2,370
Views
111
CrossRef citations to date
0
Altmetric
Reviews

An updated overview of diamond-like carbon coating in tribology

, , , &

REFERENCES

  • R. K. Roy, S. F. Ahmed, J. W. Yi, M. W. Moon, K. R. Lee, and Y. Jun, Improvement of adhesion of DLC coating on nitinol substrate by hybrid ion beam deposition technique, Vacuum 83, 1179–1183 (2009).
  • R. Hauert, An overview on the tribological behavior of diamond-like carbon in technical and medical applications. Tribol. Int. 237, 991–1003 (2004).
  • M. Kalin, I. Velkavrh, J. Vižintin, and L. Ožbolt, Review of boundary lubrication mechanisms of DLC coatings used in mechanical applications, Meccanica 43, 623–637 (2008).
  • R. Cruz, J. Rao, T. Rose, K. Lawson, and J.R. Nicholls, DLC–ceramic multilayers for automotive applications, Diamond Relat. Mater. 15, 2055–2060 (2006).
  • S. V. Johnston and S. V. Hainsworth, Effect of DLC coatings on wear in automotive applications, Suf. Eng. 21, 67–71 (2005).
  • A. Vanhulsel, F. Velasco, R. Jacobs, L. Eersels, D. Havermans, E. W. Roberts, I. Sherrington, M. J. Anderson, and L. Gaillard, DLC solid lubricant coatings on ball bearings for space applications, Tribol. Int. 40, 1186–1194 (2007).
  • R. Snidle and H. Evans, Some aspects of gear tribology, Proc. of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 223, 103–141 (2009).
  • M. Kalin and J. Vižintin, The tribological performance of DLC-coated gears lubricated with biodegradable oil in various pinion/gear material combinations, Wear 259, 1270–1280 (2005).
  • D.-H. Cho and Y.-Z. Lee, Evaluation of ring surfaces with several coatings for friction, wear and scuffing life, Trans. Nonferr. Met. Soc. China 19, 992–996 (2009).
  • S. C. Tung and H. Gao, Tribological characteristics and surface interaction between piston ring coatings and a blend of energy-conserving oils and ethanol fuels, Wear 255, 1276–1285 (2003).
  • B. Podgornik and J. Jerina, Surface topography effect on galling resistance of coated and uncoated tool steel, Surf. Coatings Technol. 206, 2792–2800 (2012).
  • M. Kalin, E. Roman, L. Ožbolt, and J. Vižintin, Metal-Doped (Ti, Wc) diamond-like-carbon coatings: reactions with extreme-pressure oil additives under tribological and static conditions, Thin Solid Films 518, 4336–4344 (2010).
  • B. Kržan, F. Novotny-Farkas, and J. Vižintin, Tribological behavior of tungsten-doped DLC coating under oil lubrication, Tribol. Int. 42, 229–235 (2009).
  • K. K. Mistry, A. Morina, and A. Neville, A tribochemical evaluation of a WC–DLC coating in Ep lubrication conditions, Wear 271, 1739–1744 (2011).
  • M. Keunecke, K. Bewilogua, J. Becker, A. Gies, and M. Grischke, CrC/a-C:H coatings for highly loaded, low friction applications under formulated oil lubrication, Surf. Coatings Technol. 207, 270–278 (2012).
  • S. Equey, S. Roos, U. Mueller, R. Hauert, N. D. Spencer, and R. Crockett, Tribofilm formation from Zndtp on diamond-like carbon, Wear 264, 316–321 (2008).
  • B. Podgornik, S. Jacobson, and S. Hogmark, DLC coating of boundary lubricated components—advantages of coating one of the contact surfaces rather than both or none, Tribol. Int. 36, 843–849 (2003).
  • C. A. Love, R. B. Cook, T. J. Harvey, P. A. Dearnley, and R. J. K. Wood, Diamond like carbon coatings for potential application in biological implants—a review. Tribol. Int. 63, 141–150 (2013).
  • H. Ronkainen and K. Holmberg, Environmental and thermal effects on the tribological performance of DLC coatings. In Tribology of Diamond-Like Carbon Films, C. Donnet and A. Erdemir, Eds., Springer, pp. 155–200 (2008).
  • K. Miyoshi, R. L. Wu, and A. Garscadden, Friction and wear of diamond and diamondlike carbon coatings, Surf. Coatings Technol. 54, 428–434 (1992).
  • K. Oguri and T. Arai, Two different low friction mechanisms of diamond-like carbon with silicon coatings formed by plasma-assisted chemical vapor deposition, J. Mater. Res. 7, 1313–1316 (1992).
  • J. Koskinen, J. P. Hirvonen, S. P. Hannula, K. Pischow, H. Kattelus, and I. Suni, Nanolayered gradient structures as an intermediate layer for diamond coatings, Diamond Relat. Mater. 3, 1107–1111 (1994).
  • H. Ronkainen, J. Koskinen, J. Likonen, S. Varjus, and J. Vihersalo, Characterization of wear surfaces in dry sliding of steel and alumina on hydrogenated and hydrogen-free carbon films, Diamond Relat. Mater. 3, 1329–1336 (1994).
  • A. Grill, Tribology of diamondlike carbon and related materials: an updated review, Surf. Coatings Technol. 94, 507–513 (1997).
  • S. J. Harris, A. M. Weiner, and W.-J. Meng, Tribology of metal-containing diamond-like carbon coatings, Wear 211, 208–217 (1997).
  • C. Donnet, Recent progress on the tribology of doped diamond-like and carbon alloy coatings: a review, Surf. Coatings Technol. 100, 180–186 (1998).
  • A. Gangopadhyay, Mechanical and tribological properties of amorphous carbon films, Tribol. Lett. 5, 25–39 (1998).
  • A. Voevodin and J. Zabinski, Supertough wear-resistant coatings with ‘chameleon'surface adaptation, Thin Solid Films 370, 223–231 (2000).
  • H. Ronkainen, S. Varjus, J. Koskinen, and K. Holmberg, Differentiating the Tribological performance of hydrogenated and hydrogen-free DLC coatings, Wear 249, 260–266 (2001).
  • J. Andersson, R. Erck, and A. Erdemir, Frictional behavior of diamondlike carbon films in vacuum and under varying water vapor pressure, Surf. Coatings Technol. 163, 535–540 (2003).
  • S. Grillo and J. Field, The friction of natural and Cvd diamond, Wear 254, 945–949 (2003).
  • J. Andersson, R. A. Erck, and A. Erdemir, Friction of diamond-like carbon films in different atmospheres, Wear 254, 1070–1075 (2003).
  • F. Svahn, A. Kassman-Rudolphi, and E. Wallén, The influence of surface roughness on friction and wear of machine element coatings, Wear 254, 1092–1098 (2003).
  • A. Erdemir, Genesis of superlow friction and wear in diamondlike carbon films, Tribol. Int. 37, 1005–1012 (2004).
  • S. K. Field, M. Jarratt, and D. G. Teer, Tribological properties of graphite-like and diamond-like carbon coatings, Tribol. Int. 37, 949–956 (2004).
  • J. Fontaine, J. Loubet, T. L. Mogne, and A. Grill, Superlow friction of diamond-like carbon films: a relation to viscoplastic properties, Tribol. Lett. 17, 709–714 (2004).
  • S. J. Park, K.-R. Lee, and D.-H. Ko, Tribochemical reaction of hydrogenated diamond-like carbon films: a clue to understand the environmental dependence, Tribol. Int. 37, 913–921 (2004).
  • A. Tanaka, T. Nishibori, M. Suzuki, and K. Maekawa, Characteristics of friction surfaces with Dlc films in low and high humidity air, Wear 257, 297–303 (2004).
  • E. Konca, Y. T. Cheng, A. M. Weiner, J. M. Dasch, and A. T. Alpas, Effect of test atmosphere on the tribological behaviour of the non-hydrogenated diamond-like carbon coatings against 319 aluminum alloy and tungsten carbide, Surf. Coatings Technol. 200, 1783–1791 (2005).
  • B. S. Mann and B. Prakash, High Temperature friction and wear characteristics of various coating materials for steam valve spindle application, Wear 240, 223–230 (2000).
  • S. D. A. Lawes, S. V. Hainsworth, and M. E. Fitzpatrick, Impact wear testing of diamond-like carbon films for engine valve-tappet surfaces, Wear 268, 1303–1308 (2010).
  • F. J. Savel III, R. C. McLaren, and D. Mellema, Chrome plated engine valve, Google Patents (2006).
  • C. Brecher, G. Spachtholz, K. Bobzin, E. Lugscheider, O. Knotek, and M. Maes, Superelastic (Cr,Al)N coatings for high end spindle bearings, Surf. Coatings Technol. 200, 1738–1744 (2005).
  • D. Yonekura, R.J. Chittenden, and P.A. Dearnley, Wear mechanisms of steel roller bearings protected by thin, hard and low friction coatings, Wear 259, 779–788 (2005).
  • H.-B. He, H.-Y. Li, Z.-Z. Xu, D. Kim, and S.-K. Lyu, Effect of MoS2-based composite coatings on tribological behavior and efficiency of gear, Int. J. Precis. Eng. Manuf. 11, 937–943 (2010).
  • R. Martins, R. Amaro, and J. Seabra, Influence of low friction coatings on the scuffing load capacity and efficiency of gears, Tribol. Int. 41, 234–243 (2008).
  • G. Bruno, C. Fanara, F. Guglielmetti, and B. Malard, Characterization and residual stress analysis of wear resistant Mo thermal spray-coated steel gear wheels, Surf. Coatings Technol. 200, 4266–4276 (2006).
  • D.-H. Cho, S.-A. Lee, and Y.-Z. Lee, The effects of surface roughness and coatings on the tribological behavior of the surfaces of a piston skirt, Tribol. Trans. 53, 137–144 (2009).
  • C. Friedrich, G. Berg, E. Broszeit, F. Rick, and J. Holland, Pvd Crxn coatings for tribological application on piston rings, Surf. Coatings Technol. 97, 661–668 (1997).
  • M. B. Karamış, K. Yıldızlı, and H. Çakırer, An evaluation of surface properties and frictional forces generated from Al–Mo–Ni coating on piston ring, Appl. Surf. Sci. 230, 191–200 (2004).
  • W.-H. Kao, The tribological properties of Zr-C: H coatings deposited on Aisi M2 substrate, Wear 264, 368–373(2008).
  • I. Etsion, G. Halperin, and E. Becker, The effect of various surface treatments on piston pin scuffing resistance, Wear 261, 785–791 (2006).
  • W. Rein and N. Schneider, Piston and connecting rod assembly having phosphatized bushingless connecting rod and profiled piston pin, Google Patents (2005).
  • T. A. Solzak, and A. A. Polycarpou, Tribology of hard protective coatings under realistic operating conditions for use in oilless piston-type and swash-plate compressors, Tribol. Trans. 53, 319–328 (2010).
  • M. Pontoppidan, Fuel injector with anti-scale ceramic coating for direct injection, Google Patents (2001).
  • J. Hershberger, O. Öztürk, O. O. Ajayi, J. B. Woodford, A. Erdemir, R. A. Erck, and G. R. Fenske, Evaluation of Dlc coatings for spark-ignited, direct-injected fuel systems, Surf. Coatings Technol. 179, 237–244 (2004).
  • A. Erdemir, The role of hydrogen in tribological properties of diamond-like carbon films, Surf. Coatings Technol. 146–147, 292–297 (2001).
  • J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng. R. Rep. 37, 129–281 (2002).
  • B. Bhushan, Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 Nm: recent developments, Diamond Relat. Mater. 1999, 8, 1985–2015 (1999).
  • B. Rauschenbach, Ion beam assisted deposition—a processing technique for preparing thin films for high-technology applications, Vacuum 69, 3–10 (2002).
  • J. H. Zhang, Q. J. Zhang, C. L. Wu, Y. Qin, and T. C. Lee, Investigation of properties of electric arc ion deposited tin coating on Al2o3-based ceramic composite, J. Adhes. Sci. Technol. 17, 861–869 (2003).
  • E. S. Puchi-Cabrera, M. H. Staia, E. A. Ochoa-Pérez, D. G. Teer, Y. Y. Santana-Méndez, J. G. La Barbera-Sosa, D. Chicot, and J. Lesage, Fatigue behavior of a 316l stainless steel coated with a Dlc film deposited by Pvd magnetron sputter ion plating, Mater. Sci. Eng. A 527, 498–508 (2010).
  • X. L. Peng, Z.H. Barber, and T.W. Clyne, Surface roughness of diamond-like carbon films prepared using various techniques, Surf. Coatings Technol. 138, 23–32 (2001).
  • P. J. Kelly and R. D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum 56, 159–172 (2000).
  • M. Johnson and P. Cote, Modeling magnetron sputter deposition, Mater. Manufact. Process. 21, 628–633 (2006).
  • J. Y. Chen, L. P. Wang, K. Y. Fua, N. Huang, Y. Leng, Y. X. Leng, P. Yang, J. Wang, G. J. Wan, H. Sun, X. B. Tian, and P. K. Chu, Blood compatibility and Sp3/Sp2 contents of diamond-like carbon (DLC) synthesized by plasma immersion ion implantation-deposition, Surf. Coatings Technol. 156, 289–294 (2002).
  • S. C. H. Kwok, P. C. T. Ha, D. R. McKenzie, M. M. M. Bilek, and P. K. Chu, Biocompatibility of calcium and phosphorus doped diamond-like carbon thin films synthesized by plasma immersion ion implantation and deposition, Diamond Relat. Mater. 15, 893–897 (2006).
  • L. Wang, L. Huang, Y. Wang, Z. Xie, and X. Wang, Duplex DLC coatings fabricated on the inner surface of a tube using plasma immersion ion implantation and deposition, Diamond Relat. Mater. 17, 43–47 (2008).
  • T. Michler, M. Grischke, I. Traus, K. Bewilogua, and H. Dimigen, DLC films deposited by bipolar pulsed DC PACVD, Diamond Relat. Mater. 7, 459–462 (1998).
  • M. Töwe and C. Benndorf, Titanium containing DLC coatings from a Pacvd process using titanium (Iv) isopropylate as a precursor, Diamond Relat. Mater. 9, 811–814 (2000).
  • C. Mitterer, F. Holler, D. Reitberger, E. Badisch, M. Stoiber, C. Lugmair, R. Nöbauer, T. Müller, and R. Kullmer, Industrial applications of Pacvd hard coatings, Surf. Coatings Technol. 163–164, 716–722 (2003).
  • L. Nobili, P. L. Cavallotti, G. Coccia Lecis, G. De Ponti, and C. Lenardi, a-C:H and a-CNx:H) films deposited by magnetron sputtering and Pacvd, Thin Solid Films 317, 359–362 (1998).
  • T. A. Railkar, W. P. Kang, H. Windischmann, A. P. Malshe, H. A. Naseem, J. L. Davidson, and W. D. Brown, A critical review of chemical vapor-deposited (CVD) diamond for electronic applications, Crit. Rev. Solid State Mater. Sci. 25, 163–277 (2000).
  • M. Sobri, A. Shuhaimi, K. M. Hakim, V. Ganesh, M. H. Mamat, M. Mazwan, S. Najwa, N. Ameera, Y. Yusnizam, and M. Rusop, Effect of annealing on structural, optical, and electrical properties of nickel (Ni)/indium tin oxide (ITiO) nanostructures prepared by Rf magnetron sputtering, Superlatt. Microstruct. 70, 82–90 (2014).
  • A. Bendavid, P. J. Martin, C. Comte, E. W. Preston, A. J. Haq, F. S. Magdon Ismail, and R. K. Singh, The mechanical and biocompatibility properties of Dlc-Si films prepared by pulsed DC plasma activated chemical vapor deposition, Diamond Relat. Mater. 16, 1616–1622 (2007).
  • Y. Jun, J.-Y. Choi, K.-R. Lee, B.-K. Jeong, S.-K. Kwon, and C.-H. Hwang, Application of diamond-like carbon films to spacer tools for electron guns of cathode ray tube (Crt), Thin Solid Films 377–378, 233–238 (2000).
  • M. I. Jones, I. R. McColl, D. M. Grant, K. G. Parker, and T. L. Parker, Haemocompatibility of DLC and TiC–TiN interlayers on titanium, Diamond Relat. Mater. 8, 457–462 (1999).
  • M. Azzi, P. Amirault, M. Paquette, J. E. Klemberg-Sapieha, and L. Martinu, Corrosion performance and mechanical stability of 316l/DLC coating system: role of interlayers, Surf. Coatings Technol. 204, 3986–3994 (2010).
  • M. M. Morshed, B. P. McNamara, D. C. Cameron, and M. S. J. Hashmi, Effect of surface treatment on the adhesion of DLC film on 316l stainless steel, Surf. Coatings Technol. 163–164, 541–545 (2003).
  • T. Ohana, M. Suzuki, T. Nakamura, A. Tanaka, and Y. Koga, Tribological properties of Dlc films deposited on steel substrate with various surface roughness, Diamond Relat. Mater. 2004, 13, 2211–2215 (2004).
  • J. Jiang, R. D. Arnell, and G. Dixit, The influence of ball size on tribological behaviour of MoS2 coating tested on a ball-on-disk wear rig, Wear 243, 1–5 (2000).
  • E. Liu, Y. F. Ding, L. Li, B. Blanpain, and J. P. Celis, Influence of humidity on the friction of diamond and diamond-like carbon material, Tribol. Int. 40, 216–219 (2007).
  • W. Tillmann, F. Hoffmann, S. Momeni, and R. Heller, Hydrogen quantification of magnetron sputtered hydrogenated amorphous carbon (a-C:H) coatings produced at various bias voltages and their tribological behavior under different humidity levels, Surf. Coatings Technol. 206, 1705–1710 (2011).
  • H. Dimigen and C. P. Klages, Microstructure and wear behavior of metal-containing diamond-like coatings, Surf. Coatings Technol. 49, 543–547 (1991).
  • Y. Kokaku and M. Kitoh, Influence of exposure to an atmosphere of high relative-humidity on tribological properties of diamondlike carbon-films, J. Vac. Sci. Technol. A-Vac. Surf. Films 7, 2311–2314 (1989).
  • E.-S. Yoon, H. Kong, and K.-R. Lee, Tribological behavior of sliding diamond-like carbon films under various environments, Wear 217, 262–270 (1998).
  • T. Le Huu, H. Zaïdi, and D. Paulmier, Lubricating properties of diamond-like coating, Wear 181–183(Part 2), 766–770 (1995).
  • B. Maruyama, F. S. Ohuchi, and L. Rabenberg, Catalytic carbide formation at aluminium-carbon interfaces, J. Mater. Sci. Lett. 9, 864–866 (1990).
  • H. Kim, J. Lince, O. Eryilmaz, and A. Erdemir, Environmental effects on the friction of hydrogenated DLC films, Tribol. Lett. 21, 51–56 (2006).
  • A. Erdemir and C. Donnet, Tribology of diamond-like carbon films: recent progress and future prospects, J. Phys. D Appl. Phys. 39, R311 (2006).
  • A. Erdemir, C. Bindal, G. R. Fenske, and P. Wilbur, Tribological properties of hard carbon films on zirconia ceramics, Tribol. Trans. 39, 735–744 (1996).
  • P. L. Dickrell, W. G. Sawyer, J. A. Heimberg, I. L. Singer, K. J. Wahl, and A. Erdemir, A gas-surface interaction model for spatial and time-dependent friction coefficient in reciprocating contacts: applications to near-frictionless carbon, J. Tribol. 127, 82–88 (2005).
  • E. Konca, Y. T. Cheng, A. M. Weiner, J. M. Dasch, and A. T. Alpas, Elevated temperature tribological behavior of non-hydrogenated diamond-like carbon coatings against 319 aluminum alloy, Surf. Coatings Technol. 200, 3996–4005 (2006).
  • A. A. Gharam, M. J. Lukitsch, M. P. Balogh, N. Irish, and A. T. Alpas, High temperature tribological behavior of W-DLC against aluminum, Surf. Coatings Technol. 206, 1905–1912 (2011).
  • D.-Y. Wang, C.-L. Chang, and W.-Y. Ho, Oxidation behavior of diamond-like carbon films, Surf. Coatings Technol. 120, 138–144 (1999).
  • F. Gao, A. Erdemir, and W. T. Tysoe, The tribological properties of low-friction hydrogenated diamond-like carbon measured in ultrahigh vacuum, Tribol. Lett. 20, 221–227 (2005).
  • W.-J. Wu and M.-H. Hon, Thermal stability of diamond-like carbon films with added silicon, Surf. Coatings Technol. 111, 134–140 (1999).
  • E. Konca, Y. T. Cheng, A. M. Weiner, J. M. Dasch, A. Erdemir, and A. T. Alpas, Transfer of 319 Al alloy to titanium diboride and titanium nitride based (TiAlN, TiCN, TiN) coatings: effects of sliding speed, temperature and environment, Surf. Coatings Technol. 200, 2260–2270 (2005).
  • M. Ikeyama, S. Nakao, Y. Miyagawa, and S. Miyagawa, Effects of Si content in DLC films on their friction and wear properties, Surf. Coatings Technol. 191, 38–42 (2005).
  • P. Papakonstantinou, J. F. Zhao, P. Lemoine, E. T. McAdams, and J. A. McLaughlin, The effects of Si Incorporation on the electrochemical and nanomechanical properties of DLC thin films, Diamond Relat. Mater. 11, 1074–1080 (2002).
  • W. J. Wu, T. M. Pai, and M. H. Hon, Wear behavior of silicon-containing diamond-like carbon coatings, Diamond Relat. Mater. 7, 1478–1484 (1998).
  • F. Demichelis, C. F. Pirri, and A. Tagliaferro, Influence of silicon on the physical properties of diamond-like films, Mater. Sci. Eng. B 11, 313–316 (1992).
  • A. Varma, V. Palshin, and E. I. Meletis, Structure–property relationship of Si-DLC films, Surf. Coatings Technol. 148, 305–314 (2001).
  • K. Oguri and T. Arai, Friction coefficient of Sic, Tic and Gec coatings with excess carbon formed by plasma-assisted chemical vapour deposition, Thin Solid Films 208, 158–160 (1992).
  • T. Michler, M. Grischke, K. Bewilogua, and A. Hieke, Continuously deposited duplex coatings consisting of plasma nitriding and a-C:H:Si deposition, Surf. Coatings Technol. 111, 41–45 (1999).
  • J. Sánchez-López and A. Fernández, Doping and alloying effects on DLC coatings. In Tribology of Diamond-Like Carbon Films, edited by C. Donnet and A. Erdemir, pp. 311–338. New York, Springer (2008).
  • A. Bendavid, P. J. Martin, L. Randeniya, M. S. Amin, and R. Rohanizadeh, The properties of fluorine-containing diamond-like carbon films prepared by pulsed Dc plasma-activated chemical vapour deposition, Diamond Relat. Mater. 19, 1466–1471 (2010).
  • G. Q. Yu, B. K. Tay, Z. Sun, and L. K. Pan, Properties of fluorinated amorphous diamond like carbon films by PECVD, Appl. Surf. Sci. 219, 228–237 (2003).
  • M. H. Ahmed, J. A. Byrne, and J. McLaughlin, Evaluation of glycine adsorption on diamond like carbon (DLC) and fluorinated Dlc deposited by plasma-enhanced chemical vapour deposition (PECVD), Surf. Coatings Technol. 209, 8–14 (2012).
  • R. Gilmore and R. Hauert, Control of the tribological moisture sensitivity of diamond-like carbon films by alloying with F, Ti or Si. Thin Solid Films 398, 199–204 (2001).
  • F. G. Sen, Y. Qi, and A. T. Alpas, Tribology of fluorinated diamond-like carbon coatings: first principles calculations and sliding experiments, Lubricat. Sci. 25, 111–121 (2013).
  • T. Hasebe, T. Ishimaru, A. Kamijo, Y. Yoshimoto, T. Yoshimura, S. Yohena, H. Kodama, A. Hotta, K. Takahashi, and T. Suzuki, Effects of surface roughness on anti-thrombogenicity of diamond-like carbon films, Diamond Relat. Mater. 16, 1343–1348 (2007).
  • M. Ishihara, T. Kosaka, T. Nakamura, K. Tsugawa, M. Hasegawa, F. Kokai, and Y. Koga, Antibacterial activity of fluorine incorporated DLC films, Diamond Relat. Mater. 15, 1011–1014 (2006).
  • C. A. Charitidis, Nanomechanical and Nanotribological properties of carbon-based thin films: a review, Int. J. Refract. Met. Hard Mater. 28, 51–70 (2010).
  • N. Hellgren, M. P. Johansson, E. Broitman, L. Hultman, and J.-E. Sundgren, Role of nitrogen in the formation of hard and elastic Cn_{X} thin films by reactive magnetron sputtering, Phys. Rev. B 59, 5162–5169 (1999).
  • I. Jiménez, R. Gago, J. M. Albella, D. Cáceres, and I. Vergara, Spectroscopy of Π bonding in hard graphitic carbon nitride films: superstructure of basal planes and hardening mechanisms, Phys. Rev. B 62, 4261–4264 (2000).
  • W. J. Gammon, D. I. Malyarenko, O. Kraft, G. L. Hoatson, A. C. Reilly, and B. C. Holloway, Hard and elastic amorphous carbon nitride thin films studied by ^{13}C nuclear magnetic resonance spectroscopy, Phys. Rev. B 66, 153402 (2002).
  • E. C. Cutiongco, C. S. Bhatia, D. Li, and Y.-W. Chung, Tribological behavior of amorphous carbon nitride overcoats for magnetic thin-film rigid disks, J. Tribol. 118, 543–548 (1996).
  • A. Khurshudov, K. Kato, and D. Sawada, Tribological and mechanical properties of carbon nitride thin coating prepared by ion-beam-assisted deposition, Tribol. Lett. 2, 13–21 (1996).
  • J. Koskinen, J. P. Hirvonen, J. Levoska, and P. Torri, Tribological characterization of carbon-nitrogen coatings deposited by using vacuum arc discharge, Diamond Relat. Mater. 5, 669–673 (1996).
  • K. J. Boyd, D. Marton, S. S. Todorov, A. H. Al-Bayati, J. Kulik, R. A. Zuhr, and J. W. Rabalais, Formation of C–N thin films by ion beam deposition, J. Vac. Sci. Technol. A 13, 2110–2122 (1995).
  • X. G. Ma, K. Komvopoulos, D. Wan, D. B. Bogy, and Y. S. Kim, Effects of film thickness and contact load on nanotribological properties of sputtered amorphous carbon thin films, Wear 254, 1010–1018 (2003).
  • V. S. Veerasamy, J. Yuan, G. A. J. Amaratunga, W. I. Milne, K. W. R. Gilkes, M. Weiler, and L. M. Brown, Nitrogen doping of highly tetrahedral amorphous carbon, Phys. Rev. B 48, 17954–17959 (1993).
  • B. Kleinsorge, A. C. Ferrari, J. Robertson, and W. I. Milne, Influence of nitrogen and temperature on the deposition of tetrahedrally bonded amorphous carbon, J. Appl. Phys. 88, 1149–1157 (2000).
  • A. C. Ferrari, S. E. Rodil, and J. Robertson, Interpretation of infrared and Raman spectra of amorphous carbon nitrides, Phys. Rev. B 67, 155306 (2003).
  • S. E. Rodil, W. I. Milne, J. Robertson, and L. M. Brown, Maximized Sp3 bonding in carbon nitride phases. Appl. Phys. Lett. 77, 1458–1460 (2000).
  • P. Hammer, N. M. Victoria, and F. Alvarez, Electronic structure of hydrogenated carbon nitride films, J. Vac. Sci. Technol. A 16, 2941–2949 (1998).
  • S. R. P. Silva, J. Robertson, G. A. J. Amaratunga, B. Rafferty, L. M. Brown, J. Schwan, D. F. Franceschini, and G. Mariotto, Nitrogen modification of hydrogenated amorphous carbon films, J. Appl. Phys. 81, 2626–2634 (1997).
  • J. Schwan, V. Batori, S. Ulrich, H. Ehrhardt, and S. R. P. Silva, Nitrogen doping of amorphous carbon thin films, J. Appl. Phys. 84, 2071–2081 (1998).
  • E. H. A. Dekempeneer, J. Meneve, J. Smeets, S. Kuypers, L. Eersels, and R. Jacobs, Structural, mechanical and tribological properties of plasma-assisted chemically vapour deposited hydrogenated Cxn1-X:H films, Surf. Coatings Technol. 68–69, 621–625 (1994).
  • S. E. Rodil, A. C. Ferrari, J. Robertson, and W. I. Milne, Raman and infrared modes of hydrogenated amorphous carbon nitride, J. Appl. Phys. 89, 5425–5430 (2001).
  • S. E. Rodil, N. A. Morrison, J. Robertson, and W. I. Milne, Nitrogen incorporation into tetrahedral hydrogenated amorphous carbon, Physica Status Solidi (a) 174, 25–37 (1999).
  • J. Q. Zhang, Y. Setsuhara, S. Miyake, and B. Kyoh, Formation of carbon nitride films by helicon wave plasma enhanced DC sputtering, Jpn. J. Appl. Phys. 36, 6894–6899 (1997).
  • M. Lubwama, B. Corcoran, K. Sayers, J. B. Kirabira, A. Sebbit, K. A. McDonnell, and D. Dowling, Adhesion and composite micro-hardness of DLC and Si-DLC films deposited on nitrile rubber, Surf. Coatings Technol. 206, 4881–4886 (2012).
  • Y.-Y. Chang, S.-J. Yang, and D.-Y. Wang, Characterization of TiCr (C, N)/amorphous carbon coatings synthesized by a cathodic arc deposition process, Thin Solid Films 2007, 515, 4722–4726 (2007).
  • S. Zhang, X. L. Bui, J. Jiang, and X. Li, Microstructure and tribological properties of magnetron sputtered Nc-Tic/Ac nanocomposite, Surf. Coatings Technol. 198, 206–211 (2005).
  • W. Dai, P. Ke, and A. Wang, Microstructure and property evolution of Cr-DLC films with different Cr content deposited by a hybrid beam technique, Vacuum 85, 792–797 (2011).
  • Q. Wang, F. Zhou, Z. Zhou, Y. Yang, C. Yan, C. Wang, W. Zhang, L. K.-Y. Li, I. Bello, and S.-T. Lee, Influence of Ti content on the structure and tribological properties of Ti-DLC coatings in water lubrication, Diamond Relat. Mater. 25, 163–175 (2012).
  • S. Vepřek, P. Nesládek, A. Niederhofer, F. Glatz, M. Jı́lek, and M. Šı́ma, Recent progress in the superhard nanocrystalline composites: towards their industrialization and understanding of the origin of the superhardness, Surf. Coatings Technol. 108–109, 138–147 (1998).
  • M. Lubwama, K. A. McDonnell, J. B. Kirabira, A. Sebbit, K. Sayers, D. Dowling, and B. Corcoran, Characteristics and tribological performance of DLC and Si-DLC films deposited on nitrile rubber, Surf. Coatings Technol. 206, 4585–4593 (2012).
  • Y.-Y. Chang, D.-Y. Wang, and W. Wu, Catalysis effect of metal doping on wear properties of diamond-like carbon films deposited by a cathodic-arc activated deposition process, Thin Solid Films 420, 241–247 (2002).
  • T. Onodera, Y. Morita, A. Suzuki, M. Koyama, H. Tsuboi, N. Hatakeyama, A. Endou, H. Takaba, M. Kubo, F. Dassenoy, C. Minfray, L. Joly-Pottuz, J.-M. Martin, and A. Miyamoto, A computational chemistry study on friction of H-Mos2. Part I. Mechanism of single sheet lubrication, J. Phys. Chem. B 113, 16526–16536 (2009).
  • P. Wang, X. Wang, T. Xu, W. Liu, and J. Zhang, Comparing internal stress in diamond-like carbon films with different structure, Thin Solid Films 515, 6899–6903 (2007).
  • B. Vengudusamy, J. H. Green, G. D. Lamb, and H. A. Spikes, Influence of hydrogen and tungsten concentration on the tribological properties of DLC/DLC contacts with Zddp, Wear 298–299, 109–119 (2013).
  • D.-W. Kim and K.-W. Kim, Effects of sliding velocity and normal load on friction and wear characteristics of multi-layered diamond-like carbon (DLC) coating prepared by reactive sputtering, Wear 297, 722–730 (2013).
  • T. Le Huu, H. Zaidi, D. Paulmier, and P. Voumard, Transformation of Sp3 to Sp2 sites of diamond like carbon coatings during friction in vacuum and under water vapour environment. Thin Solid Films 290–291, 126–130 (1996).
  • Z. Zhou, K. Li, I. Bello, C. Lee, and S. Lee, Study of tribological performance of ECR–CVD diamond-like carbon coatings on steel substrates: Part 2. The analysis of wear mechanism, Wear 258, 1589–1599 (2005).
  • Y. Liu, A. Erdemir, and E. I. Meletis, A study of the wear mechanism of diamond-like carbon films, Surf. Coatings Technol. 82, 48–56 (1996).
  • K. Jia, Y. Q. Li, T. E. Fischer, and B. Gallois, Tribology of diamond-like carbon sliding against itself, silicon nitride, and steel, J. Mater. Res. 10, 1403–1410 (1995).
  • M. Sedlaček, B. Podgornik, and J. Vižintin, Tribological properties of Dlc coatings and comparison with test results: development of a database, Mater. Charact. 59, 151–161 (2008).
  • H. Li, T. Xu, C. Wang, J. Chen, H. Zhou, and H. Liu, Humidity dependence on the friction and wear behavior of diamond-like carbon film in air and nitrogen environments, Diamond Relat. Mater. 15, 1585–1592 (2006).
  • Y. Liu, A. Erdemir, and E. I. Meletis, Influence of environmental parameters on the frictional behavior of Dlc coatings, Surf. Coatings Technol. 94–95, 463–468 (1997).
  • A. Czyzniewski, The effect of air humidity on tribological behaviours of W–C:H coatings with different tungsten contents sliding against bearing steel, Wear 296, 547–557 (2012).
  • R. Gilmore and R. Hauert, Comparative study of the tribological moisture sensitivity of Si-free and Si-containing diamond-like carbon films, Surf. Coatings Technol. 133, 437–442 (2000).
  • M. Kalin, J. Viintin, and S. Novak, Effect of fretting conditions on the wear of silicon nitride against bearing steel, Mater. Sci. Eng. A 220, 191–199 (1996).
  • E. Rabinowicz, Practical uses of the surface energy criterion, Wear 7, 9–22 (1964).
  • J. Jiang, S. Zhang, and R. D. Arnell, The effect of relative humidity on wear of a diamond-like carbon coating, Surf. Coatings Technol. 167, 221–225 (2003).
  • B. Podgornik, D. Hren, and J. Vižintin, Low-friction behaviour of boundary-lubricated diamond-like carbon coatings containing tungsten, Thin Solid Films 476, 92–100 (2005).
  • S. Sattel, J. Robertson, and H. Ehrhardt, Effects of deposition temperature on the properties of hydrogenated tetrahedral amorphous carbon, J. Appl. Phys. 82, 4566–4576 (1997).
  • S. Sattel, T. Gieβen, H. Roth, M. Scheib, R. Samlenski, R. Brenn, H. Ehrhardt, and J. Robertson, Temperature dependence of the formation of highly tetrahedral Ac: H, Diamond Relat. Mater. 5, 425–428 (1996).
  • J. Veverkova and S. V. Hainsworth, Effect of temperature and counterface on the tribological performance of W-Dlc on a steel substrate, Wear 264, 518–525 (2008).
  • T. Krumpiegl, H. Meerkamm, W. Fruth, C. Schaufler, G. Erkens, and H. Böhner, Amorphous carbon coatings and their tribological behaviour at high temperatures and in high vacuum, Surf. Coatings Technol. 120, 555–560 (1999).
  • A. Erdemir and G. R. Fenske, Tribological performance of diamond and diamondlike carbon films at elevated temperatures, Tribol. Trans. 39, 787–794 (1996).
  • X. Wu, M. Suzuki, T. Ohana, and A. Tanaka, Characteristics and tribological properties in water of Si-Dlc coatings, Diamond Relat. Mater. 17, 7–12 (2008).
  • A. Erdemir, M. Switala, R. Wei, and P. Wilbur, A tribological investigation of the graphite-to-diamond-like behavior of amorphous carbon films ion beam deposited on ceramic substrates, Surf. Coatings Technol. 50, 17–23 (1991).
  • C. Donnet, M. Belin, J. C. Augé, J. M. Martin, A. Grill, and V. Patel, Tribochemistry of diamond-like carbon coatings in various environments, Surf. Coatings Technol. 68–69, 626–631 (1994).
  • K. Oguri and T. Arai, Low friction coatings of diamond-like carbon with silicon prepared by plasma-assisted chemical vapor deposition, J. Mater. Res. 5, 2567–2571 (1990).
  • A. Grill and V. V. Patel, Wear resistant fluorinated diamondlike carbon films, New Diamond Frontier Carbon Technol. 6, 13–21 (1996).
  • C. Donnet, J. Fontaine, A. Grill, V. Patel, C. Jahnes, and M. Belin, Wear-resistant fluorinated diamondlike carbon films, Surf. Coatings Technol. 94–95, 531–536 (1997).
  • C. Jaoul, C. Dublanche-Tixier, O. Jarry, P. Tristant, J. P. Lavoute, L. Kilman, M. Colas, E. Laborde, and H. Ageorges, Tribological properties of hard a-C:H:F coatings, Surf. Coatings Technol. 237, 328–332 (2013).
  • X. R. Zou, J. Q. Xie, and J. Y. Feng, Structural and tribological characteristics of carbon nitride films deposited by the reactive ionized-cluster beam technique, Surf. Coatings Technol. 111, 119–122 (1999).
  • K. Kato, M. Bai, N. Umehara, and Y. Miyake, Effect of internal stress of Cn< I> X</I> coating on its wear in sliding friction, Surf. Coatings Technol. 113, 233–241 (1999).
  • Y. T. Pei, D. Galvan, J. T. M. De Hosson, and C. Strondl, Advanced TiC/a-C:H nanocomposite coatings deposited by magnetron sputtering, J. Eur. Ceram. Soc. 26, 565–570 (2006).
  • Z.-q. Fu, C.-b. Wang, W. Zhang, W. Wang, W. Yue, X. Yu, Z.-j. Peng, S.-s. Lin, and M.-j. Dai, Influence of W content on tribological performance of W-doped diamond-like carbon coatings under dry friction and polyalpha olefin lubrication conditions, Mater. Des. 51, 775–779 (2013).
  • C. Rincón, G. Zambrano, A. Carvajal, P. Prieto, H. Galindo, E. Martínez, A. Lousa, and j. Esteve, Tungsten carbide/diamond-like carbon multilayer coating on steel for tribological applications, Surf. Coatings Technol. 148, 277–283 (2001).
  • K. Baba and R. Hatada, Deposition and characterization of Ti- and W-containing diamond-like carbon films by plasma source ion implantation, Surf. Coatings Technol. 169–170, 287–290 (2003).
  • Z. Q. Fu, C. B. Wang, W. Wang, Z. J. Peng, X. Yu, S. S. Lin, and M. J. Dai, W-doped Dlc films by Ibd and Ms, 434–435, 477–480 (2010).
  • C. W. Zou, H. J. Wang, L. Feng, and S. W. Xue, Effects of Cr concentrations on the microstructure, hardness, and temperature-dependent tribological properties of Cr-DLC coatings, Appl. Surf. Sci. 286, 137–141 (2013).
  • V. Singh, J. C. Jiang, and E. I. Meletis, Cr-diamondlike carbon nanocomposite films: synthesis, characterization and properties, Thin Solid Films 489, 150–158 (2005).
  • M. Fryda, K. Taube, and C. P. Klages, Nanometer indentation measurements on metal-containing amorphous hydrogenated carbon films (Mec: H), Vacuum 41, 1291–1293 (1990).
  • K. Bewilogua, C. V. Cooper, C. Specht, J. Schröder, R. Wittorf, and M. Grischke, Erratum to: `effect of target material on deposition and properties of metal-containing DLC (Me-DLC) coatings’, Surf. Coatings Technol. 132, 275–283 (2000).
  • C. Benndorf, M. Fryda, C. P. Klages, K. Taube, and H. G. Haubold, Structural and mechanical properties of niobium-containing amorphous hydrogenated carbon films (NbC:H), Mater. Sci. Eng. A 140, 795–801 (1991).
  • P. Kumar, P. D. Babu, L. Mohan, C. Anandan, and V. W. Grips, Wear and corrosion behavior of Zr-doped DLC on Ti-13Zr-13Nb biomedical alloy, J. Mater. Eng. Perfom. 22, 283–293 (2013).
  • T. Scharf and I. Singer, Role of the transfer film on the friction and wear of metal carbide reinforced amorphous carbon coatings during run-in, Tribol. Lett. 36, 43–53 (2009).
  • M. Kano, Y. Yasuda, and J. P. Ye, The effect of Zddp and Modtc additives in engine oil on the friction properties of DLC-coated and steel cam followers, Lubricat. Sci. 17, 95–103 (2004).
  • M. I. de Barros Bouchet, J. M. Martin, T. Le-Mogne, and B. Vacher, Boundary lubrication mechanisms of carbon coatings by Modtc and Zddp additives, Tribol. Int. 38, 257–264 (2005).
  • S. Miyake, T. Saito, Y. Yasuda, Y. Okamoto, and M. Kano, Improvement of boundary lubrication properties of diamond-like carbon (DLC) films due to metal addition, Tribol. Int. 37, 751–761 (2004).
  • A. Neville, A. Morina, T. Haque, and M. Voong, Compatibility between Tribological surfaces and lubricant additives—how friction and wear reduction can be controlled by surface/lube synergies, Tribol. Int. 40, 1680–1695 (2007).
  • M. Kalin and J. Vižintin, A comparison of the tribological behaviour of steel/steel, steel/DLC and DLC/DLC contacts when lubricated with mineral and biodegradable oils, Wear 261, 22–31 (2006)
  • M. Kalin, J. Vižintin, K. Vercammen, J. Barriga, and A. Arnšek, The lubrication of Dlc coatings with mineral and biodegradable oils having different polar and saturation characteristics, Surf. Coatings Technol. 200, 4515–4522 (2006).
  • J. Vižintin, M. Kalin, and E. Roman, Additive Reaction Mechanisms on Coating Surface, International Conference on Tribology, September 10–22, 2006, Parma, Italy.
  • G. Stachowiak and A.W. Batchelor, Experimental Methods in Tribology, edited by D. Dowson. New York, Elsevier, 44 (2004).
  • M. Kalin, E. Roman, and J. Vižintin, The effect of temperature on the tribological mechanisms and reactivity of hydrogenated, amorphous diamond-like carbon coatings under oil-lubricated conditions, Thin Solid Films 515, 3644–3652 (2007).
  • A. M. Barnes, K. D. Bartle, and V. R. A. Thibon, A review of zinc dialkyldithiophosphates (ZDDP): Characterisation and role in the lubricating oil, Tribol. Int. 34, 389–395 (2001).
  • M. Kalin, J. Vižintin, J. Barriga, K. Vercammen, K. V. Acker, and A. Arnšek, The effect of doping elements and oil additives on the tribological performance of boundary-lubricated DLC/DLC contacts, Tribol. Lett. 17, 679–688 (2004).
  • M. Yajun, Z. Wancheng, L. Shenghua, J. Yuansheng, W. Yucong, and T. Simon, Tribological performance of three advanced piston rings in the presence of MoDTC-modified Gf-3 oils, Tribol. Lett. 18, 75–83 (2005).
  • M. Kalin and J. Vižintin, Differences in the tribological mechanisms when using non-doped, metal-doped (Ti, WC), and non-metal-doped (Si) diamond-like carbon against steel under boundary lubrication, with and without oil additives, Thin Solid Films 515, 2734–2747 (2006).
  • S. Novak, G. Dražič, M. Kalin, and J. Vižintin, Interactions in silicon nitride ceramics vs. steel contact under fretting conditions, Wear 225–229(Part 2), 1276–1283 (1999).
  • X.-Q. Gong, A. Selloni, M. Batzill, and U. Diebold, Steps on anatase TiO2(101), Nat Mater. 5, 665–670 (2006).
  • M. Kalin and J. Vižintin, Real contact temperatures as the criteria for the reactivity of diamond-like-carbon coatings with oil additives, Thin Solid Films 518, 2029–2036 (2010).
  • K. K. Mistry, A. Morina, and A. Neville, A tribochemical evaluation of a WC–DLC coating in EP lubrication conditions, Wear 271, 1739–1744 (2011).
  • K. Vercammen, K. Van Acker, A. Vanhulsel, J. Barriga, A. Arnsek, M. Kalin, and J. Meneve, Tribological behaviour of DLC coatings in combination with biodegradable lubricants, Tribol. Int. 37, 983–989 (2004).
  • B. Vengudusamy, J. H. Green, G. D. Lamb, and H. A. Spikes, Tribological properties of tribofilms formed from ZDDP in DLC/DLC and DLC/steel contacts, Tribol. Int. 44, 165–174 (2011).
  • K. A. H. Al Mahmud, M. Varman, M. A. Kalam, H. H. Masjuki, H. M. Mobarak, and N. W. M. Zulkifli, Tribological characteristics of amorphous hydrogenated (a-C:H) and Tetrahedral (ta-C) diamond-like carbon coating at different test temperatures in the presence of commercial lubricating oil, Surf. Coatings Technol. 245, 133–147 (2014).
  • T. Haque, A. Morina, A. Neville, R. Kapadia, and S. Arrowsmith, Effect of oil additives on the durability of hydrogenated DLC coating under boundary lubrication conditions, Wear 266, 147–157 (2009).
  • C. Grossiord, J.-M. Martin, T. Le Mogne, K. Inoue, and J. Igarashi, Friction-reducing mechanisms of molybdenum dithiocarbamate/zinc dithiophosphate combination: new insights in Mos2 genesis, J. Vac. Sci. Technol. A 17, 884–890 (1999).
  • M. Kano, Y. Yasuda, Y. Okamoto, Y. Mabuchi, T. Hamada, T. Ueno, J. Ye, S. Konishi, S. Takeshima, and J. Martin, Ultralow friction of DLC in presence of glycerol mono-Oleate (GMO), Tribol. Lett. 18, 245–251 (2005).
  • S. Miyake, T. Shindo, and M. Suzuki, Nanomechanical and boundary lubrication properties of titanium carbide and diamond-like carbon nanoperiod multilayer and nanocomposite films, Surf. Coatings Technol. 221, 124–132 (2013).
  • M. D. B. Bouchet, C. Matta, T. Le-Mogne, J. M. Martin, Q. Zhang, W. Goddard III, M. Kano, Y. Mabuchi, and J. Ye, In Superlubricity Mechanism of Diamond-Like Carbon with Glycerol. Coupling of Experimental and Simulation Studies, Journal of Physics: Conference Series, IOP Publishing, p 012003 (2007).
  • C. Matta, L. Joly-Pottuz, M. D. B. Bouchet, J. Martin, M. Kano, Q. Zhang, and W. Goddard III, Superlubricity and tribochemistry of polyhydric alcohols, Phys. Rev. B 78, 085436 (2008).
  • M. I. De Barros Bouchet, C. Matta, T. Le-Mogne, J. Michel Martin, T. Sagawa, S. Okuda, and M. Kano, Improved mixed and boundary lubrication with glycerol-diamond technology, Tribol. Mater. Surf. Interf. 1, 28–32 (2007).
  • H. A. Tasdemir, M. Wakayama, T. Tokoroyama, H. Kousaka, N. Umehara, Y. Mabuchi, and T. Higuchi, Ultra-low friction of tetrahedral amorphous diamond-like carbon (ta-C DLC) under boundary lubrication in poly alpha-olefin (PAO) with additives, Tribol. Int. 65, 286–294 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.