1,180
Views
68
CrossRef citations to date
0
Altmetric
Articles

A General Perspective of the Characterization and Quantification of Nanoparticles: Imaging, Spectroscopic, and Separation Techniques

, , , , , , , , , & show all

REFERENCES

  • D. Grolimund, M. Elimelech, and M. Borkovec, Aggregation and deposition kinetics of mobile colloidal particles in natural porous media, Colloids Surf. A 191, 179 (2001).
  • A. M. E. Badawy, T. P. Luxton, R. G. Silva, K. G. Scheckel, M. T. Suidan, and T. M. Tolaymat, Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions, Environ. Sci. Technol. 44, 1260 (2010).
  • J. Gong and C. B. Mullins, Surface Science Investigations of oxidative chemistry on gold, Acc. Chem. Res. 42, 1063 (2009).
  • S. Kuchibhatla, A. Karakoti, and S. Seal, Olloidal stability by surface modification, JOM 57, 52 (2005).
  • J. Jiang, G. Oberdorster, A. Elder, R. Gelein, P. Mercer, and P. Biswas, Does Nanoparticle Activity Depend upon Size and Crystal Phase?, Nanotoxicology 2, 33 (2008).
  • K. Tiede, S. P. Tear, H. David, and A. B. A. Boxall, Imaging of engineered nanoparticles and their aggregates under fully liquid conditions in environmental matrices, Water Res. 43, 3335 (2009).
  • S. Alayoglu, P. Zavalij, B. Eichhorn, Q. Wang, A. I. Frenkel, and P. Chupas , Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt−Ru core−shell and alloy nanoparticles, ACS Nano 3, 3127 (2009).
  • P. Borm, D. Robbins, S. Haubold, T. Kuhlbusch, H. Fissan, K. Donaldson, R. Schins, V. Stone, W. Kreyling, J. Lademann, J. Krutmann, D. Warheit, and E. Oberdorster, The potential risks of nanomaterials: a review carried out for ECETOC, Part Fibre Toxicol. 3, 11 (2006).
  • K. Tiede, M. Hassellöv, E. Breitbarth, Q. Chaudhry, and A. B. A. Boxall , Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles, J. Chromatogr. A 1216, 503 (2009).
  • L. Alvarez and J. M. Siqueiros, Scanning probe microscopy, in Microscopy: Science, Technology, Applications and Education, A. Méndez-Vilas and J. Díaz, Eds., Formatex, Badajoz, Spain (2010).
  • Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue, and M. Nakano, Observation of nanostructure by scanning near-field optical microscope with small sphere probe, Sci. Technol. Adv. Mater. 8, 181 (2007).
  • T. W. Johnson, Z. J. Lapin, R. Beams, N. C. Lindquist, S. G. Rodrigo, L. Novotny, and S. H. Oh, Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids, ACS Nano 6, 9168 (2012).
  • K. Tiede, A. B. A. Boxall, S. P. Tear, J. Lewis, H. David, and M. Hassellov, Detection and characterization of engineered nanoparticles in food and the environment, Food Addit. Contam. Part A 25, 795 (2008).
  • S. Hak, E. Helgesen, H. H. Hektoen, E. M. Huuse, P. A. Jarzyna, W. J. Mulder, O. Haraldseth, and C. D. Davies, The effect of nanoparticle polyethylene glycol surface density on ligand-directed tumor targeting studied in vivo by dual modality imaging, ACS Nano 6, 5648 (2012).
  • D. J. Stephens and V. J. Allan, Light Microscopy Techniques for Live Cell Imaging, Science, New York, 300, 82 (2003).
  • G. Romero, I. Estrela-Lopis, J. Zhou, E. Rojas, A. Franco, C. S. Espinel, A. G. Fernández, C. Gao, E. Donath, and S. E. Moya, Surface engineered poly(lactide-co-glycolide) nanoparticles for intracellular delivery: uptake and cytotoxicity: a confocal raman microscopic study, Biomacromolecules 11, 2993 (2010).
  • C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, Gold nanoparticles in biology: beyond toxicity to cellular imaging, Acc. Chem. Res. 41, 1721 (2008).
  • X. H. N. Xu, W. J. Brownlow, S. V. Kyriacou, Q. Wan, and J. J. Viola, Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging, Biochemistry 43, 10400 (2004).
  • R. F. Domingos, M. A. Baalousha, Y. Ju-Nam, M. M. Reid, N. Tufenkji, J. R. Lead, G. G. Leppard, and K. J. Wilkinson, Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes, Environ. Sci. Technol. 43, 7277 (2009).
  • N. Fatin-Rouge and J. Buffle, Study of Environmental Systems by Means of Fluorescence Correlation Spectroscopy, John Wiley & Sons, Ltd, Chichester, UK, 507 (2006).
  • P. Jurkiewicz, C. Konák, V. Subr, M. Hof, P. Stepánek, and K. lbrich, Investigation of nanoparticle coating by fluorescence correlation spectroscopy, Macromol. Chem. Phys. 209, 1447 (2008).
  • K. A. Ramirez-Aguilar, D. W. Lehmpuhl, A. E. Michel, J. W. Birks, and K. L. Rowlen, Atomic force microscopy for the analysis of environmental particles, Ultramicroscopy 77, 187 (1999).
  • D. Mavrocordatos, W. Pronk, and M. Boller, Analysis of environmental particles by atomic force microscopy, scanning and transmission electron microscopy, Water Sci. Technol. 50, 9 (2004).
  • R. Kaegi, T. Wagner, B. Hetzer, B. Sinnet, G. Tzvetkov, and M. Boller, Size , number and chemical composition of nanosized particles in drinking water determined by analytical microscopy and LIBD, Water Res. 42, 2778 (2008).
  • J. W. Goodwin, Characterization of Colloidal Particles, John Wiley & Sons, Ltd, 195 (2004).
  • S. W. Hell, Far-field optical nanoscopy, Science 316, 1153, (2007).
  • E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Imaging intracellular fluorescent proteins at nanometer resolution, Science 313, 1642 (2006).
  • A. Dudkiewicz, K. Tiede, A. B. A. Boxall, K. Loeschner, L. H. S. Jensen, E. Jensen, R. Wierzbicki, and K. Molhave, Characterization of nanomaterials in food by electron microscopy, TrAC, Trends Anal. Chem. 30, 28 (2011).
  • National Center for Electron Microscopy (NCEM) U.S.A. availabe from http: //ncem.lbl.gov/TEAM-project/files/what.html (2010).
  • K. Kaneko, K. Inoke, B. Freitag, A. B. Hungria, P. A. Midgley, T. W. Hansen, J. Zhang, S. Ohara, and T. Adschiri, Structural and morphological characterization of cerium oxide nanocrystals prepared by hydrothermal synthesis, Nano Lett. 7, 421 (2007).
  • D. A. Jefferson and E. E. M. Tilley, The structural and physical chemistry of nanoparticles, In Particulate Matter - Properties and Effects on Health, R. L. Maynard and C. V. Howard, Eds., BIOS Scientific Publishers, Oxford, 63 (1999).
  • A. L. Koh, C. M. Shachaf, S. Elchuri, G. P. Nolan, and R. Sinclair, Electron microscopy localization and characterization of functionalized composite organic-inorganic SERS nanoparticles on leukemia cells, Ultramicroscopy 109, 111 (2008).
  • E. Buhr, N. Senftleben, T. Klein, D. Bergmann, D. Gnieser, C. G. Frase, and H. Bosse, Characterization of nanoparticles by scanning electron microscopy in transmission mode, Meas. Sci. Technol. 20, 084025 (2009).
  • T. Klein, E. Buhr, K. P. Johnsen, and C. G., Frase, Traceable measurement of nanoparticle size using a scanning electron microscope in transmission mode (TSEM), Meas. Sci. Technol. 22, 094002 (2011).
  • M. T. Postek, Critical issues in scanning electron microscope metrology, J. Res. Nat. Instit. Stand. Technol. 99, 641 (1994).
  • W. Denk and H. Horstmann, Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure, PLoS Biol. 2, e329 (2004).
  • I. Utke, S. Moshkalev, and P. Russell, Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications, Oxford Series in Nanomanufacturing, Oxford, UK (2012).
  • J. Liu, Scanning transmission electron microscopy and its application to the study of nanoparticles and nanoparticle systems, J. Electron. Microsc. 54, 251 (2005).
  • S. J. Pennycook, A. R. Lupini, M. Varela, A. Y. Borisevich, Y. Peng, M. P. Oxley, and M. F. Chisholm, Scanning transmission electron microscopy for nanostructure characterization, in Scanning Microscopy for Nanotechnology: Techniques and Applications, W. Zhou and Z. L. Wang, Eds., Springer, New York (2006).
  • P. D. Nellist, B. C. McCallum, and J. M. Rodenburg, Resolution beyond the ‘information limit’ in transmission electron microscopy, Nature 374, 630 (1995).
  • N. de Jonge and F. M. Ross, Electron microscopy of specimens in liquid, Nat. Nano 6, 695 (2011).
  • N. Hondow, J. Harrington, R. Brydson, S. H. Doak, N. Singh, B. Manshian, and A. Brown, STEM mode in the SEM: A practical tool for nanotoxicology, Nanotoxicology 5, 215 (2010).
  • P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, J. Park, P. L. McEuen, and D. A. Muller , Grains and grain boundaries in single-layer graphene atomic patchwork quilts, Nature 469, 389 (2011).
  • R. J. Niels de Jonge, Nanotechnology in Biology and Medicine - Methods, Devices, and Applications, CRC Press, Boca Raton, FL, 13 (2007).
  • R. Boyd, T. Young, and V. Stolojan, Characterisation of gold nanoparticles and rods using high angle annular dark field imaging, J. Nanopart. Res. 14, 1 (2012).
  • M. C. Scott, C. G. Chen, M. Mecklenburg, C. Zhu, R. Xu, P. Ercius, U. Dahmen, B. C. Regan, and J. Miao, Electron tomography at 2.4-angstrom resolution, Nature 483, 444 (2012).
  • J. M. Cowley, V. I. Merkulov, and J. S. Lannin, Imaging of light-atom nanocrystals with a thin annular detector in STEM, Ultramicroscopy 65, 61 (1996).
  • A. A. Sousa, M. F. Hohmann-Marriott, G. Zhang, and R. D. Leapman, Monte Carlo electron-trajectory simulations in bright-field and dark-field STEM: Implications for tomography of thick biological sections, Ultramicroscopy 109, 213 (2009).
  • J. M. Grogan, and H. H. Bau, The nanoaquarium: a platform for in situ transmission electron microscopy in liquid media, J. Microelectromech. Syst. 19, 885 (2010).
  • K. L. Klein, I. M. Anderson, and E. N. De Jonge, Transmission electron microscopy with a liquid flow cell, J. Microsc. 242, 117 (2011).
  • K. L. Liu, C. C. Wu, Y. J. Huang, H. L. Peng, H. Y. Chang, H. Y. Chang, P., Hsu, L. Yew, T. R., Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions, Lab Chip 8, 1915 (2008).
  • F. Ryan, S. Morefield, J. Wen, D. Liao, J. Alvarado, M. Strano, and C. Marsh, A study of nanomaterial dispersion in solution by wet-cell transmission electron microscopy, J. Nanosci. Nanotechnol. 8, 4404 (2008).
  • P. Garg, J. L. Alvarado, C. Marsh, T. A. Carlson, and D. A. Kessler, and K. Annamalai, An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids, Int. J. Heat Mass Transf. 52, 5090 (2009).
  • H. Zheng, R. K. Smith, Y. W. Jun, C. Kisielowski, U. Dahmen, and A. P. Alivisatos, Observation of single colloidal platinum nanocrystal growth trajectories, Science 324, 1309 (2009).
  • T. Yaguchi, T. Kanemura, T. Shimizu, D. Imamura, A. Watabe, and T. Kamino, Development of a technique for in situ high temperature TEM observation of catalysts in a highly moisturized air atmosphere, J. Electron Microsc. 61, 199 (2012).
  • J. F. Creemer, F. Santagata, B. Morana, L. Mele, T. Alan, E. Iervolino, G. Pandraud and P. M. Sarro, An all-in-one nanoreactor for high-resolution microscopy on nanomaterials at high pressures, Micro Electro Mechanical Systems (MEMS), 2011 IEEE 24th International Conference on. Micro Electro Mechanical Systems (MEMS), 1103–1106, 23-1-2011.
  • J. F. Creemer, S. Helveg, P. J. Kooyman, A. M. Molenbroek, H. W. Zandbergen, and P. M. Sarro, A MEMS reactor for atomic-scale microscopy of nanomaterials under industrially relevant conditions, J. Microelectromech. Syst. 19, 254 (2010).
  • E. A. Ring and N. de Jonge, Microfluidic system for transmission electron microscopy, Microsc. Microanal. 16, 622 (2010).
  • D. B. Peckys, G. M. Veith, D. C. Joy, and N. de Jonge, Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope, PLoS ONE 4, e8214 (2009).
  • J. E. Evans, K. L. Jungjohann, N. D. Browning, and I. Arslan, Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy, Nano Lett. 11, 2809 (2011).
  • A. Bogner, G. Thollet, D. Basset, P. H. Jouneau, and C. Gauthier, Wet STEM: A new development in environmental SEM for imaging nano-objects included in a liquid phase, Ultramicroscopy 104, 290 (2005).
  • F. J. Doucet, J. R. Lead, L. Maguire, E. P. Achterberg, and G. E. Millward , Visualisation of natural aquatic colloids and particles - a comparison of conventional high vacuum and environmental scanning electron microscopy, J. Environ. Monit. 7, 115 (2005).
  • D. J. Stokes and E. Baken, Electron microscopy of soft nano-materials, I. & M. 9, 18 (2007).
  • A. Gatti, J. Kirkpatrick, A. Gambarelli, F. Capitani, T. Hansen, R. Eloy, and G. Clermont, ESEM evaluations of muscle/nanoparticles interface in a rat model, J. Mater. Sci. Mater. Med. 19, 1515 (2008).
  • S. Giorgio, S. Sao Joao, S. Nitsche, D. Chaudanson, G. Sitja, and C. R. Henry , Environmental electron microscopy (ETEM) for catalysts with a closed E-cell with carbon windows, Ultramicroscopy 106, 503 (2006).
  • K. Kishita, H. Sakai, H. Tanaka, H. Saka, K. Kuroda, M. Sakamoto, A. Watabe, and T. Kamino, Development of an analytical environmental TEM system and its application, J. Electron Microsc. 58, 331 (2009).
  • W. Timp, N. Watson, A. Sabban, O. Zik, and P. Matsudaira, Wet electron microscopy with quantum dots, Biotechniques 41, 295 (2006).
  • O. Balmes, J. O. Malm, N. Pettersson, G. Karlsson, and J. O. Bovin, Imaging atomic structure in metal nanoparticles using high-resolution Cryo-TEM, Microsc. Microanal. 12, 145 (2006).
  • D. H. Anjum, R. M. Stiger, J. J. Finley, and J. F. Conway, Cryo-transmission electron microscopy of Ag nanoparticles grown on an ionic liquid substrate, J. Mater. Res. 25, 1264 (2010).
  • M. Hu, L. Qian, R. P. Briñas, E. S. Lymar, L. Kuznetsova, and J. F. Hainfeld, Gold nanoparticle-protein arrays improve resolution for cryo-electron microscopy, J. Struct. Biol. 161, 83 (2008).
  • Y. Wang, O. Zeiri, V. Gitis, A. Neyman, and I. A. Weinstock, Reversible binding of an inorganic cluster-anion to the surface of a gold nanoparticle, Inorg. Chim. Acta 363, 4416 (2010).
  • H. Luo, L. E. Scriven, and L. F. Francis, Cryo-SEM studies of latex/ceramic nanoparticle coating microstructure development, J. Colloid Interface Sci. 316, 500 (2007).
  • G. E. Murphy and G. J. Jensen, Electron cryotomography, Biotechniques 43, 413 (2007).
  • A. E. Nel, L. Madler, D. Velegol, T. Xia, E. M. V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, and M. Thompson, Understanding biophysicochemical interactions at the nano-bio interface, Nat Mater. 8, 543 (2009).
  • J. C. Taveau, D. Nguyen, A. Perro, S. Ravaine, E. Duguet, and O. Lambert , New insights into the nucleation and growth of PS nodules on silica nanoparticles by 3D cryo-electron tomography, Soft Matter 4, 311 (2008).
  • J. S. Lengyel, J. L. Milne, and S. Subramaniam, Electron tomography in nanoparticle imaging and analysis, Nanomedicine 3, 125 (2008).
  • O. Le Bihan, P. Bonnafous, L. Marak, T. Bickel, S. Trθpout, S. Mornet, F. De Haas, H. Talbot, J. C. Taveau, and O. Lambert, Cryo-electron tomography of nanoparticle transmigration into liposome, J. Struct. Biol. 168, 419 (2009).
  • E. Balnois, G. Papastavrou, and K. J. Wilkinson, Force Microscopy and Force Measurements of Environmental Colloids, John Wiley & Sons, Ltd, Chichester, UK (2006).
  • R. A. Storey and I. Ymen. Solid State Characterization of Pharmaceuticals, Wiley, Chichester, UK (2011).
  • M. Hosokawa, K. Nogi, M. Naito, and T. Yokoyama, Nanoparticle Technology: Handbook, Elsevier, Chichester, UK (2012).
  • Q. Zhong, D. Inniss, K. Kjoller, and V. B. Elings, Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy, Surf. Sci. Lett. 290, L688–L692 (1993).
  • D. Keller and C. Bustamante, Attaching molecules to surfaces for scanning probe microscopy, Biophys. J. 64, 896 (1993).
  • J. R. Lead, D. Muirhead, and C. T. Gibson, Characterization of freshwater natural aquatic colloids by atomic force microscopy (AFM), Environ. Sci. Technol. 39, 6930 (2005).
  • D. Muirhead and J. R. Lead, Measurement of the size and structure of natural aquatic colloids in an urbanised watershed by atomic force microscopy, Hydrobiologia 494, 65 (2003).
  • F. J. Doucet, L. Maguire, and J. R. Lead, Size fractionation of aquatic colloids and particles by cross-flow filtration: analysis by scanning electron and atomic force microscopy, Anal. Chim. Acta 522, 59 (2004).
  • M. Baalousha and J. R. Lead, Size fractionation and characterization of natural aquatic colloids and nanoparticles, Sci. Total Environ. 386, 93 (2007).
  • A. Rao, M. Schoenenberger, E. Gnecco, Th. Glatzel, E. Meyer, D. Brändlin, and L. Scandella, Characterization of nanoparticles using atomic force microscopy, J. Phys. Conf. Ser. 61, 971 (2007).
  • S. Kim, F. Shafiei, D. Ratchford, and X. Li, Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures, Nanotechnology 22, 115301 (2011).
  • D. Guo, C. Wu, X. Li, H. Jiang, X. Wang, and B. Chen, In Vitro cellular uptake and cytotoxic effect of functionalized nickel nanoparticles on leukemia cancer cells, J. Nanosci. Nanotechnol. 8, 2301 (2008).
  • R. Contreras-Cáceres, J. Pacifico, I. Pastoriza-Santos, J. Pérez-Juste, A. Fernández-Barbero, and L. M. Liz-Marzán, Au@pNIPAM thermosensitive nanostructures: control over shell cross-linking, overall dimensions, and core growth, Adv. Funct. Mater. 19, 3070 (2009).
  • M. A. Le Gros, G. McDermott, and C. A. Larabell, X-ray tomography of whole cells, Curr. Opin. Struct. Biol. 15, 593 (2005).
  • Y. Takahashi, N. Zettsu, Y. Nishino, R. Tsutsumi, E. Matsubara, T. Ishikawa, and K. Yamauchi, Three-dimensional electron density mapping of shape-controlled nanoparticle by focused hard X-ray diffraction microscopy, Nano Lett. 10, 1922 (2010).
  • J. Nelson, X. Huang, J. Steinbrener, D. Shapiro, J. Kirz, S. Marchesini, A. M. Neiman, J. J. Turner, and C. Jacobsen, High-resolution x-ray diffraction microscopy of specifically labeled yeast cells, PNAS 107, 7235 (2010).
  • M. C. Newton, S. J. Leake, R. Harder, and I. K. Robinson, Three-dimensional imaging of strain in a single ZnO nanorod, Nat. Mater. 9, 120 (2010).
  • M. A. Pfeifer, G. J. Williams, I. A. Vartanyants, R. Harder, and I. K. Robinson, Three-dimensional mapping of a deformation field inside a nanocrystal, Nature 442, 63 (2006).
  • G. Xiaojin, X. Huang, S. Leake, M. C. Newton, R. Harder, and I. K. Robinson, Coherent x-ray diffraction imaging of ZnO nanostructures under confined illumination, New J. Phys. 13, 033006 (2011).
  • E. D. Isaacs, Microscopy: X-ray nanovision, Nature 442, 35 (2006).
  • W. Yang, X. Huang, R. Harder, J. N. Clark, I. K. Robinson, and H. K. Mao , Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure, Nat. Commun. 4, 1680 (2013).
  • J. Thieme, I. McNult, S. Vogt, and A. D. Paterson, X-ray spectromicroscopy α tool for environmental sciences, Environ. Sci. Technol. 41, 6885 (2007).
  • S. C. B. Myneni, J. T. Brown, G. A. Martinez, and W. Meyer-Ilse, Imaging of humic substance macromolecular structures in water and soils, Science 286, 1335 (1999).
  • C. H. Kuo, Y. T. Chu, Y. F. Song, and M. H. Huang, Cu2O nanocrystal-templated growth of Cu2S nanocages with encapsulated Au nanoparticles and in-situ transmission X-ray microscopy study, Adv. Funct. Mater. 21, 792 (2011).
  • G. K. Auernhammer, K. Fauth, B. Ullrich, J. Zhao, M. Weigand, and D. Vollmer, Time-resolved X-ray microscopy of nanoparticle aggregates under oscillatory shear, J. Synchrotron Radiat. 16, 307 (2009).
  • K. B. Burke, A. J. Staplenton, B. Vaughan, X. Zhou, A. L. D. Kilcoyne, W. J. Belcher, and P. C. Dastoor, Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10-nm length scales, Nanotechnology 22, 265710 (2011).
  • I. Robinson and R. Harder, Coherent X-ray diffraction imaging of strain at the nanoscale, Nat. Mater. 8, 291 (2009).
  • H. N. Chapman, X-ray imaging beyond the limits, Nat. Mater. 8, 299 (2009).
  • W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, Soft X-ray microscopy at a spatial resolution better than 15 nm, Nature 435, 1210 (2005).
  • M. Benk, K. Bergmann, A. Querejeta-Fernandez, S. Srivastava, N. A. Kotov, D. Schaefer, and T. Wilheim, Soft X-Ray microscopic investigation on self assembling nanocrystals, AIP Conf. Proc. 1365, 433 (2011).
  • H. Nilsson, T. Tyliszczak, R. Wilson, L. Werme, and D. Shuh, Soft X-ray scanning transmission X-ray microscopy (STXM) of actinide particles, Anal. Bioanal. Chem. 383, 41 (2005).
  • S. K. Brar and M. Verma, Measurement of nanoparticles by light-scattering techniques, TrAC, Trends Anal. Chem. 30, 4 (2011).
  • A. Bootz, V. Vogel, D. Schubert, and J. R. Kreuter, Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles, Eur. J. Pharm. Biopharm. 57, 369 (2004).
  • M. Hassellöv, J. Readman, J. Ranville, and K. Tiede, Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles, Ecotoxicology 17, 344 (2008).
  • R. Finsy, Particle sizing by quasi-elastic light scattering, Adv. Colloid Interface Sci. 52, 79 (1994).
  • A. Panáek, L. Krvítek, R. Prucek, M. Kolár R. Veerová, N. Pizúrová, K. Virender V. Sharma, T. Nevená, and R. Zboril, Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity, J. Phys. Chem. B 110, 16248 (2006).
  • L. Yu and A. Andriola, Quantitative gold nanoparticle analysis methods: A review, Talanta 82, 869 (2010).
  • A. Lapresta-Fernández, T. Doussineau, S. Dutz, F. Steiniger, A. J. Moro, and G. J. Mohr, Magnetic and fluorescent core-shell nanoparticles for ratiometric pH sensing, Nanotechnology 22, 415501 (2011).
  • A. Lapresta-Fernández, T. Doussineau, A. J. Moro, S. Dutz, F. Steiniger, and G. J. Mohr, Magnetic core-shell fluorescent ph ratiometric nanosensor using a Stöber coating method, Anal. Chim. Acta 707, 164 (2011).
  • A. Lapresta-Fernández, P. Cywinski, A. Moro, and G. Mohr, Fluorescent polyacrylamide nanoparticles for naproxen recognition, Anal. Bioanal. Chem. 395, 1821 (2009).
  • E. E. Urena-Benavides and C. L. Kitchens, Static light scattering of triaxial nanoparticle suspensions in the Rayleigh-Gans-Debye regime: application to cellulose nanocrystals, RSC Adv. 2, 1096 (2012).
  • E. Jung, H. R. Cho, K. Park, J. W. Yeon, and K. Song, Nanoparticle sizing by a laser-induced breakdown detection using an optical probe beam deflection, Appl. Phys. B Lasers O 97, 867 (2009).
  • C. Latkoczy, R. Kagi, M. Fierz, M. Ritzmann, D. Gunther, and M. Boller , Development of a mobile fast-screening laser-induced breakdown detection (LIBD) system for field-based measurements of nanometre sized particles in aqueous solutions, J. Environ. Monit. 12, 1422 (2010).
  • M. Mueller, I. B. Gornushkin, S. Florek, D. Mory, and U. Panne, Approach to Detection in Laser-Induced Breakdown Spectroscopy, Anal. Chem. 79, 4419 (2007).
  • V. S. Tiwari, T. Oleg, G. K. Darbha, W. Hardy, J. P. Singh, and P. C. Ray, Non-resonance SERS effects of silver colloids with different shapes, Chem. Phys. Lett. 446, 77 (2007).
  • Ming Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma, and N. Wu Shape-dependent surface-enhanced Raman scattering in gold−Raman-probe−silica sandwiched nanoparticles for biocompatible applications, Nanotechnology 23, 115501 (2012).
  • X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags, Nat. Biotech. 26, 83 (2008).
  • D. Tsoutsi, J. M. Montenegro, F. Dommershausen, U. Koert, L. M. Liz-Marzán, W. J. Parak, and R. A. Álvarez-Puebla, Quantitative surface-enhanced raman scattering ultradetection of atomic inorganic ions: the case of chloride, ACS Nano 5, 7539 (2011).
  • D. Jimenez de Aberasturi, J. M. Montenegro, I. Ruiz de Larramendi, T. Rojo, T. A. Klar, R. Álvarez-Puebla, L. M. Liz-Marzán, and W. J. Parak, Optical sensing of small ions with colloidal nanoparticles, Chem. Mater. 24, 738 (2012).
  • R. A. Álvarez-Puebla, A. Agarwal, P. Manna, B. P. Khanal, P. Aldeanueva-Potel, E. Carbó Argibay, N. Pazos-Pérez, L. Vigderman, E. R. Zubarev, N. A. Kotov, and L. M. Liz-Marzán, Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions, PNAS 108, 8157 (2011).
  • K. Nakamura, T. Kawabata, and Y. Mori, Size distribution analysis of colloidal gold by small angle X-ray scattering and light absorbance, Powder Technol. 131, 120 (2003).
  • H. Wellsted, E. Sitsen, A. Caragheorgheopol, and V. Chechik , Polydisperse composition of mixed monolayer-protected, spin-labeled Au nanoparticles, Anal. Chem 76, 2010 (2004).
  • S. Link and M. A. El-Sayed, Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals, Int. Rev. Phys. Chem. 19, 409 (2000).
  • C. Yu and J. Irudayaraj, Multiplex biosensor using gold nanorods, Anal. Chem. 79, 572 (2006).
  • M. Hu, J. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, Gold nanostructures: engineering their plasmonic properties for biomedical applications, Chem. Soc. Rev. 35, 1084 (2006).
  • I. Mannelli and M. P. Marco, Recent advances in analytical and bioanalysis applications of noble metal nanorods, Anal. Bioanal. Chem. 398, 2451 (2010).
  • M. T. Blom, E. Chmela, R. E. Oosterbroek, R. Tijssen, and A. van den Berg, On-chip hydrodynamic chromatography separation and detection of nanoparticles and biomolecules, Anal. Chem. 75, 6761 (2003).
  • G. T. Wei and F. K. Liu, Separation of nanometer gold particles by size exclusion chromatography, J. Chromatogr. A 836, 253 (1999).
  • S. Dubascoux, F. Von der Kammer, I. Le Hécho, M. P. Gautier, and G. Lespes, Optimisation of asymmetrical flow field flow fractionation for environmental nanoparticles separation, J. Chromatogr. A 1206, 160 (2008).
  • J. Polte, R. Erler, A. F. Thüenemann, S. Sokolov, T. T. Ahner, K. Rademann, F. Emmerling, and R. Kraehnert, Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution, ACS Nano 4, 1076 (2010).
  • M. V. Gomez, J. Guerra, V. S. Myers, R. M. Crooks, and A. H. Velders, Nanoparticle size determination by 1H NMR spectroscopy, J. Amer. Chem. Soc. 131, 14634 (2009).
  • L. R. A. Follens, A. Aerts, M. Haouas, T. P. Caremans, B. Loppinet, B. Goderis, J. Vermant, F. Taulelle, J. A. Martens, and C. E. A. Kirschhock, Characterization of nanoparticles in diluted clear solutions for Silicalite-1 zeolite synthesis using liquid 29Si NMR, SAXS and DLS, Phys. Chem. Chem. Phys. 10, 5574 (2008).
  • J. Moller, M. Cebi, M. A. Schroer, M. Paulus, P. Degen, C. J. Sahle, D. C. F. Wieland, S. Leick, A. Nyrow, H. Rehage, and M. Tolan, Dissolution of iron oxide nanoparticles inside polymer nanocapsules, Phys. Chem. Chem. Phys. 13, 20354 (2011).
  • G. Gleber, L. Cibik, S. Haas, A. Hoell, P. Müller, and M. Krumrey , Traceable size determination of PMMA nanoparticles based on small angle X-ray scattering (SAXS), J. Phys. Conf. Ser. 247, 012027 (2010).
  • M. Krumrey, G. Gleber, F. Scholze, and J. Wernecke, Synchrotron radiation-based x-ray reflection and scattering techniques for dimensional nanometrology, Measure. Sci. Technol. 22, 094032 (2011).
  • Y. Mori, M. Furukawa, T. Hayashi, and K. Nakamura, Size distribution of gold nanoparticles used by small angle X-ray scattering, Part. Sci. Technol. 24, 97 (2006).
  • K. Hino, R. Shingai, T. Morita, K. Toku, T. Hirano, H. Yoshikawa, H. Nakano, and N. Nishi, Size distribution of gold nanoparticles covered with thiol-terminated cyanobiphenyl-type liquid crystal molecules studied with small-angle X-ray scattering and TEM, Chem. Phys. Lett. 460, 173 (2008).
  • R. Bienert, F. Emmerling, and A. Thünemann, The size distribution of ‘gold standard’ nanoparticles, Anal. Bioanal. Chem. 395, 1651 (2009).
  • K. L. Krycka, R. A. Booth, C. R. Hogg, Y. Ijiri, J. A. Borchers, W. C. Chen, S. M. Watson, M. Laver, T. R. Gentile, L. R. Dedon, S. Harris, J. J. Rhyne, and S. A. Majetich, Core-shell magnetic morphology of structurally uniform magnetite nanoparticles, Phys. Rev. Lett. 104, 207203 (2010).
  • G. Von White and C. L. Kitchens, Small-angle neutron scattering of silver nanoparticles in gas-expanded hexane, J. Phys. Chem. C 114, 16285 (2010).
  • S. H. Wang, Y. S. Sun, A. S.-T. Chiang, H. F. Hung, M. C. Chen, and K. Wood, Carboxylic acid-directed clustering and dispersion of ZrO2 nanoparticles in organic solvents: a study by small-angle X-ray/neutron scattering and NMR, J. Phys. Chem. C 115, 11941 (2011).
  • H. G. Barth and B. E. Boyes, Size exclusion chromatography, Anal. Chem. 64, 428R (1992).
  • H. Weinberg, A. Galyean, and M. Leopold, Evaluating engineered nanoparticles in natural waters, TrAC, Trends Anal. Chem. 30, 72 (2011).
  • F. K. Liu, SEC characterization of au nanoparticles prepared through seed-assisted synthesis, Chromatographia 66, 791 (2007).
  • F. K. Liu and G. T. Wei, Effect of mobile-phase additives on separation of gold nanoparticles by size-exclusion chromatography, Chromatographia 59, 115 (2004).
  • B. Porsch, A. Welinder, A. K÷rner, and B. Wittgren, Distribution analysis of ultra-high molecular mass poly(ethylene oxide) containing silica particles by size-exclusion chromatography with dual light-scattering and refractometric detection, J. Chromatogr. A 1068, 249 (2005).
  • A. M. Al-Somali, K. M. Krueger, J. C. Falkner, and V. L. Colvin, Recycling size exclusion chromatography for the analysis and separation of nanocrystalline gold, Anal. Chem. 76, 5903 (2004).
  • G. T. Wei, F. K. Liu, and C. R. C. Wang, Shape separation of nanometer gold particles by size-exclusion chromatography, Anal. Chem. 71, 2085 (1999).
  • H. Small and M. A. Langhorst, Hydrodynamic chromatography, Anal. Chem. 54, 892A (1982).
  • A. Williams, E. Varela, E. Meehan, and K. Tribe, Characterisation of nanoparticulate systems by hydrodynamic chromatography, Int. J. Pharm. 242, 295 (2002).
  • J. F. Liu, S. J. Yu, Y. G. Yin, and J. B. Chao, Methods for separation, identification, characterization and quantification of silver nanoparticles, TrAC, Trends Anal. Chem. 33, 95 (2012).
  • G. R. McGowan and M. A. Langhorst, Development and application of an integrated, high-speed, computerized hydrodynamic chromatograph, J. Colloid Interface Sci. 89, 94 (1982).
  • B. A. Yegin and A. Lamprecht, Lipid nanocapsule size analysis by hydrodynamic chromatography and photon correlation spectroscopy, Int. J. Pharm. 320, 165 (2006).
  • E. Chmela, R. Tijssen, M. T. Blom, H. J. G. E. Gardeniers, and A. van den Berg, A chip system for size separation of macromolecules and particles by hydrodynamic chromatography, Anal. Chem. 74, 3470 (2002).
  • K. Tiede, A. B. A. Boxall, D. Tiede, S. P. Tear, H. David, and J. Lewis, A robust size-characterisation methodology for studying nanoparticle behaviour in ‘real’ environmental samples, using hydrodynamic chromatography coupled to ICP-MS, J. Anal. Atom. Spectrom. 24, 964 (2009).
  • F. K. Liu and Y. C. Chang, Using reversed-phase liquid chromatography to monitor the sizes of Au/Pt core/shell nanoparticles, J. Chromatogr. A 1217, 1647 (2010).
  • Y. Song, M. L. Heien, V. Jimenez, R. M. Wightman, and R. W. Murray, Voltammetric detection of metal nanoparticles separated by liquid chromatography, Anal. Chem. 76, 4911 (2004).
  • U. Pyell, Characterization of nanoparticles by capillary electromigration separation techniques, Electrophoresis 31, 814 (2010).
  • A. I. López-Lorente, B. M. Simonet, and M. Valcárcel, Electrophoretic methods for the analysis of nanoparticles, TrAC, Trends Anal. Chem. 30, 58 (2011).
  • C. K. Lo, M. C. Paau, D. Xiao, and M. M. F. Choi, Application of capillary zone electrophoresis for separation of water-soluble gold monolayer-protected clusters, Eletrophoresis 29, 2330 (2008).
  • K. H. Lin, T. C. Chu, and F. K. Liu, On-line enhancement and separation of nanoparticles using capillary electrophoresis, J. Chromatogr. A 1161, 314 (2007).
  • A. Helfrich, W. Bruchert, and J. Bettmer, Size characterisation of Au nanoparticles by ICP-MS coupling techniques, J. Anal. Atom. Spectrom. 21, 431 (2006).
  • N. Surugau and P. Urban, Electrophoretic methods for separation of nanoparticles, J Sep. Sci. 32, 1889 (2009).
  • F. K. Liu, Analysis and applications of nanoparticles in the separation sciences: A case of gold nanoparticles, J. Chromatogr. A 1216, 9034 (2009).
  • J. Buffle and G. G. Leppard, Characterization of aquatic colloids and macromolecules. 2. Key role of physical structures on analytical results, Environ. Sci. Technol. 29, 2176 (1995).
  • J. C. Giddings, Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials, Science 260, 1456 (1993).
  • P. Reschiglian, A. Zattoni, B. Roda, E. Michelini, and A. Roda, Field-flow fractionation and biotechnology, Trends Biotechnol. 23, 475 (2005).
  • F. A. Messaud, R. D. Sanderson, J. R. Runyon, T. Otte, H. Pasch, and S. K. R. Williams, An overview on field-flow fractionation techniques and their applications in the separation and characterization of polymers, Progr. Polymer Sci. 34, 351 (2009).
  • M. Hassellöv, F. V. der Kammer, and R. Beckett, Characterisation of Aquatic Colloids and Macromolecules by Field-Flow Fractionation, John Wiley & Sons, Ltd, Chichester, UK (2006).
  • P. J. Wyatt, Submicrometer particle sizing by multiangle light scattering following fractionation, J. Colloid Interface Sci. 197, 9 (1998).
  • F. Kammer, M. Baborowski, and K. Friese, Field-flow fractionation coupled to multi-angle laser light scattering detectors: Applicability and analytical benefits for the analysis of environmental colloids, Anal. Chim. Acta 552, 166 (2005).
  • M. Baalousha, F. V. D. Kammer, M. Motelica-Heino, and P. Le Coustumer , Natural sample fractionation by FlFFF-MALLS-TEM: Sample stabilization, preparation, pre-concentration and fractionation, J. Chromatogr. A 1093, 156 (2005).
  • W. Sermsri, P. Jarujamrus, J. Shiowatana, and A. Siripinyanond, Flow field-flow fractionation: a versatile approach for size characterization of α-tocopherol-induced enlargement of gold nanoparticles, Anal. Bioanal. Chem. 396, 3079 (2010).
  • H. E. Pace, E. K. Lesher, and J. F. Ranville, Influence of stability on the acute toxicity of CdSe/ZnS nanocrystals to Daphnia magna, Environ. Toxicol. Chem. 29, 1338 (2010).
  • S. K. R. Williams, and K. D. Caldwell, Field-Flow Fractionation in Biopolymer Analysis, Springer, Vienna (2012).
  • M. H. Moon, D. Kang, J. Jung, and J. Kim, Separation of carbon nanotubes by frit inlet asymmetrical flow field-flow fractionation, J. Sep. Sci. 27, 710 (2004).
  • M. Bouby, H. Geckeis, and F. W. Geyer, Application of asymmetric flow field-flow fractionation (AsFlFFF) coupled to inductively coupled plasma mass spectrometry (ICPMS) to the quantitative characterization of natural colloids and synthetic nanoparticles, Anal. Bioanal. Chem. 392, 1447 (2008).
  • S. J. Klaine, P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin, and J. R. Lead, Nanomaterials in the environment: Behavior, fate, bioavailability, and effects, Environ. Toxicol. Chem. 27, 1825 (2008).
  • W. Machtle and L. Borger, Analytical Ultracentrifugation of Polymers and Nanoparticles, Springer, Berlin (2006).
  • H. Colfen, Analysis of nanoparticles <10 nm by analytical ultracentrifugation, in Particle Sizing and Characterization, Provder, T. and Texter, J. Eds., American Chemical Society, Washington, USA, 119 (2004).
  • J. R. Lead and K. J. Wilkinson, Aquatic colloids and nanoparticles: current knowledge and future trends, Environ. Chem. 3, 159 (2006).
  • L. J. Gimbert, P. M. Haygarth, R. Beckett, and P. J. Worsfold, Comparison of centrifugation and filtration techniques for the size fractionation of colloidal material in soil suspensions using sedimentation field-flow fractionation, Environ. Sci. Technol. 39, 1731 (2005).
  • M. A. Morrison and G. Benoit, Filtration artifacts caused by overloading membrane filters, Environ. Sci. Technol. 35, 3774 (2001).
  • R. Liu and J. R. Lead, Partial validation of cross flow ultrafiltration by atomic force microscopy, Anal. Chem. 78, 8105 (2006).
  • N. M. Franklin, N. J. Rogers, S. C. Apte, G. E. Batley, G. E. Gadd, and P. S. Casey, Comparative toxicity of nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a freshwater microalga (pseudokirchneriella subcapitata): The importance of particle solubility, Environ. Sci. Technol. 41, 8484 (2007).
  • S. G. Lu, Y. W. Zheng, and S. Q. Bai, A HRTEM/EDX approach to identification of the source of dust particles on urban tree leaves, Atmos. Environ. 42, 6431 (2008).
  • X. Teng and H. Yang, Synthesis of face-centered tetragonal fept nanoparticles and granular films from Pt@Fe2O3 core-shell nanoparticles, J. Amer. Chem. Soc. 125, 14559 (2003).
  • Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, J. Biomed. Mater. Res. 52, 662 (2000).
  • J. Yang, J. Yang, and J. Y. Ying, Morphology and lateral strain control of pt nanoparticles via core-shell construction using alloy AgPd core toward oxygen reduction reaction, ACS Nano 6, 9373 (2012).
  • S. D. Haveli, P. Walter, G. Patriarche, J. Ayache, J. Castaing, E. Van Elslande, G. Tsoucaris, P. A. Wang, and H. B. Kagan, Hair fiber as a nanoreactor in controlled synthesis of fluorescent gold nanoparticles, Nano Lett. 12, 6212 (2012).
  • Y. F. He, J. T. Feng, Y. Y. Du, and D. Q. Li, Controllable synthesis and acetylene hydrogenation performance of supported Pd nanowire and cuboctahedron catalysts, ACS Catal. 2, 1703 (2012).
  • C. E. Lyman, D. B. Williams, and J. I. Goldstein, X-ray detectors and spectrometers, Ultramicroscopy 28, 137 (1989).
  • M. Tanaka, M. Takeguchi, and K. Furuya, Wavelength dispersive X-ray spectroscopy of thick and thin samples for electron microscopes, Surf. Interface Anal. 40, 1684 (2008).
  • K. A. Bogle, V. Anbusathaiah, M. Arredondo, J. Y. Lin, Y. H. Chu, C. O´Neil, J. M. Gregg, M. R. Castell, and V. Nagarajan, Synthesis of epitaxial metal oxide nanocrystals via a phase separation approach, ACS Nano 4, 5139 (2010).
  • J. Yin, S. Shan, L. Yang, D. Mott, O. Malis, V. Petkov, F. Cai, M. Shan Ng, J. Luo, B. H. Chen, M. Engelhard, and C. J. Zhong, Gold−copper nanoparticles: nanostructural evolution and bifunctional catalytic sites, Chem. Mater. 24, 4662 (2012).
  • G. Corthey, L. J. Giovanetti, J. ü. M. Ramallo-López, E. Zelaya, A. A. Rubert, G. A. Benitez, F. G. Requejo, M. H. Fonticelli, and R. C. Salvarezza, Synthesis and characterization of Gold@Gold(I)−thiomalate core@Shell nanoparticles, ACS Nano 4, 3413 (2010).
  • T. Senoy, S. K. Nair, E. M. A. Jamal, S. H. Al-Harthi, M. R. Varma, and R. Anantharaman, Size-dependent surface plasmon resonance in silver silica nanocomposites, Nanotechnology 19(7), 075710 (2008).
  • D. Yu and V. W.-W. Yam, Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction, J. Phys. Chem. B 109, 5497 (2005).
  • B. D. Yuhas, S. E. Habas, S. C. Fakra, and T. Mokari, Probing compositional variation within hybrid nanostructures, ACS Nano 3, 3369 (2009).
  • S. T. Christensen, H. Feng, J. L. Libera, N. Guo, J. T. Miller, P. C. Stair, and J. W. Elam, Supported Ru−Pt bimetallic nanoparticle catalysts prepared by atomic layer deposition, Nano Lett. 10, 3047 (2010).
  • J. I. Hong, J. Choi, S. S. Jang, J. Gu, Y. Chang, G. Wortman, R. L. Snyder, and Z. L. Wang, Magnetism in dopant-free ZnO nanoplates, Nano Lett. 12, 576 (2012).
  • L. M. Moreau, D. H. Ha, C. R. Bealing, H. Zhang, R. G. Hennig, and R. D. Robinson, Unintended phosphorus doping of nickel nanoparticles during synthesis with TOP: A discovery through structural analysis, Nano Lett. 12, 4530 (2012).
  • J. R. I. Lee, H. D. Whitley, R. W. Meulenberg, A. Wolcott, J. Z. Zhang, D. Prendergast, D. D. Lovingood, G. F. Strouse, T. Ogitsu, E. Schwegler, L. J. Terminello, and T. van Buuren, Ligand-mediated modification of the electronic structure of CdSe quantum dots, Nano Lett. 12, 2763 (2012).
  • H. Ade and H. Stoll, Near-edge X-ray absorption fine-structure microscopy of organic and magnetic materials, Nat. Mater. 8, 281 (2009).
  • A. F. Rodríguez, A. Kleibert, J. Bransmann, and F. NBolting, F., Probing single magnetic nanoparticles by polarization-dependent soft x-ray absorption spectromicroscopy, J. Phys. D Appl. Phys. 43, 474006 (2010).
  • P. A. Midgley amd R. E. Dunin-Borkowski, Electron tomography and holography in materials science, Nat. Mater. 8, 271 (2009).
  • C. Wang, D. R. Baer, J. E. Amonette, M. H. Engelhard, J. Antony, and Y. Qiang, Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles, J. Amer. Chem. Soc. 131, 8824 (2009).
  • D. Rossouw, G. A. Botton, E. Najafi, V. Lee, and A. P. Hitchcock, Metallic and semiconducting single-walled carbon nanotubes: differentiating individual SWCNTs by their carbon 1s spectra, ACS Nano 6, 10965 (2012).
  • A. Khursheed and T. Luo, Transmission EELS attachment for SEM. Physical and Failure Analysis of Integrated Circuits, 2005. IPFA 2005. Proceedings of the 12th International Symposium on the Physical and Failure Analysis of Integrated Circuits, pp. 298–301.
  • N. Mirsaleh-Kohan, V. Iberi, P. D. Simmons, N. W. Bigelow, A. Vaschillo, M. M. Rowland, M. D. Best, S. J. Pennycook, D. J. Masiello, B. S. Guiton, and J. P. Camden, Single-molecule surface-enhanced raman scattering: Can STEM/EELS image electromagnetic hot spots?, J. Phys. Chem. Lett. 3, 2303 (2012).
  • S. Utsunomiya and R. C. Ewing, Application of high-angle annular dark field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive X-ray spectrometry, and energy-filtered transmission electron microscopy to the characterization of nanoparticles in the environment, Environ. Sci. Technol. 37, 786 (2003).
  • G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan, S. Zhao, S. Lin, Y. Feng, L. Zhou, and Y. Qin, Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition, ACS Nano 6, 11009 (2012).
  • B. Gilbert, S. C. Fakra, T. Xia, S. Pokhrel, L. Mädler, and A. E. Nel, The fate of ZnO nanoparticles administered to human bronchial epithelial cells, ACS Nano 6, 4921 (2012).
  • J. T. Nurmi, P. G. Tratnyek, V. Sarathy, D. R. Baer, J. E. Amonette, K. Pecher, C. Wang, J. C. Linehan, D. W. Matson, R. L. Penn, and M. D. Driessen, Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics, Environ. Sci. Technol. 39, 1221 (2004).
  • A. Felten, C. Bittencourt, J. J. Pireaux, M. Reichelt, J. Mayer, D. Hernandez-Cruz,and A. P. Hitchcock, Individual multiwall carbon nanotubes spectroscopy by scanning transmission X-ray microscopy, Nano Lett. 7, 2435 (2007).
  • N. T. Panagiotopoulos, E. K. Diamanti, L. E. Koutsokeras, M. Baikousi, E. Kordatos, T. E. Matikas, D. Gournis, and P. Patsalas, Nanocomposite catalysts producing durable, super-black carbon nanotube systems: applications in solar thermal harvesting, ACS Nano 6, 10475 (2012).
  • E. Coronado, A. Forment-Aliaga, E. Pinilla-Cienfuegos, S. Tatay, L. Catala, and J. A. Plaza, Nanopatterning of anionic nanoparticles based on magnetic Prussian-blue analogues, Adv. Funct. Mater. 22, 3625 (2012).
  • J. Liu, G. G. Hembree, G. E. Spinnler, and J. A. Venables, High resolution Auger electron spectroscopy and microscopy of a supported metal catalyst, Surf. Sci. 262, L111–L117 (1992).
  • S. J. Cho, A. M. Shahin, G. J. Long, J. E. Davies, K. Liu, F. Grandjean, and S. M. Kauzlarich, Magnetic and Mössbauer spectral study of core/shell structured Fe/Au nanoparticles, Chem. Mater. 18, 960 (2006).
  • V. Yathindranath, L. Rebbouh, D. F. Moore, D. W. Miller, J. van Lierop, and T. Hegmann, A versatile method for the reductive, one-pot synthesis of bare, hydrophilic and hydrophobic magnetite nanoparticles, Adv. Funct. Mater. 21, 1457 (2011).
  • Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita, and O. Custance, Chemical identification of individual surface atoms by atomic force microscopy, Nature 446, 64 (2007).
  • A. Shluger and T. Trevethan, Microscopy: Atomic fingerprinting, Nature 446, 34 (2007).
  • A. Noy, C. D. Frisbie, L. F. Rozsnyai, M. S. Wrighton, and C. M. Lieber, Chemical force microscopy: exploiting chemically-modified tips to quantify adhesion, friction, and functional group distributions in molecular assemblies, J. Amer. Chem. Soc. 117, 7943 (1995).
  • S. N. Schiffres, K. H. Kim, L. Hu, A. J. H. McGaughey, M. F. Islam, and J. A. Malen, Gas diffusion, energy transport, and thermal accommodation in single-walled carbon nanotube aerogels, Adv. Funct. Mater. 22, 5251 (2012).
  • M. A. Maurer-Jones, Y. S. Lin, and C. L. Haynes, Functional assessment of metal oxide nanoparticle toxicity in immune cells, ACS Nano 4, 3363 (2010).
  • S. George, S. Pokhrel, T. Xia, B. Gilbert, Z. Ji, M. Schowalter, A. Rosenauer, R. Damoiseaux, K. A. Bradley, L. Ma¦êdler, and A. ü. E. Nel, Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping, ACS Nano 4, 15 (2009).
  • P. K. Diwakar, K. H. Loper, A. M. Matiaske, and D. Hahn, Laser-induced breakdown spectroscopy for analysis of micro and nanoparticles, J. Anal. Atom. Spectrom. 27, 1110 (2012).
  • T. Bundschuh, T. U. Wagner, and R. Köster, Laser-induced breakdown detection (LIBD) for the highly sensitive quantification of aquatic colloids. Part I: Principle of LIBD and mathematical model, Part. Part. Syst. Charact. 22, 172 (2005).
  • T. Bundschuh, T. U. Wagner, and R. Köster, Laser-induced breakdown detection (LIBD) for the highly sensitive quantification of aquatic colloids. Part II: Experimental setup of LIBD and applications, Part. Part. Syst. Charact. 22, 181 (2005).
  • T. Bundschuh, R. Knopp, and J. I. Kim, Laser-induced breakdown detection (LIBD) of aquatic colloids with different laser systems, Colloids Surf. A 177, 47 (2001).
  • S. J. Choi and J. J. Yoh, Effective laser-induced breakdown spectroscopy (LIBS) detection using double pulse at optimum configuration, Appl Spectrosc. 65, 952 (2011).
  • A. Lapresta-Fernández, A. Fernández, and J. Blasco, Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms, TrAC, Trends Anal. Chem. 32, 40 (2012).
  • A. Sahu, M. S. Kang, A. Kompch, C. Notthoff, A. W. Wills, D. Deng, M. Winterer, C. D. Frisbie, and D. J. Norris, Electronic impurity doping in CdSe nanocrystals, Nano Lett. 12, 2587 (2012).
  • M. A. Voinov, J. O. S. Pagán, E. Morrison, T. I. Smirnova, and A. I. Smirnov, Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity, J. Amer. Chem. Soc. 133, 35 (2011).
  • W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, Determination of size and concentration of gold nanoparticles from UV−Vis spectra, Anal. Chem. 79, 4215 (2007).
  • P. Mulvaney, Surface plasmon spectroscopy of nanosized metal particles, Langmuir 12, 788 (1996).
  • K. G. Thomas, S. Barazzouk, B. I. Ipe, S. T. S. Joseph, and P. V. Kamat, Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods, J. Phys. Chem. B 108, 13066 (2004).
  • S. Diegoli, A. L. Manciulea, S. Begum, I. P. Jones, J. R. Lead, and J. A. Preece, Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules, Sci. Total Environ. 402, 51 (2008).
  • A. Neely, C. Perry, B. Varisli, A. K. Singh, T. Arbneshi, D. Senapati, J. R. Kalluri, and P. C. Ray, Ultrasensitive and highly selective detection of alzheimers disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle, ACS Nano 3, 2834 (2009).
  • A. D. McFarland and R. P. Van Duyne, Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity, Nano Lett. 3, 1057 (2003).
  • S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, Gold nanocages: synthesis, properties, and applications, Acc. Chem. Res. 41, 1587 (2008).
  • C. M. Cobley and Y. Xia, Engineering the properties of metal nanostructures via galvanic replacement reactions, Mater. Sci. Eng. R 70, 44 (2010).
  • A. Khan, Preparation and characterization of magnetic nanoparticles embedded in microgels, Mater. Lett. 62, 898 (2007).
  • S. L. Tie, H. C. Lee, Y. S. Bae, M. B. Kim, K. Lee, and C. H. Lee, Monodisperse Fe3O4/Fe@SiO2 core/shell nanoparticles with enhanced magnetic property, Colloids Surf. A 293, 278 (2007).
  • C. N. Lok, C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. Tam, J. F. Chiu, and C. M. Che, Silver nanoparticles: partial oxidation and antibacterial activities, J. Biol. Inorg. Chem. 12, 527 (2007).
  • A. Matschulat, D. Drescher, and J. Kneipp, Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems, ACS Nano 4, 3259 (2010).
  • D. Zhang, O. Neumann, H. Wang, V. M. Yuwono, A. Barhoumi, M. Perham, J. D. Hartgerink, P. Wittung-Stafshede, and N. J. Halas, Gold Nanoparticles can induce the formation of protein-based aggregates at physiological pH, Nano Lett. 9, 666 (2009).
  • S. M. Ansar, R. Haputhanthri, B. Edmonds, D. Liu, L. Yu, A. Sygula, and D. Zhang, Determination of the binding affinity, packing, and conformation of thiolate and thione ligands on gold nanoparticles, J. Phys. Chem. C 115, 653 (2011).
  • R. Contreras-Cáceres, I. Pastoriza-Santos, R. Álvarez-Puebla, J. Pérez-Juste, A. Fernández-Barbero, and L. M. Liz-Marzán, Growing Au/Ag nanoparticles within microgel colloids for improved surface-enhanced Raman scattering detection, Chem. Eur. J. 16, 9462 (2010).
  • J. Perez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzan, Multifunctionality in metal@microgel colloidal nanocomposites, J. Mater. Chem. A 1, 20 (2013).
  • R. Jin, H. Qian, Z. Wu, Y. Zhu, M. Zhu, A. Mohanty, and N. Garg, Size focusing: a methodology for synthesizing atomically precise gold nanoclusters, J. Phys. Chem. Lett. 1, 2903 (2010).
  • C. A. Fields-Zinna, J. F. Parker, and R. W. Murray, Mass spectrometry of ligand exchange chelation of the nanoparticle [Au25(SCH2CH2C6H5)18]1 by CH3C6H3(SH)2, J. Amer. Chem. Soc. 132, 17193 (2010).
  • J. K. Navin, M. E. Grass, G. A. Somorjai, and A. L. Marsh, Characterization of colloidal platinum nanoparticles by MALDI-TOF mass spectrometry, Anal. Chem. 81, 6295 (2009).
  • A. Dass, A. Stevenson, G. R. Dubay, J. B. Tracy, and R. W. Murray, Nanoparticle MALDI-TOF mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)18-x(L)(x), J. Amer. Chem. Soc. 130, 5940 (2008).
  • W.-P. Peng, Y. Cai, Y. T. Lee, H.-C. Chang, Laser-induced fluorescence/ion trap as a detector for mass spectrometric analysis of nanoparticles, Int. J. Mass Spectrom. 229, 67 (2003).
  • C. M. Snively and J. Lauterbach, Sampling accessories for the high-throughput analysis of combinatorial libraries using spectral imaging, Spectroscopy 17, 26 (2002).
  • A. A. Ammann, Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool, J. Mass Spectrom. 42, 419 (2007).
  • A. R. Montoro Bustos, J. R. Encinar, M. T. Fernandez-Arguelles, J. M. Costa-Fernandez, and A. Sanz-Medel, Elemental mass spectrometry: a powerful tool for an accurate characterisation at elemental level of quantum dots, Chem. Commun. 3107 (2009).
  • L. Trapiella-Alfonso, A. R. Montoro Bustos, J. R. Encinar, J. M. Costa-Fernandez, R. Pereiro, and A. Sanz-Medel, New integrated elemental and molecular strategies as a diagnostic tool for the quality of water soluble quantum dots and their bioconjugates, Nanoscale 3, 954 (2011).
  • P. M. Shiundu, S. M. Munguti, and S. K. Ratanathanawongs Williams , Retention behavior of metal particle dispersions in aqueous and nonaqueous carriers in thermal field-flow fractionation, J. Chromatogr. A 983, 163 (2003).
  • A. Al-Ammar, A. Siripinyanond, and M. Barnes, Simultaneous sample preconcentration and matrix removal using field-flow fractionation coupled to inductively coupled plasma mass spectrometry, Spectrochim. Acta, Part B 56, 1951 (2001).
  • B. P. Jackson, J. F. Ranville, P. M. Bertsch, and A. G. Sowder, Characterization of colloidal and humic-bound Ni and U in the dissolved fraction of contaminated sediment extracts, Environ. Sci. Technol. 39, 2478 (2005).
  • M. Hassellöv, B. Lyvén, C. Haraldsson, and W. Sirinawin, Determination of continuous size and trace element distribution of colloidal material in natural water by on-line coupling of flow field-flow fractionation with ICPMS, Anal. Chem. 71, 3497 (1999).
  • M. Baalousha, V. D. Kammer, M. Motelica-Heino, M. Baborowski, C. Hofmeister, and P. Le Coustumer, Size-based speciation of natural colloidal particles by flow field flow fractionation, inductively coupled plasma-mass spectroscopy, and transmission electron microscopy/X-ray energy dispersive spectroscopy. Colloids-trace element interaction, Environ. Sci. Technol. 40, 2156 (2006).
  • J. C. Trefry, J. L. Monahan, K. M. Weaver, A. J. Meyerhoefer, M. M. Markopolous, Z. S. Arnold, D. P. Wooley, and I. E. Pavel, Size selection and concentration of silver nanoparticles by tangential flow ultrafiltration for SERS-based biosensors, J. Amer. Chem. Soc. 132, 10970 (2010).
  • A. Lapresta-Fernández, A. Fernández, and J. Blasco, Public concern over ecotoxicology risks from nanomaterials: Pressing need for research-based information, Environ. Int. 39, 148 (2012).
  • European Commission, Scientific Committee on Emerging and Newly-Identified Health Risks (SCENIHR). The appropriateness of the risk assessment methodology in accordance with the Technical Guidance Documents for new and existing substances for assessing the risks of nanomaterials. Part Fibre Toxicol. Brussels, Belgium., European Commission, June 21-22, 2007.
  • B. F. D. Silva, S. Pérez, P. Gardinalli, R. K. Singhal, A. A. Mozeto, and D. Barceló, Analytical chemistry of metallic nanoparticles in natural environments, TrAC, Trends Anal. Chem. 30, 528 (2011).
  • F. Nan, C. Song, J. Zhang, R. Hui, J. Chen, C. Fairbridge, and G. A. Botton, STEM HAADF tomography of molybdenum disulfide with mesoporous structure, ChemCatChem, 3, 999 (2011).
  • K. Win and S. S. Feng, Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs, Biomaterials 26, 2713 (2005).
  • H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, Shape- and size-dependent refractive index sensitivity of gold nanoparticles, Langmuir 24, 5233 (2008).
  • S. A. Corr, Y. P. Rakovich, and Y. K. Gun’ko, Multifunctional magnetic-fluorescent nanocomposites for biomedical applications, Nanoscale Res. Lett. 3, 87 (2008).
  • C. M. Cobley and Y. Xia, Engineering the properties of metal nanostructures via galvanic replacement reactions, Mater. Sci. Eng. R 70, 44 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.