE J. Sel. Topics Quantum Electron. , 6 : 1084
  • http://www.corning.com/ (accessed April 19, 2011).
  • http://www1.alcatel-lucent.com/inc/lang/en/technology/overview/optical_fiber.htm (accessed April 19, 2011).
  • http://www.sterlitetechnologies.com/ (accessed April 19, 2011).
  • http://www.nsg.co.jp/en/
  • Schei , A. , Tuset , J. K. and Tveit , H. 1998 . Production of High Silicon Alloys , Trondheim , , Norway : Tapir Acad. Publ. .
  • Poch , W. and Dietzel , A. 1962 . The formation of silicon carbide from silicon dioxide and carbon . Ber. Dtsch. Keram. Ges. , 39 : 413
  • Gjerstad , S. 1968 . “ Chemical metallurgical investigation concerning carbothermic reduction of alumina and silica, (Doctoral thesis). Norges Tekniske Høgskole (NTH) (Norwegian Institute of Technology) ” . 123 Trondheim , , Norway
  • Wiik , K. 1990 . “ Kinetics of reactions between silica and carbon, (Doctoral thesis). Department of Inorganic Chemistry, Norges Tekniske Høgskole (NTH) (Norwegian Institute of Technology) ” . 220 Trondheim , , Norway
  • http://www.ceramite.elkem.com (accessed April 19, 2011).
  • http://www.silicafume.org/concrete-manual.html (accessed April 19, 2011).
  • ACI 234R-96 . 1996 . “ American Concrete Institute report ” . In Guide for the Use of Silica Fume in Concrete , Edited by: Holland , T. C. 63 Farmington Hills, MI , , USA : ACI Committee 234 .
  • http://www.elkem.no/dav/50dd457ae5.pdf (accessed April 19, 2011).
  • Gudmundsson , G. and Olafsson , H. 1999 . Alkali-silica reactions and silica fume 20 years of experience in Iceland . Cem. Concr. Res. , 29 : 1289
  • Mehner , T. , Köppe , R. and Schnöckel , H. 1992 . IR-spektroskopischer Nachweis von [PdSiO] . Angew. Chem. Int. Ed. , 31 : 638
  • Weiss , A. , Weiss , A. and Über . 1954 . Siliciumchalkogenide. VI. Zur Kenntnis der faserigen Siliciumdioxyd-Modifikation . Z. Anorg. Allg. Chem. , 276 : 95
  • Schnöckel , H. and Koppe , R. 2003 . “ Reactions with Matrix-Isolated SiO Molecules ” . In Silicon Chemistry. From the Atom to Extended Systems , Edited by: Jutzi , P. and Schubert , U. 20 – 32 . Weinheim : Wiley-VCH .
  • Revesz , A. G. and Hughes , H. L. 2003 . The structural aspects of non-crystalline SiO2 films on silicon: a review . J. Non-Cryst. Solids , 328 : 48
  • Liebau , F. 1985 . Structural Chemistry of Silicates (Structure, Bonding and Classification) , Berlin : Springer-Verlag .
  • Henderson , C. M. B. , Cressey , G. and Redfern , S. A. T. 1995 . Geological applications of synchrotron radiation . Radiat. Phys. Chem. , 45 : 459
  • Susman , S. , Volin , K. J. , Price , D. L. , Grimsditch , M. , Rino , J. P. , Kalia , R. K. , Vashishta , P. , Gwanmesia , G. , Wang , Y. and Liebermann , R. C. 1991 . Intermediate-range order in permanently densified vitreous SiO2: A neutron-diffraction and molecular-dynamics study . Phys. Rev. B , 43 : 1194
  • Keen , D. A. and Dove , M. T. 1999 . Local structures of amorphous and crystalline phases of silica, SiO2, by neutron total scattering . J. Phys. Condens. Matter. , 11 : 9263
  • Uchino , T. , Aboshi , A. , Kohara , S. , Ohishi , Y. , Sakashita , M. and Aoki , K. 2004 . Microscopic structure of nanometer-sized silica particles . Phys. Rev. B , 69 : 155409
  • Sheka , E. , Khavryutchenko , V. and Markichev , I. 1995 . Technological polymorphism of disperse amorphous silicas: inelastic neutron scattering and computer modelling . Russ. Chem. Rev. , 64 : 389
  • Agarwal , A. and Tomozawa , M. 1997 . Correlation of silica glass properties with the infrared spectra . J. Non-Cryst. Solids , 209 : 166
  • Taylor , M. G. , Simkiss , K. , Parker , S. F. and Mitchell , P. C. H. 1999 . Inelastic neutron scattering studies of synthetic calcium phosphates . Phys. Chem. Chem. Phys. , 1 : 3141
  • Khavryuchenko , V. D. , Khavryuchenko , O. V. and Lisnyak , V. V. 2007 . Quantum chemical insight on vibration spectra of silica systems . Mol. Sim. , 33 : 531
  • Khavryutchenko , V. D. , Khavryutchenko , A. V. and Barthel , H. 2001 . Fumed silica synthesis: influence of small molecules on the particle formation process . Macromol. Symp. , 169 : 1
  • Khavryuchenko , V. D. , Khavryuchenko , O. V. and Lisnyak , V. V. 2005 . Quantum chemical simulation of relaxation and thermally stimulated processes: A vibration excitation-relaxation stochastic optimization . Z. Naturforsch. A , 60 : 797
  • Khavryutchenko , A. V. and Khavryutchenko , V. D. 2005 . Quantum chemistry simulation of 60-fullerene: interaction under external pressure . Z. Naturforsch. A. , 60 : 41
  • Khavryutchenko , V. 2004 . Computation vibration spectroscopy as a tool for investigation of complicated systems . Euras. ChemTech J. , 6 : 157
  • Nakayama , T. 2002 . Boson peak and terahertz frequency dynamics of vitreous silica . Rep. Prog. Phys. , 65 : 1195
  • Hafner , J. 2000 . “ Atomic-scale computational materials science ” . In Acta Mater. Vol. 48 , 71
  • Chuyko , A. A. and Gorlov , Y. I. 1992 . Khimija poverkhnosti kremnezema. Struktura poverkhnosti, aktivnyje tsentry, mekhamizm sorbtsii. (Chemistry of silica surface. Surface structure, active centers, sorption mechanism) , Vol. 248 , Kiev : Naukova dumka . (in Russian)
  • Tertykh , V. A. and Belyakova , L. A. 1991 . Khimicheskie reaktsii s uchastiem poverkhnosti kremnezema (Chemical Reactions at the Surface of Silica) , Vol. 264 , Kiev : Naukova dumka . (in Russian)
  • Bergna , H. E. and Roberts , W. O. , eds. 2006 . Colloidal Silica: Fundamentals and Applications , Surfactant Science—Vol. 131 944 Boca Raton , FL : CRC Press .
  • Papirer , E. , ed. 2000 . Adsorption on Silica Surfaces , 774 New York : Surfactant Science—Vol. 90, Marcel Dekker .
  • Khavryutchenko , V. D. , Barthel , H. , Nikitina , E. A. and Sheka , E. 1997 . “ Formation of highly dispersed silica nanoparticles. Supercluster approach: Quantum chemical modelling and vibrational spectra verification ” . In Book of abstracts: 9th International conference on surface and colloid science, Sofia, July 6–12 , Edited by: Toshev , B. V. 390 Sofia , , Bulgaria : Bulgarian academy of sciences, Express Print .
  • Khavryutchenko , V. D. , Ogenko , V. M. and Mironyuk , I. F. 1997 . “ Dehydroxylation and re-hydroxylation of nanosize silica particles. Quantum chemical modelling and vibrational spectra verification ” . In Book of abstracts: 9th International conference on surface and colloid science, Sofia, July 6–12 , Edited by: Toshev , B. V. 55 Sofia , , Bulgaria : Bulgarian academy of sciences, Express Print .
  • Khavryutchenko , V. D. 1998 . “ Fumed silica: From molecule to particle. Quantum chemical modelling and vibration spectra verification ” . In Proceedings of Silica 98, an International Conference on Silica Science and Technology, from Synthesis to Application, 1–4 Sept. 1998, Mulhouse , Edited by: Papirer , E. , Vidal , A. , Haidar , B. , Accault , D. and Ziegler , P. 853 France : Institute De Chimie des Surface et Interfaces—CNRS, Mulhouse .
  • Khavryutchenko , V. D. , Nikitina , E. , Barthel , H. , Weis , J. and Sheka , E. 1998 . “ Fumed silica structure and particle aggregation—computational modelling and verification by vibrational spectroscopy ” . In Proceedings of Silica 98, an International Conference on Silica Science and Technology, from Synthesis to Application, 1–4 Sept. 1998, Mulhouse , Edited by: Papirer , E. , Vidal , A. , Haidar , B. , Accault , D. and Ziegler , P. 845 Mulhouse , , France : Institute De Chimie des Surface et Interfaces—CNRS .
  • Binnewies , M. and Jug , K. 2000 . The formation of a solid from the reaction SiCl4(g) + O2(g) = SiO2(s) + 2Cl2(g) . Eur. J. Inorg. Chem. , 6 : 1127
  • Kostko , O. , Ahmed , M. and Metz , R. B. 2009 . Vacuum-ultraviolet photoionization measurement and ab initio calculation of the ionization energy of gas-phase SiO2 . J. Phys. Chem. A , 113 : 1225
  • Krasnov , K. S. Handbook of Molecular Constants of Inorganic Compounds, Leningrad, Khimiya, 448, 1979; English translation of an earlier edition—Handbook of Molecular Constants of Inorganic Compounds, Krasnov, K. S., ed., IPST, Jerusalem, 284 (1970)
  • Allendorf , M. D. , Melius , C. F. , Ho , P. and Zachariah , M. R. 1995 . Theoretical study of the thermochemistry of the Si-O-H system . J. Phys. Chem. , 99 : 15285
  • Yuan , X. and Cormack , A. N. 2003 . Si–O–Si bond angle and torsion angle distribution in vitreous silica and sodium silicate glasses . J. Non-Cryst. Solids , 319 : 31
  • Keen , D. A. and Dove , M. T. 2000 . Total scattering studies of silica polymorphs: similarities in glass and disordered crystalline local structure . Mineralog. Mag. , 64 : 447
  • Zavodinsky , V. G. , Kuyanov , I. A. and Zavodinskaya , O. M. 1999 . Atomic and electronic structures of nanometer sized silica particles . J. Non-Cryst. Solids , 243 : 123
  • Roder , A. , Kob , W. and Binder , K. 2001 . Structure and dynamics of amorphous silica surfaces . J. Chem. Phys. , 114 : 7602
  • Vaccaro , G. , Agnello , S. , Buscarino , G. and Gelardi , F. M. 2010 . Thermally induced structural modification of silica nanoparticles investigated by Raman and infrared absorption spectroscopies . J. Phys. Chem. C , 114 : 13991
  • Keen , D. A. and Dove , M. T. 1999 . Local structures of amorphous and crystalline phases of silica, SiO2, by neutron total scattering . J. Phys. Condens. Matter. , 11 : 9263
  • Mousseau , N. , Barkema , G. T. and de Leeuw , S. W. 2000 . Elementary mechanisms governing the dynamics of silica . J. Chem. Phys. , 112 : 960
  • Ivanda , M. , Clasen , R. , Hornfeck , M. and Kiefer , W. 2003 . Raman spectroscopy on SiO2 glasses sintered from nanosized particles . J. Non-Cryst. Solids , 322 : 46
  • Wang , C. , Kuzuu , N. and Tamai , Y. 2003 . Molecular dynamics study on surface structure of a-SiO2 by charge equilibration method . J. Non-Cryst. Solids , 318 : 131
  • Khavryutchenko , A. V. and Khavryutchenko , V. D. 2003 . Fumed silica synthesis. Influence of hydrogen chloride on the fumed silica particle formation process . Macromol. Symp. , 194 : 253
  • Glinka , Y. D. , Lin , S.-H. and Chen , Y.-T. 2000 . Two-photon-excited luminescence and defect formation in SiO2 nanoparticles induced by 6.4 eV ArF laser light . Phys. Rev. B , 62 : 4733
  • Glinka , Y. D. , Lin , S.-H. and Chen , Y.-T. 1999 . The photoluminescence from hydrogen-related species in composites of SiO2 nanoparticles . Appl. Phys. Lett. , 75 : 778
  • Du , J. and Cormack , A. N. 2005 . Molecular dynamics simulation of the structure and hydroxylation of silica glass surfaces . J. Am. Ceram. Soc. , 88 : 2532
  • Ceresoli , D. , Bernasconi , M. , Iarlori , S. , Parrinello , M. and Tosatti , E. 2000 . Two-membered silicon rings on the dehydroxylated surface of silica . Phys. Rev. Lett. , 84 : 3887
  • Bromley , S. T. , Zwijnenburg , M. A. and Maschmeyer , T. 2003 . Two-ring vibrational modes on silica surfaces investigated via fully coordinated nanoclusters . Surf. Sci. , 539 : L554
  • Bendale , R. D. and Hench , L. L. 1995 . Molecular orbital models of strained tetrahedral edge shared active sites on dehydroxylated silica: an AM1 and PM3 study . Surf. Sci. , 338 : 322
  • Radzig , V. A. 2007 . “ Point defects on the silica surface: Structure and reactivity ” . In Physico-Chemical Phenomena in Thin Films and at Solid Surfaces. Part 1. Theoretical Approaches to the Study of the Processes in Films and on Surfaces , Edited by: Trakhtenberg , L. I. , Lin , S. H. and Ilegbusi , O. J. Vol. 34 , 231 – 345 . Oxford : Academic Press .
  • Nazarenko , V. A. , Furman , V. I. , Guzikevich , A. G. and Gorlov , Y. I. 1985 . Mass spectrometric study of high-temperature dehydroxylation of disperse silicas and the interpretation of their IR spectra in the region of Si–O stretching vibrations . Theor. Exp. Chem. , 21 : 63
  • Stesmans , A. , Clémer , K. and Afanas’ev , V. V. 2008 . The E′γ center as a probe of structural properties of nanometer-sized silica particles . J. Non-Cryst. Solids , 354 : 233
  • Susman , S. , Volin , K. J. , Price , D. L. , Grimsditch , M. , Rino , J. P. , Kalia , R. K. and Vashishta , P. 1991 . Phys. Rev. B , 43 : 1194
  • Uchino , T. 2005 . Structure and properties of amorphous silica and its related materials: recent developments and future directions . J. Ceram. Soc. Jpn. , 113 : 17
  • Albers , P. and Parker , S. Investigations of the Low Frequency Vibrations in Various Fumed and Precipitated Oxydes , ISIS Experimental Report. RAL, RB11024 (2000) http://www.isis.rl.ac.uk/archive/isis2000/reports/11024.PDF
  • Courtens , E. , Foret , M. , Hehlen , B. and Vacher , R. 2001 . The vibrational modes of glasses . Solid State Communs , 117 : 187
  • Friesen , M. , Junker , M. , Zumbusch , A. and Schnöckel , H. 1999 . Raman-spectroscopy of oligomeric SiO species isolated in solid methane . J. Chem. Phys. , 111 : 7881
  • Barthel , H. 1995 . Surface interactions of dimethylsiloxy group-modified fumed silica . Colloid. Surface. , 101 : 217
  • Michael , G. and Ferch , H. 1998 . Basic Characteristics of Aerosil , Degussa Technical Bulletin Pigment No. 11 Vol. 81 , Akron , OH
  • Vigne-Maeder , F. and Sautet , P. 1997 . Theoretical study of hydroxylated and dehydroxylated surfaces of a cristobalite model of silica . J. Phys. Chem. B. , 101 : 8197
  • Muster , T. H. , Prestidge , C. A. and Hayes , R. A. 2001 . Water adsorption kinetics and contact angles of silica particles . Colloids Surf. A , 176 : 253
  • Bolis , V. , Fubini , B. , Marchese , L. , Martra , G. and Costa , D. 1991 . Hydrophilic and hydrophobic sites on dehydrated crystalline and amorphous silicas . J. Chem. Soc. Faraday Trans. , 87 : 497
  • Carteret , C. 2009 . Mid- and near-infrared study of hydroxyl groups at a silica surface: H-bond effect . J. Phys. Chem. C , 113 : 13300
  • Humbert , B. 1995 . Estimation of hydroxyl density at the surface of pyrogenic silicas by complementary NMR and Raman experiments . J. Non-Cryst. Solids , 191 : 29
  • Bogdan , A. and Kulmala , M. 1997 . Effect of acids on water-vapor uptake by pyrogenic silica . J. Colloid Interf. Sci. , 191 : 95
  • Zhuravlev , L. T. 2000 . The surface chemistry of amorphous silica. Zhuravlev model . Colloids Surf. A , 173 : 1
  • D’Souza , A. S. and Pantano , C. G. 2002 . Hydroxylation and dehydroxylation behavior of silica glass fracture surfaces . J. Am. Ceram. Soc. , 85 : 1499
  • Stefanov , B. B. , Gurevich , A. B. , Weldon , M. K. , Raghavachari , K. and Chabal , Y. J. 1998 . Silicon epoxide: Unexpected intermediate during silicon oxide formation . Phys. Rev. Lett. , 81 : 3908
  • Gun’ko , V. M. , Zarko , V. I. , Chuikov , B. A. , Dudnik , V. V. , Ptushinskii , Yu. G. , Voronin , E. F. , Pakhlov , E. M. and Chuiko , A. A. 1998 . Temperature-programmed desorption of water from fumed silica, titania, silica/titania, and silica/alumina . Int. J. Mass Spectrom. , 172 : 161
  • Uchino , T. , Kurumoto , N. and Sagawa , N. 2006 . Structure and formation mechanism of blue-light-emitting centers in silicon and silica-based nanostructured materials . Phys Rev B , 73 : 233203
  • Yamada , T. and Uchino , T. 2005 . Photoluminescence decay dynamics of transparent silica glass prepared from nanometer-sized silica particles . Appl. Phys. Lett. , 87 : 081904
  • Avnir , D. , Farin , D. and Pfeifer , P. 1983 . Chemistry in noninteger dimensions between two and three. II. Fractal surfaces of adsorbents . J. Chem. Phys. , 79 : 3566
  • Ibaseta , N. and Biscans , B. 2010 . Fractal dimension of fumed silica: Comparison of light scattering and electron microscope methods . Powder Technol. , 203 : 206
  • Wengeler , R. , Wolf , F. , Dingenouts , N. and Nirschl , H. 2007 . Characterizing dispersion and fragmentation of fractal, pyrogenic silica nanoagglomerates by small-angle X-ray scattering . Langmuir , 23 : 4148
  • West , J. K. and Hench , L. L. 1994 . Silica fracture. Part I. A ring contraction model . J. Mater. Sci. , 29 : 3601
  • West , K. and Hench , L. L. 1995 . Silica fracture. Part III. Five- and six-fold ring contraction models . J. Mater. Sci. , 30 : 6281
  • Camenzind , A. , Schulz , H. , Teleki , A. , Beaucage , G. , Narayanan , T. and Pratsinis , S. E. 2008 . Nanostructure evolution: From aggregated to spherical SiO2 particles made in diffusion flames . Eur. J. Inorg. Chem. , 911
  • Chuang , I. S. and Maciel , G. E. 1997 . A detailed model of local-structure and silanol hydrogen banding of silica-gel surfaces . J. Phys. Chem. B. , 101 : 3052
  • Branda , M. M. , Montani , R. A. and Castellania , N. J. 2000 . The distribution of silanols on the amorphous silica surface: a Monte Carlo simulation . Surf. Sci. , 446 : L89
  • de Boer , J. H. and Vleeskens , J. M. 1958 . Chemisorption and physical adsorption of water on silica. V. Various dehydration processes . Proc. Koninkl. Ned. Akad. Wet. B , 61 : 85
  • Branda , M. M. , Montani , R. A. and Castellani , N. J. 1995 . Monte Carlo simulation of amorphous silica dehydration . Surf. Sci. , 341 : 295
  • Eggersdorfer , M. L. , Kadau , D. , Herrmann , H. J. and Pratsinis , S. E. 2010 . Fragmentation and restructuring of soft-agglomerates under shear . J. Colloid Interf. Sci. , 342 : 261
  • Wells , J. D. , Koopal , L. K. and de Keizer , A. 2000 . Monodisperse, nonporous, spherical silica particles . Colloids Surf. A , 166 : 171
  • DeGroot , J. V. Jr and Macosko , C. W. 1999 . Aging phenomena in silica-filled polydimethylsiloxane . J. Colloid Interfac. Sci. , 217 : 86
  • Morel , B. , Autissier , L. , Autissier , D. , Lemordant , D. , Yrieix , B. and Quenard , D. 2009 . Pyrogenic silica ageing under humid atmosphere . Powder Technol. , 190 : 225
  • Mebel , A. M. , Zyubin , A. S. , Hayashi , M. and Lin , S. H. 2007 . “ Ab Initio Calculations of electronic transitions and photoabsorption and photoluminescence spectra of silica and germania nanoparticles ” . In Physico-Chemical Phenomena in Thin Films and at Solid Surfaces. Part 1. Theoretical Approaches to the Study of the Processes in Films and on Surfaces , Edited by: Trakhtenberg , L. I. , Lin , S. H. and Ilegbusi , O. J. Vol. 34 , 67 – 120 . Oxford : Academic Press .
  • Shackelford , J. F. 1999 . Gas solubility in glasses—principles and structural implications . J. Non-Cryst. Solids , 253 : 231
  • Uchino , T. , Aboshi , A. , Kohara , S. , Ohishi , Y. , Sakashita , M. and Aoki , K. 2004 . Microscopic structure of nanometer-sized silica particles . Phys. Rev. B , 69 : 155409
  • Hornfeck , M. , Clasen , R. and Rosenbaum , S. 1995 . Optical spectroscopy on glasses sintered from nanosized particles . J. Mol. Struct. , 348 : 461
  • Gun’ko , V. M. , Zarko , V. I. , Leboda , R. and Chibowski , E. 2001 . Aqueous suspension of fumed oxides: particle size distribution and zeta potential . Adv. Colloid Interfac. Sci. , 91 : 1
  • Uchino , T. , Aboshi , A. , Yamada , T. , Inamura , Y. and Katayama , Y. 2008 . In situ x-ray diffraction study of the size dependence of pressure-induced structural transformation in amorphous silica nanoparticles . Phys. Rev. B , 77 : 132201
  • Yamada , T. , Nakajima , M. , Suemoto , T. and Uchino , T. 2007 . Formation, and photoluminescence characterization of transparent silica glass prepared by solid-phase reaction of nanometer-sized silica particles . J. Phys. Chem. C , 111 : 12973
  • Uchino , T. and Yamada , T. 2004 . White light emission from transparent SiO2 glass prepared from nanometer-sized silica particles . Appl. Phys. Lett. , 85 : 1164
  • West , J. K. and Hench , L. L. 1994 . Silica fracture. Part II. A ring opening model via hydrolysis . J. Mater. Sci. , 29 : 5808
  • Bałdyga , J. , Makowski , Ł. , Orciuch , W. , Sauter , C. and Schuchmann , H. P. 2009 . Agglomerate dispersion in cavitating flows . Chem. Eng. Res. Des. , 87 : 474
  • Bałdyga , J. , Orciuch , W. , Makowski , Ł. and Malik , K. 2008 . Dispersion of nanoparticle clusters in a rotor-stator mixer . Ind. Eng. Chem. Res. , 47 : 3652
  • Lacks , D. J. 1998 . Localized mechanical instabilities and structural transformations in silica glass under high pressure . Phys. Rev. Lett. , 80 : 5385
  • Webb , E. B. III and Garofalini , S. H. 1998 . Relaxation of silica glass surfaces before and after stress modification in a wet and dry atmosphere: Molecular dynamics simulations . J. Non-Cryst. Solids , 226 : 47
  • Seekkuarachchi , I. N. , Tanaka , K. and Kumazawa , H. 2008 . Dispersion mechanism of nano-particulate aggregates using a high pressure wet-type jet mill . Chemical Engineering Science , 63 : 2341
  • Khavryutchenko , V. D. , Barthel , H. and Nikitina , E. 2001 . Fumed silica synthesis: from molecules, protoparticles and primary particles to aggregates and agglomerates . Macromol. Symp. , 169 : 7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.