3,604
Views
97
CrossRef citations to date
0
Altmetric
Reviews

Effect of Point and Line Defects on Mechanical and Thermal Properties of Graphene: A Review

, &
Pages 47-71 | Received 03 Feb 2015, Accepted 29 Jun 2015, Published online: 09 Oct 2015

REFERENCES

  • M. C. Wang, C. Yan, L. Ma, N. Hu, and M. W. Chen, Effect of defects on fracture strength of graphene sheets, Comput. Mater. Sci. 54, 236–239 (2012).
  • A. Zandiatashbar, G. H. Lee, S. J. An, S. Lee, N. Mathew, M. Terroness, T. Hayashi, C. R. Picu, J. Hone, and N. Koratkar, Effect of defects on the intrinsic strength and stiffness of graphene, Nat. Commun. 5, 3186 (2014).
  • M. C. Wang, C. Yan, D. Galpaya, B. L. Zheng, L. Ma, N. Hu, Q. Yuan, R. Bai, and L. Zhou, Molecular dynamics simulation of fracture strength and morphology of defective graphene, J. Nano Res. 23, 43–49 (2013).
  • A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, M. Feng, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8, 902 (2008).
  • J. A. Baimova, L. Bo, S. V. Dmitriev, K. Zhou, and A. A. Nazarov, Effect of Stone-Thrower-Wales defect on structural stability of graphene at zero and finite temperature, EPL 103, 46001 (2013).
  • L. Xiao, H. M. Thomas, J. T. Robinson, B. H. Houston, and F. Scarpa, Shear modulus of monolayer graphene prepared by chemical vapor deposition, Nano Lett. 12, 1013–1017 (2012).
  • R. Gillen, M. Mohr, and J. Maultzsch, Raman-active modes in graphene nanoribbons, Phys. Status Solidi B 247, 2941–2944 (2010).
  • A. Bosak, M. Krisch, M. Mohr, J. Maultzsch, and C. Thomsen, Elasticity of single-crystalline graphite: Inelastic x-ray scattering study, Phys. Rev. B Condens. Matter 75, 153408 (2007).
  • S. V. Dmitrriev, J. A. Baimoya, A. V. Savin, and Y. S. Kivshar, Ultimate strength, ripples, sound velocities, and density of phonon states of strained graphene, Comput. Mater. Sci. 53, 194–203 (2012).
  • K. V. Zakharchenko, J. H. Los, M. I. Katsnelson, and A. Fasolino, Atomistic simulations of structural and thermodynamic properties of bilayer graphene, Phys. Rev. B Condens. Matter 81, 235439 (1–6) (2010).
  • Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater. 22, 3906–3924 (2010).
  • R. S. Edwards and K. S. Coleman, Graphene synthesis: relationship to applications, Nanoscale 5, 38–51 (2013).
  • K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146, 351–355 (2008).
  • R. Ansari, S. Ajori, and B. Motevalli, Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation, Superlattices Microstruct. 51, 274–289 (2012).
  • A. M. Fennimore, T. D. Yuzvinsky, W. Q. Han, M. S. Fuhrer, J. Cumings, and A. Zettl, Rotational actuators based on nanotubes, Nature 424 (24), 408–410 (2003).
  • B. L. Allen, P. D. Kichambare, and A. Star, Carbon nanotube field-effect-transistor-based biosensors, Adv. Mater. 19, 1439–1451 (2007).
  • J. Cumings and A. Zettl, Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes, Science 289, 602–604 (2000).
  • A. Bianco, K. Kostarelos, and M. Prato, Applications of carbon nanotubes in drug delivery, Curr. Opin. Chem. Biol. 9, 674–679 (2005).
  • M. R. Banwaskar and S. N. Dachawar, Graphene basics and applications, Adv. Mater. Res. 622–623, 259–262 (2013).
  • P. Avouris and C. Dimitrakopoulos, Graphene: synthesis and applications, Mater. Today 15, 86–97 (2012).
  • X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications, Nano Micro Small 7 (14), 1876–1902 (2011).
  • A. Sakhaee-pour, M. T. Ahmadian, and A. Vafai, Potential application of single-layered graphene sheet as strain sensor, Solid State Commun. 147, 336–340 (2008).
  • W. Choi, I. Lahiri, R. Seelaboyina, and Y. S Kang, Synthesis of graphene and its applications: a review, Crit. Rev. Solid State Mater. Sci. 35:1, 52–71 (2010).
  • T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, and J. H. Lee, Recent advances in graphene-based biosensors, Biosens. Bioelectron. 26, 4637–4648 (2011).
  • M. S. Artiles, C. S. Rout, and T. S. Fisher, Graphene-based hybrid materials and devices for biosensing, Adv. Drug Delivery Rev. 63, 1352–1360 (2011).
  • M. Pumera, Graphene in biosensing, Mater. Today 14, 308–315 (2011).
  • S. Ebrahimi, A. Montazeri, and H. Rafii-Tabar, Molecular dynamics study of the interfacial mechanical properties of the graphene-collagen biological nanocomposite, Comput. Mater. Sci. 69, 29–39 (2013).
  • Y. Sun, Q. Wu, and G. Shi, Graphene based new energy materials, Energy Environ. Sci. 4, 1113–1132 (2011).
  • M. Pumera, Graphene-based nanomaterials for energy storage, Energy Environ. Sci. 4, 668–674 (2011).
  • D. A. C. Brownson, D. K. Kampouris, and C. E. Banks, An overview of graphene in energy production and storage applications, J. Power Sour. 196, 4873–4885 (2011).
  • Q. Huang, D. Zeng, S. Tian, and C. Xie, Synthesis of defect graphene and its application for room temperature humidity sensing, Mater. Lett. 83, 76–79 (2012).
  • D. Berman, A. Erdemir, and A. V. Sumant, Graphene: a new emerging lubricant, Mater. Today 17(1), 31–42 (2014).
  • G. D. Zhan, J. D. Kuntz, J. Wan, and A. K. Mukherjee, Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites, Nat. Mater. 2, 38–42 (2003).
  • N. Jing, Q. Xue, C. Ling, M. Shan, T. Zhang, X. Zhou, and Z. Jiao, Effect of defects on Young's modulus of graphene sheets: a molecular dynamics simulation, RSC Adv. 2, 9124–9129 (2012).
  • T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, and J. H. Lee, Recent advances in graphene based polymer composites, Prog. Polym. Sci. 35, 1350–1375 (2010).
  • T. K. Das and S. Prusty, Graphene-based polymer composites and their applications, Polymer-Plastics Technol. Eng. 52, 319–331 (2013).
  • R. Verdejo, M. M Bernal, L. J Romasanta, and M. A. Lopaz-Manchado, Graphene filled polymer nanocomposites, J. Mater. Chem. 21, 3301–3310 (2011).
  • J. H. Warner, F. Schaffel, A. Bachmatiuk, and M. H. Rummeli, Graphene: Fundamentals and Emergent Applications, 1st ed., Elsevier, New York (2012).
  • A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6, 183–191 (2007).
  • C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, Graphene: the new two-dimensional nanomaterial, Angew. Chem. Int. Ed. 48, 7752–7777 (2009).
  • S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nat. Nanotechnol., DOI: 10.1038/NNANO.2009.58 (2009).
  • M. Taghioskoui, Trends in graphene research, Mater. Today 12, 34–37 (2009).
  • P. Steurer, R. Wissert, R. Thomann, and R. Mulhaupt, Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide, Macromol. Rapid Commun. 30, 316–327 (2009).
  • C. Soldano, A. Mahmood, and E. Dujardin, Production, properties and potential of graphene, Carbon 48, 2127–2150 (2010).
  • A. Shukla, R. Kumar, J. Mazher, and A. Balan, Graphene made easy: High quality, large-area samples, Solid State Commun. 149, 718–721 (2009).
  • V. Singh, D. Joung, L. Zhai, S. Das, S. I Khondaker, and S. Seal, Graphene based materials: Past, present and future, Prog. Mater. Sci. 56, 1178–1271 (2011).
  • A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10, 569–581 (2011).
  • R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, and V. Yu, Experimental review of graphene, ISRN Condens. Matter Phys. 501686 (56pp) (2012).
  • H. Wang, T. Maiyalagan, and X. Wang, Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications, ACS Catal. 2, 781–794 (2012).
  • K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, A roadmap for graphene, Nature 490, 192–200 (2012).
  • Q. Tang, Z. Zhou, and Z. Chen, Graphene-related nanomaterials: tuning properties by functionalization, Nanoscale 5, 4541–4583 (2013).
  • Y. W. Sham and S. M. Notley, A review of fundamental properties and applications of polymer-graphene hybrid materials, Soft Matter. 9, 6645–6653 (2013).
  • E. McCann and M. Koshino, The electronic properties of bilayer graphene, Rep. Prog. Phys. 76, 056503 (2013).
  • K. Yang, L. Feng, X. Shi, and Z. Liu, Nano-graphene in biomedicine: theranostic applications, Chem. Soc. Rev. 42, 530–547 (2013).
  • S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F. Heinz, S. S. Hong, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, J. E. Goldberger, Progress. Challenges, and Opportunities in Two-Dimensional Materials beyond Graphene, ACS Nano. 7(4), 2898–2926 (2013).
  • Y. Zhang, L. Zhang, and C. Zhou, Review of chemical vapor deposition of graphene and related applications, Acc. Chem. Res. 46(10), 2329–2339 (2013).
  • R. K. Layek and A. K. Nandi, A review on synthesis and properties of polymer functionalized graphene, Polymer 54, 5087–5103 (2013).
  • V. Dhand, K. Y Rhee, H. J. Kim, and D. H Jung, A comprehensive review of graphene nanocomposites: research status and trends, J. Nanomater. 763953 (2013).
  • W. Cummings, D. L Duong, V. L Nguyen, D. V Tuan, J. Kotakoski, J. E. B. Vargas, Y. H Lee, and S. Roche, Charge transport in polycrystalline graphene: challenges and opportunities, Adv. Mater. 26, 5079–5094 (2014).
  • A. C. Ferrari, F. Bonaccorso, V. Falko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, Jong-Hyun Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. D. Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, J. Kinaret, Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale
  • X. Zhang, H. Zhang, C. Li, K. Wang, X. Sun, and Y. Ma, Recent advances in porous graphene materials for supercapacitor applications, RSC Adv. 4, 45862–45884 (2014).
  • Editorial, Ten years in two dimensions, Nat. Nanotechnol. 9, 725 (2014).
  • P. Randviir, D. A. C. Brownson, and C. E Banks, A decade of graphene research: production, application and outlook, Mater. Today 17(9), 426–432 (2014).
  • K. S Novoselov, A. K Geim, S. V Morozov, D. Jiang, Y. Zhang, S. V Dubonos, I. V Grigorieva, and A. A Firsov, Electric field effect in atomically thin carbon films, Science 306, 666–669 (2004).
  • U. K. Sur, Graphene: a rising star on the horizon of materials science, Int. J. Electrochem. 237689 (2012).
  • K. Geim, Graphene: status and prospects, Science 324, 1530–1534 (2009).
  • L. Ma, J. Wang, and F. Ding, Recent progress and challenges in graphene nanoribbon synthesis, ChemPhysChem. 14, 47–54 (2013).
  • Editorial, It's still all about graphene, Nat. Mater. 10, 1 (2011).
  • R. Garg, N. K. Dutta, N. R. Choudhuri, Work function engineering of graphene, Nanomaterials 4, 267–300 (2014).
  • F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, Production and processing of graphene and 2d crystals, Mater. Today 15(12), 564–589 (2012).
  • Y. L Zhong, Z. Tian, G. P Simon, and D. Li, Scalable production of graphene via wet chemistry: progress and challenges, Mater. Today 18(2), 73–78 (2015).
  • M. I. Katsnelson, Graphene: carbon in two dimensions, Mater. Today 10, 20–27 (2007).
  • J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, The structure of suspended graphene sheets, Nature 446, 60–63 (2007).
  • N. Ye and P. Shi, Application of Graphene-Based Materials in Solid-Phase Extraction and Solid-Phase Microextraction, Sep. Purif. Rev. 44, 183–198 (2015).
  • S. Gadipelli and Z. X Guo, Graphene-based materials: Synthesis and gas sorption, storage and separation, Prog. Mater. Sci. 69, 1–16 (2015).
  • A. T. Lawal, Synthesis and utilization of graphene for fabrication of electrochemical sensors, Talanta 131, 424–443 (2015).
  • Q. Fang, Y. Shen, and B. Chen, Synthesis, decoration and properties of three-dimensional graphene-based macrostructures: A review, Chem. Eng. J. 264, 753–771 (2015).
  • P. T. Araujo, M. Terrones, and M. S. Dresselhaus, Dresselhaus, Defects and impurities in graphene-like materials, Mater. Today 15(3), 98–109 (2012).
  • M. G Ahangari, Effect of defect and temperature on the mechanical and electronic properties of graphdiyne: a theoretical study, Physica E 66, 140–147 (2015).
  • M. A. Bissett, S. Konabe, S. Okada, M. Tsuji, and H. Ago, Enhanced chemical reactivity of graphene induced by mechanical strain, ACS Nano 7(11), 10335–10343 (2013).
  • O. Akhavan, The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets, Carbon 48, 509–519 (2010).
  • B. W. Jeong, J. Ihm, and G. D. Lee, Stability of dislocation defect with two pentagon-heptagon pairs in graphene, Phys. Rev. B Condens. Matter 78, 165403 (2008).
  • G. Compagnini, G. Forte, F. Giannazzo, V. Raineri, A. L. Magna, and I. Deretzis, Ion beam induced defects in graphene: Raman spectroscopy and DFT calculations, J. Mol. Struct. 993, 506–509 (2011).
  • G. Compagnini, F. Giannazzo, S. Sonde, V. Raineri, and E. Rimini, Ion irradiation and defect formation in single layer graphene, Carbon 47, 3201–3207 (2009).
  • J. Martinez-Asencio and M. J. Caturla, Molecular dynamics simulations of defect production in graphene by carbon irradiation, Nucl. Instrum. Meth Phys. Res. Sect. B; http://dx.doi.org/10.1016/j.nimb.2014.12.010 (2015).
  • Z. Jian, H. Ming, and Q. Feng, Effect of vacancy defects on the young's modulus and fracture strength of graphene: a molecular dynamics study, Chin. J. Chem. 30, 1399–1404 (2012).
  • F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, Structural defects in graphene, ACS Nano 5, 26–41 (2011).
  • L. Liu, M. Qing, Y. Wang, and S. Chen, Defects in graphene: generation, healing, and their efeects on the properties of graphene: a review, J. Mater. Sci. Technol. 31, 599–606 (2015).
  • T. Zhang, X. Li, and H. Gao, Designing graphene structure with controlled distributions of topological defects: A case study of toughness enhancement in graphene ruga, Extreme Mech. Lett. 1, 3–8 (2014).
  • W. Robertson and J. H. Warner, Atomic resolution imaging of graphene by transmission electron microscopy, Nanoscale Res. Lett. 5, 4079–4093 (2013).
  • L. Xu, N. Wei, and Y. Zheng, Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture, Nanotechnology 24, 505703 (2013).
  • S. Sun, C. Wang, M. Chen, and J. Zheng, A novel method to control atomic defects in graphene sheets, by selective surface reactions, Appl. Surf. Sci. 283, 566–570 (2013).
  • J. Liu, Z. Liu, C. J. Barrow, and W. Yang, Molecularly engineered graphene surfaces for sensing applications: A review, Anal. Chim. Acta 859, 1–19 (2015).
  • S. Yadav, Z. Zhu, and C. V. Singh, Defect engineering of graphene for effective hydrogen storage, Int. J. Hydrog. Ener. 39, 4981–4995 (2014).
  • M. Terrones, A. R. Botello-Mendez, J. Campos-Delgado, F. Lopez-Urias, Y. I. Vega-Cantu, F. J. Rodriguez-Macias, A. L Elias, E. Munoz-Sandoval, A. G. Cano-Marquez, J. C Charlier, and H. Terrones, Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications, Nano Today 5, 351–372 (2010).
  • X. Y Liu, J. M Zhang, K. W Xu, and V. Ji, Improving SO2 gas sensing properties of graphene by introducing dopant and defect: A first-principles study, Appl. Surf. Sci. 313, 405–410 (2014).
  • T. Li, X. Tang, Z. Liu, and P. Zhang, Effect of intrinsic defects on electronic structure of bilayer graphene: First-principles calculations, Physica E 43, 1597–1601 (2011).
  • S. S. Terdalkar, S. Huang, H. Yuan, J. J. Rencis, T. Zhu, and S. Zhang, Nanoscale fracture in graphene, Chem. Phys. Lett. 494, 218–222 (2010).
  • T. Zhu, J. Li, S. Ogata, and S. Yip, Mechanics of ultra-strength materials, MRS Bull. 34, 167–172 (2009).
  • H. E. Troiani, M. Miki-Yoshida, G. A. Camacho-Bragado, M. A. L. Marques, A. Rubio, J. A. Ascencio, and M. Jose-Yacaman, Direct obsevation of the mechanical properties of single-walled carbon nanotubes and their junctions at the atomic level, Nano Lett. 3, 751–755 (2003).
  • T. Dumitrica, T. Belytschko, and B. I. Yakobson, Bond-breaking bifurcation states in carbon nanotube fracture, J. Chem. Phys. 118, 9485–9488 (2003).
  • T. Dumitrica, M. Hua, and B. I. Yakobson, Symmetry-, time-, and temperature-dependent strength of carbon nanotubes, Proc. Natl. Acad. Sci. U.S.A. 103, 6105 (2006).
  • T. Dumitrica and B. I. Yakobson, Strain-rate and temperature dependent plastic yield in carbon nanotubes from ab initio calculations, Appl. Phys. Lett. 84, 2775–2777 (2004).
  • M. B. Nardelli, B. I. Yakobson, and J. Bernholc, Brittle and ductile behavior in carbon nanotubes, Phys. Rev. Lett. 81, 4656 (1998).
  • S. Zhang and T. Zhu, Atomic geometry and energetic of carbon nanotube necking, Philos. Mag. Lett. 87, 567 (2007).
  • B.I. Yakobson, Mechanical relaxation and “intermolecular plasticity” in carbon nanotubes, Appl. Phys. Lett. 72, 918–920 (1998).
  • J. Y. Huang, F. Ding, and B. I. Yakobson, Dislocation dynamics in multiwalled carbon nanotubes at high temperatures, Phys. Rev. Lett. 100, 035503 (2008).
  • J. Y. Huang, S. Chen, S. H. Jo, Z. Wang, D. X Han, G. Chen, M. S Dresselhaus, and Z. F. Ren, Atomic-scale imaging of wall-by-wall breakdown and concurrent transport measurement in multiwall carbon nanotubes, Phys. Rev. Lett. 94, 236802 (2005).
  • D. Bozovic, M. Bockrath, J. H. Hafner, C. M. Lieber, H. Park, and M. Tinkham, Plastic deformations in mechanically strained single-walled carbon nanotubes, Phys. Rev. B Condens. Matter 67, 033407 (2003).
  • S. L Zhang, S. L Mielke, R. Khare, D. Troya, R. S Ruoff, G. C Schatz, and T. Belytschko, Mechanics of defects in carbon nanotubes: Atomistic and multiscale simulations, Phys. Rev. B Condens. Matter 71, 115403 (2005).
  • R. A. Quinlan, M. Cai, R. A. Outlaw, S. M. Butler, J. R. Miller, and A. N. Mansour, Investigation of defects generated in vertically oriented graphene, Carbon 64, 92–100 (2013).
  • X. Wei, B. Fragneaud, C. A Marianetti, and J. W Kysar, Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description, Phys. Rev. B Condens. Matter 80, 205407 (2009).
  • C. A. Marianetti, H.G. Yevick, Failure mechanisms of graphene under tension, Phys. Rev. Lett. 105, 245502 (2010).
  • G. V. Lier, C. V. Alsenoy, V. V. Doren, and P. Geerlings, Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene, Chem. Phys. Lett. 326, 181–185 (2000).
  • E. Konstantinova, S. O. Dantas, and P. M. V. B. Barone, Electronic and elastic properties of two-dimensional carbon planes, Phys. Rev. B Condens. Matter 74, 035417 (2006).
  • K. N. Kudin and G. E. Scuseria, C2F, BN and C nanoshell elasticity from ab initio computations, Phys. Rev. B: Condens. Matter 64, 235406 (2001).
  • Y. Wei, B. Wang, J. Wu, R. Yang, and M. L. Dunn, Bending rigity and Gaussian bending stiffness of single-layered graphene, Nano Lett. 13, 26–30 (2013).
  • R. Faccio, P. A. Denis, H. Pardo, C. Goyenola, and A. W. Mombru, Mechanical properties of graphene nanoribbons, J. Phys. Condens. Matter 21, 285304 (2009).
  • Y. S. Han and V. Tomar, An ab-initio investigation of the effect of graphene on the strength-electron density correlation in SiC grain boundaries, Comput. Mater. Sci. 92, 422–430 (2014).
  • J. Zhao, H. Zeng, J. Wei, B. Li, and D. Xu, Atomistic simulations of divacancy defects in armchair graphene nanoribbons: Stability, electronic structure, and electron transport properties, Phys. Lett. A 378, 416–420 (2014).
  • X. Qin, Q. Meng, Y. Feng, and Y. Gao, Graphene with line defects as a membrane for gas separation: Design via a first-principles modeling, Surf. Sci. 607, 153–158 (2013).
  • L. Wu, T. Hou, Y. Li, K. S. Chan, and S. T. Lee, First-principles study on migration and coalescence of point defects in monolayer graphene, J. Phys. Chem. C 117, 17066–17072 (2013).
  • A. Sakhaee-Pour, Elastic properties of single-layered graphene sheet, Solid State Commun. 149, 91–95 (2009).
  • C. Baykasoglu and A. Mugan, Nonlinear fracture analysis of single-layer graphene sheets, Eng. Fract. Mech. 96, 241–250 (2012).
  • C. Li and T. W. Chou, A structural mechanics approach for the analysis of carbon nanotubes, Int. J. Solids Struct. 40, 2487–2499 (2003).
  • T. Chang and H. Gao, Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model, J. Mech. Phys. Solids 51, 1059–1074 (2003).
  • G. M. Odegard, T. S. Gates, L. M. Nicholson, and K. E. Wise, Equivalent-continuum modeling with application to carbon nanotubes, NASA/TM-2002-211454.
  • Y. Chandra, F. Scarpa, R. Chowdhury, S. Adhikari, and J. Sienz, Multiscale hybrid atomistic-FE approach for the nonlinear tensile behaviour of graphene nanocomposites, Composites Part A 46, 147–153 (2013).
  • M. W. Roberts, C. B. Clemons, J. P. Wilber, G. W. Young, A. Buldum, and D. D. Quinn, Continuum plate theory and atomistic modeling to find the flexural rigidity of a graphene sheet interacting with a substrate, Int. J. Nanotechnol. 2010, 868492 (2010).
  • H. S. Shen, L. Shen, and C. L. Zhang, Nonlocal plate model for nonlinear bending of single-layer graphene sheets subjected to transverse loads in thermal environments, Appl. Phys. A 103, 103–112 (2011).
  • P. Joshi and S. H. Upadhyay, Evaluation of elastic properties of muti walled carbon nanotube reinforced composite, Comput. Mater. Sci. 81, 332–338 (2014).
  • P. Joshi and S. H. Upadhyay, Effect of interphase on elastic behavior of multiwalled carbon nanotube reinforced composite, Comput. Mater. Sci. 87, 267–273 (2014).
  • P. Joshi and S. H. Upadhyay, Analysis of alignment effect on carbon nanotube layer in nanocomposites, Physica E 66, 221–227 (2015).
  • A. Parashar and P. Mertiny, Study of mode I fracture of graphene sheets using atomistic based finite element modeling and virtual crack closure technique, Int. J. Fract. 176, 119–126 (2012).
  • A. Parashar and P. Mertiny, Multiscale model to investigate the effect of graphene on the fracture characteristics of graphene/polymer nanocomposites, Nanoscale Res. Lett. 7, 595 (2012).
  • K. M. Liew, C. H. Wong, X. Q. He, M. J. Tan, and S. A. Meguid, Nanomechanics of single and multiwalled carbon nanotubes, Phys. Rev. B Condens. Matter 69, 115429 (2004).
  • U. A. Joshi, S. C. Sharma, and S. P. Harsha, Effect of carbon nanotube orientation on the mechanical properties of nanocomposites, Composites Part B 43, 2063–2071 (2012).
  • A. Y. Joshi, S. P. Harsha, and S. C. Sharma, Vibration signature analysis of single walled carbon nanotube based nanomechanical sensors, Physica E 42, 2115–2123 (2010).
  • U. A. Joshi, S. C. Sharma, and S. P. Harsha, Effect of waviness on the mechanical properties of carbon nanotube based composites, Physica E 43, 1453–1460 (2011).
  • U. A. Joshi, S. C. Sharma, and S. P. Harsha, A multiscale approach for estimating the chirality effects in carbon nanotube reinforced composites, Physica E 45, 28–35 (2012).
  • K. I. Tserpes and P. Papanikos, Finite element modeling of single-walled carbon nanotubes, Composites Part B 36, 468–477 (2005).
  • P. Papanikos, D. D. Nikolopoulos, and K. I. Tserpes, Equivalent beams for carbon nanotubes, Comput. Mater. Sci. 43, 345–352 (2008).
  • F. Scarpa and S. Adhikari, A mechanical equivalence for Poisson's ratio and thickness of C-C bonds in single wall carbon nanotubes, J. Phys. D Appl. Phys. 41, 085306 (2008).
  • F. Scarpa, S. Adhikari, and R. Chowdhury, The tranverse elasticity of bilayer graphene, Phys. Lett. A 374, 2053–2057 (2010).
  • J. R. Xiao, B. A. Gama, and J. W. Gillespie Jr., An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes, Int. J. Solids Struct. 42, 3075–3092 (2005).
  • A. Parashar and P. Mertiny, Effect of van der Waals interaction on the mode I fracture characteristics of graphene sheet, Solid State Commun. 173, 56–60 (2013).
  • Y. Jin and F. G. Yuan, Nanoscopic modeling of fracture of 2D graphene systems, J. Nanosci. Nanotechnol. 5, 601–608 (2005).
  • Y. Jin and F. G. Yuan, Atomic Simulations of J-integral in 2D Graphene Nanosystems, J. Nanosci. Nanotechnol. 5, 2099–2107 (2005).
  • J. L. Tsai, S. H. Tzeng, and Y. J. Tzou, Characterizing the fracture parameters of a graphene sheet using atomistic simulation and continuum mechanics, Int. J. Solids Struct. 47, 503–509 (2010).
  • M. A. N. Dewapriya, R. K. N. D. Rajapakse, and A. S. Phani, Atomistic and continuum modeling of temperature-dependent fracture of graphene, Int. J. Fract., 187, 199–212 (2014).
  • M. A. N. Dewapriya and R. K. N. D. Rajapakse, Effects of free edges and vacancy defects on the mechanical properties of graphene, Proc. of the 14th IEEE International Conference on Nanotechnology Toronto, Canada (2014).
  • M. A. N. Dewapriya, A. Srikantha Phani, and R. K. N. D. Rajapakse, Influence of temperature and free edges on the mechanical properties of graphene, Model. Simul. Mater. Sci. Eng. 21, 065017 (2013).
  • M. A. N. Dewapriya and R. K. N. D. Rajapakse, Molecular dynamics simulations and continuum modeling of temperature and strain rate dependent fracture strength of graphene with vacancy defects, J. Appl. Mech. 81, 081010 (2014).
  • Y. Gao and P. Hao, Mechanical properties of monolayer graphene under tensile and compressive loading, Physica E 41, 1561–1566 (2009).
  • H. Zhao and N. R. Aluru, Temperature and strain-rate dependent fracture strength of graphene, J. Appl. Phys. 108, 064321 (2010).
  • Y. Zheng, N. Wei, Z. Fan, L. Xu, and Z. Huang, Mechanical properties of grafold: a demonstration of strengthened graphene, Nanotechnology 22, 405701 (2011).
  • Y. Y Zhang, Q. X Pei, and C. M Wang, Mechanical properties of graphynes under tension: A molecular dynamics study, Appl. Phys. Lett. 101, 081909 (2012).
  • L. Wang and Q. Zhang, Elastic behavior of bilayer graphene under in-plane loadings, Curr. Appl. Phys. 12, 1173–1177 (2012).
  • Q. Lu, W. Gao, and R. Huang, Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension, Model. Simul. Mater. Sci. Eng. 19, 054006 (2011).
  • L. Zhou, Y. Wang, and G. Cao, Elastic properties of monolayer graphene with different chiralities, J. Phys. Condens. Matter 25, 125302 (2013).
  • L. Zhou, Y. Wang, and G. Cao, van der Waals effect on the nanoindentation response of free standing monolayer graphene, Carbon 57, 357–362 (2013).
  • L. Zhou, Y. Wang, and G. Cao, Boundary condition and pre-strain effects on the free standing indentation response of graphene monolayer, J. Phys. Condens. Matter 25, 475303 (2013).
  • L. Zhou, J. Xue, Y. Wang, and G. Cao, Molecular mechanics simulations of the deformation mechanism of graphene monolayer under free standing indentation, Carbon 63, 117–124 (2013).
  • L. Zhou, Y. Wang, and G. Cao, Estimating the elastic properties of few-layer graphene from the free-standing indentation response, J. Phys. Condens. Matter 25, 475301 (2013).
  • A. Sakhaee-Pour, M. T. Ahmadian, and R. Naghdabadi, Vibrational analysis of single-layered graphene sheets, Nanotechnology 19, 085702 (2008).
  • A. Sakhaee-Pour, Elastic buckling of single-layered graphene sheet, Comput. Mater. Sci. 45, 266–270 (2009).
  • Z. Lu and M. L. Dunn, van der Waals adhesion of graphene membranes, J. Appl. Phys. 107, 044301 (2010).
  • Q. Wang, Simulations of the bending rigidity of graphene, Phys. Lett. A 374, 1180–1183 (2010).
  • M. Neek-Amal and F. M. Peeters, Graphene nanoribbons subjected to axial stress, Phys. Rev. B Condens. Matter 82, 085432 (2010).
  • K. Min and N. R. Aluru, Mechanical properties of graphene under shear deformation, Appl. Phys. Lett. 98, 013113 (2011).
  • P. Liu and Y. W. Zhang, A theoretical analysis of frictional and defect characteristics of graphene probed by a capped single-walled carbon nanotube, Carbon 49, 3687–3697 (2011).
  • S. Sharma, R. Chandra, P. Kumar, and N. Kumar, Effect of Stone-Wales and vacancy defects on elastic moduli of carbon nanotubes and their composites using molecular dynamics simulation, Comput. Mater. Sci. 86, 1–8 (2014).
  • J. W. Kang, H. W. Kim, K. S. Kim, and J. H. Lee, Molecular dynamics modeling and simulation of a graphene-based nano electromechanical resonator, Curr. Appl. Phys. 13, 789–794 (2013).
  • S. P. Kiselev and E. V. Zhirov, Molecular dynamics simulation of deformation and fracture of graphene under uniaxial tension, Phys. Mesomech. 16(2), 1–8 (2013).
  • W. Wang, S. Li, J. Min, C. Yi, Y. Zhan, and M. Li, Nanoindentation experiments for single-layer rectangular graphene films: a molecular dynamics study, Nanoscale Res. Lett. 9(41), 1–8 (2014).
  • E. Cadelano, P. L. Palla, S. Giordano, and L. Colombo, Nonlinear elasticity of monolayer graphene, Phys. Rev. Lett. 102, 235502 (2009).
  • J. N. B. Rodrigues, P. A. D. Goncalves, N. F. G. Rodrigues, R. M. Ribeiro, J. M. B. Lopes dos Santos, and N. M. R. Peres, Zigzag graphene nanoribbon edge reconstruction with Stone-Wales defects, Phys. Rev. B Condens. Matter 84, 155435 (2011).
  • E. B. Tadmor and R. E. Miller, Modeling Materials Continuum, Atomistic and Multiscale Techniques, 1st ed., Cambridge University Press, New York (2011).
  • W. Jiang, J. S. Wang, and B. Li, Young's modulus of Graphene: a molecular dynamics study, Phys. Rev. B Condens. Matter 80, 113405 (2009).
  • J. L. Tsai and J. F. Tu, Characterizing mechanical properties of graphite using molecular dynamics simulation, Mater. Des. 31, 194–199 (2010).
  • M. Neek-Amal and F. M. Peeters, Linear reduction of stiffness and vibration frequencies in defected circular monolayer graphene, Phys. Rev. B Condens. Matter 81, 235437 (2010).
  • Z. Ni, H. Bu, M. Zou, H. Yi, K. Bi, and Y. Chen, Anisotropic mechanical properties of graphene sheets from molecular dynamics, Physica B 405, 1301–1306 (2010).
  • R. Ansari, B. Motevalli, A. Montazeri, and S. Ajori, Fracture analysis of monolayer graphene sheets with double vacancy defects via MD simulation, Solid State Commun. 151, 1141–1146 (2011).
  • Y. Y. Zhang and Y. T. Gu, Mechanical properties of graphene: Effects of layer number, temperature and isotope, Comput. Mater. Sci. 71, 197–200 (2013).
  • H. Bu, Y. Chen, M. Zou, H. Yi, K. Bi, and Z. Ni, Atomistic simulations of mechanical properties of graphene nanoribbons, Phys. Lett. A 373, 3359–3362 (2009).
  • H. Zhao, K. Min, and N. R. Aluru, Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension, Nano Lett. 9, 3012–3015 (2009).
  • W. Cai, J. Li, and S. Yip, Molecular dynamics, comprehensive nuclear materials, 1, 249–265 (2012).
  • W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A At. Mol. Opt. Phys. 31, 1695–1697 (1985).
  • S. Nose, A uniform formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81 (1), 511–549 (1984).
  • M. P. Allen, D. J. Tildesley, and R. Allen, Computer Simulation of Liquids, Oxford University Press, New York (1988).
  • Q. X. Pei, Y. W. Zhang, and V. B. Shenoy, A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene, Carbon 48, 898–904 (2010).
  • N. Chandra, S. Namilae, and C. Shet, Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects, Phys. Rev. B Condens. Matter 69, 094101 (2004).
  • Y. Huang, J. Wu, and K. C. Hwang, Thickness of graphene and single-wall carbon nanotubes, Phys. Rev. B Condens. Matter 74, 245413 (2006).
  • D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys. Condens. Matter 14, 783–802 (2002).
  • S. J. Stuart, A. B. Tutein, and J. A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys. 112(14), 6472–6486 (2000).
  • L. He, S. Guo, J. Lei, Z. Sha, and Z. Liu, The effect of Stone-Thrower-Wales defects on mechanical properties of graphene sheets – A molecular dynamics study, Carbon 75, 124–132 (2014).
  • J. Wu and Y. Wei, Grain misorintation and grain-boundary rotation dependent mechanical properties of polycrystalline graphene, J. Mech. Phys. Solids 61, 1421–1432 (2013).
  • Y. I. Jhon, S. E. Zhu, J. H. Ahn, and M. S. Jhon, The mechanical responses of tilted and non-tilted grain boundaries in graphene, Carbon 50, 3708–3716 (2012).
  • Y. Zhang and C. Pan, Measurement of mechanical properties and number of layers of graphene from nano-indentation, Diamond Relat. Mater. 24, 1–5 (2012).
  • D. Porezag, Th. Frauenheim, and Th. Kohler, Construction of tight-binding-like potentials on the basis of density-fuctional theory: Application to carbon, Phys. Rev. B Condens. Matter 51, 12947–12957 (1995).
  • H. Sun, COMPASS: An ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds, J. Phys. Chem. B 102, 7338–7364 (1998).
  • C. G. Navarro, M. Burghard, and K. Kern, Elastic properties of chemically derived single graphene sheets, Nano Lett. 8, 2045–2049 (2008).
  • R. Rasuli, A. Iraji zad, and M. M. Ahadian, Mechanical properties of graphene cantilever from atomic force microscopy and density functional theory, Nanotechnology 21, 185503 (2010).
  • J. W. Suk, R. D. Piner, J. An, and R. S. Ruoff, Mechanical properties of monolayer graphene oxide, ACS Nano 4, 6557–6564 (2010).
  • H. M. Chien, M. C. Chuang, H. C. Tsai, H. W. Shiu, L. Y. Chang, C. H. Chen, S. W. Lee, J. D. White, and W. Y. Woon, On the nature of defects created on graphene by scanning probe lithography under ambient conditions, Carbon 80, 318–324 (2014).
  • A. Gao, E. Zoethout, J. M. Sturm, C. J. Lee, and F. Bijkerk, Defect formation in single layer graphene under extreme ultraviolet irradiation, Appl. Surf. Sci. 317, 745–751 (2014).
  • G. Imamura and K. Saiki, UV-irradiation induced defect formation on graphene on metals, Chem. Phys. Lett. 587, 56–60 (2013).
  • C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321, 38–388 (2008).
  • I. W. Frank, D. M. Tanenbaum, A. M. van der Zande, and P. L. McEuen, Mechanical properties of suspended graphene sheets, J. Vac. Sci. Technol. B 25, 2558–2561 (2007).
  • L. Shen, H. S. Shen, and C. L. Zhang, Temperature-dependent elastic properties of single layer graphene sheets, Mater. Des. 31, 4445–4449 (2010).
  • A. Parashar and P. Mertiny, Representative volume element to estimate buckling behavior of graphene/polymer nanocomposite, Nanoscale Res. Lett. 7, 515 (2012).
  • W. Wang, C. Shen, S. Li, J. Min, and C. Yi, Mechanical properties of single layer graphene nanoribbons through bending experimental simulations, AIP Adv. 4, 031333 (2014).
  • C. D. Reddy, S. Rajendran, and K. M. Liew, Equilibrium configuration and continuum elastic properties of finite sized graphene, Nanotechnology 17, 864–870 (2006).
  • A. G. Kvashnin, P. B. Sorokin, and D. G. Kvashnin, The theoretical study of mechanical properties of graphene membranes, Fullerenes Nanotubes Carbon Nanostruct. 18, 497–500 (2010).
  • M. M. Shokrieh and R. Rafiee, Prediction of Young's modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach, Mater. Des. 31, 790–795 (2010).
  • J. R. Xiao, J. Staniszewski, and J. W. Gillespie Jr., Fracture and progressive failure of defective graphene sheets and carbon nanotubes, Compos. Struct. 88, 602–609 (2009).
  • S. K. Georgantzinos, G. I. Giannopoulos, and N. K. Anifantis, Numerical investigation of elastic mechanical properties of graphene structures, Mater. Des. 31, 4646–4654 (2010).
  • M. Canadija, M. Brcic, and J. Brnic, Bending behavior of single-layerd graphene nanosheets with vacancy defects, Eng. Rev. 33, 09–14 (2013).
  • A. Tapia, R. Peon-Escalante, C. Villanueva, and F. Aviles, Influence of vacancies on the elastic properties of a graphene sheet, Comput. Mater. Sci. 55, 255–262 (2012).
  • B. Mortazavi, O. Benzerara, H. Meyer, J. Bardon, and S. Ahzi, Combined molecular dynamics-finite element multiscale mdeling of thermal conduction in graphene epoxy nanocomposites, Carbon 60, 356–365 (2013).
  • Y. Chandra, R. Chowdhury, F. Scarpa, S. Adhikari, J. Sienz, C. Arnold, T. Murmu, and D. Bould, Vibration frequency of graphene based composites: A multiscale approach, Mater. Sci. Eng. B 177, 303–310 (2012).
  • S. Gupta, K. Dharamvir, and V. K. Jindal, Elastic moduli of single-walled carbon nanotubes and their ropes, Phys. Rev. B Condens. Matter 72, 165428 (2005).
  • B. WenXing, Z. ChangChun, and C. WanZhao, Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics, Physica B 352, 156–163 (2004).
  • A. Hemmasizadeh, M. Mahzoon, E. Hadi, and R. Khandan, A method for developing the equivalent continuum model of a single layer graphene sheet, Thi Solid Films 516, 7636–7640 (2008).
  • M. Neek-Amal and F. M. Peeters, Nanoindentation of a circular sheet of bilayer graphene, Phys. Rev. B Condens. Matter 81, 235421 (2010).
  • F. Liu, P. Ming, and J. Li, Ab initio calculation of strength and phonon instability of graphene under tension, Phys. Rev. B Condens. Matter 76, 064120 (2007).
  • D. Sanchez-Portal, E. Artacho, and J. M. Soler, Ab initio structural, elastic, and vibrational properties of carbon nanotubes, Phys. Rev. B Condens. Matter 59 (19), 12678–12688 (1999).
  • E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Elastic properties of C and BxCyNz composite nanotubes, Phys. Rev. Lett. 80 (20), 4502–4505 (1998).
  • M. Meo and M. Rossi, Prediction of Young,s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modeling, Compos. Sci. Technol. 66, 1597–1605 (2006).
  • E. Bitzek, P. Gumbsch, Mechanisms of dislocation multiplication at crack tips, Acta Mater., 61, 1394–1403 (2013).
  • S. A. Niaki, J. R. Mianroodi, M. Sadeghi, and R. Naghdabadi, Dynamic and static fracture analyses of graphene sheets and carbon nanotubes, Compos. Struct. 94, 2365–2372 (2012).
  • Y. G. Yanovsky, Y. N. Karnet, E. A. Nikitina, and S. M. Nikitin, Quantum mechanics study of the mechanism of deformation and fracture of graphene, Phys. Mesomech. 12, 254–262 (2009).
  • S. K. Georgantzinos, D. E. Katsareas, and N. K. Anifantis, Limit load analysis of graphene with pinhole defects: A nonlinear structural mechanics approach, Int. J. Mech. Sci. 55, 85–94 (2012).
  • Z. Xu, Graphene nano-ribbons under tension, J. Computat. Theoret. Nanoscience 6, 1–3 (2009).
  • N. Wei, L. Xu, H. Q. Wang, and J. C. Zheng, Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration on magic flexibility, Nanotechnology 22, 105705 (2011).
  • L. Lindsay, W. Li, J. Carrete, N. Mingo, D. A. Broido, and T. L. Reinecke, Phonon thermal transport in strained and unstrained graphene from first principles, Phys. Rev. B Condens. Matter 89, 155426 (2014).
  • J. Huang and C. H. Wong, Thickness, chirality and pattern dependence of elastic properties of hydrogen functionalized graphene, Comput. Mater. Sci. 92, 192–198 (2014).
  • Q. X. Pei, Z. D. Sha, and Y. W. Zhang, A theoretical analysis of the thermal conductivity of hydrogenated graphene, Carbon 49, 4752–4759 (2011).
  • W. X. Huang, Q. X. Pei, Z. S. Liu, and Y. W. Zhang, Thermal conductivity of fluorinated graphene: A non-equilibrium molecular dynamics study, Chem. Phys. Lett. 552, 97–101 (2012).
  • Y. Y. Zhang, Q. X. Pei, and C. M. Wang, A molecular dynamics investigation on thermal conductivity of graphynes, Comput. Mater. Sci. 65, 406–410 (2012).
  • D. Konatham, D. V. Papavassiliou, and A. Striolo, Thermal boundary resistance at the graphene-graphene interface estimated by molecular dynamics simulations, Chem. Phys. Lett. 527, 47–50 (2012).
  • T. Ouyang, Y. Chen, Y. Xie, G. M. Stocks, and J. Zhong, Thermal conductance modulator based on folded graphene nanoribbons, Appl. Phys. Lett. 99, 233101 (2011).
  • K. Kim, V. I. Artyukhov, W. Regan, Y. Liu, M. F. Crommie, B. I. Yakobson, and A. Zettl, Ripping graphene: preferred directions, Nano Lett. 12, 293–297 (2012).
  • U. Ray and G. Balasubramanian, Reduced thermal conductivity of isotope substituted carbon nanomaterials: Nanotube versus graphene nanoribbons, Chem. Phys. Lett. 599, 154–158 (2014).
  • S. Ghosh, W. Z. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Dimensional crossover of thermal transport in few-layer graphene, Nat. Mater. 9, 555–558 (2010).
  • S. Chen, A. L. Moore, W. Cai, J. W. Suk, J. An, C. Mishra, C. Amos, C. W. Magnuson, J. Kang, L. Shi, and R. S. Ruoff, Raman measurement of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments, ACS Nano 5, 321–328 (2011).
  • A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10, 569–581 (2011).
  • S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, R. S. Ruoff, Thermal conductivity of isotopically modified graphene, Nat. Mater. 11, 203–207 (2012).
  • D. Yang, F. Ma, Y. Sun, T. Hu, and K. Xu, Influence of typical defects on thermal conductivity of graphene nanoribbons: An equilibrium molecular dynamic simulation, Appl. Surf. Sci. 258, 9926–9931 (2012).
  • B. Mortazavi and S. Ahzi, Thermal conductivity and tensile response of defective graphene: A molecular dynamics study, Carbon 63, 460–470 (2013).
  • F. Hao, D. Fang, and Z. Xu, Mechanical and thermal transport properties of graphene with defects, Appl. Phys. Lett. 99, 041901 (2011).
  • S. P. Wang, J. G. Guo, and L. J. Zhou, Influence of Stone-Wales defects on elastic properties of graphene nanofilms, Physica E 48, 29–35 (2013).
  • B. Fan, X. B. Yang, and R. Zhang, Anisotropic mechanical properties and Stone-Wales defects in graphene monolayer: A theoretical study, Phys. Lett. A 374, 2781–2784 (2010).
  • Z. G. Fthenakis, Z. Zhu, and D. Tomanek, Effect of structural defects on the thermal conductivity of graphene: From point to line defects to haeckelites, Phys. Rev. B Condens. Matter 89, 125421 (2014)
  • T. Y. Ng, J. J. Yeo, and Z. S. Liu, A molecular dynamics study of the thermal conductivity of graphene nanoribbons containing dispersed Stone-Thrower-Wales defects, Carbon 50, 4887–4893 (2012).
  • M. Hjort and S. Stafstrom, Modeling vacancies in graphite via the Huckel method, Phys. Rev. B Condens. Matter 61, 14089–14094 (2000).
  • Y. Kim, J. Ihm, E. Yoon, and G. D. Lee, Dynamics and stability of divacancy defects in graphene, Phys. Rev. B Condens. Matter 84, 075445 (2011).
  • G. D. Lee, C. Wang, E. Yoon, N. M. Hwang, D. Y. Kim, and K. Ho, Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers, Phys. Rev. Lett. 95, 205501 (2005).
  • J. Kotakoski, J. Meyer, S. Kurasch, D. Santos-Cottin, U. Kaiser, and A. Krasheninnikov, Stone-Wales-type transformation in carbon nanostructures driven by electron irradiation, Phys. Rev. B Condens. Matter 83, 245420 (2011).
  • I. Zsoldos, Effect of topological defects on graphene geometry and stability, Nanotechnol. Sci. Applic. 3, 101–106 (2010).
  • A. A. EI-Barbary, R. H. Telling, C. P. Ewels, M. I. Heggie, and P. R. Briddon, Structure and energetic of the vacancy in graphite, Phys. Rev. B Condens. Matter 68, 144107 (2003).
  • A. Ito and S. Okamoto, Molecular dynamics analysis on effects of vacancies upon mechanical properties of graphene and graphite, Eng. Lett. 20:3, EL_20_3_09.
  • A. Hashimoto, K. Suenaga, A. Gloten, K. Urita, and S. Iijima, Direct evidence for atomic defects in graphene layers, Nature 430, 870–873 (2004).
  • Y. Yang, Mechanical properties of graphene with vacancy defects, Res. Mater. Sci. 2(4), 50–57 (2013).
  • A. Santana, A. M. Popov, and E. Bichoutskaia, Stability and dynamics of vacancy in graphene flakes: Edge effects, Chem. Phys. Lett. 557, 80–87 (2013).
  • J. Kotakoski and J. C. Meyer, Mechanical properties of polycrystalline graphene based on a realistic atomistic model, Phys. Rev. B Condens. Matter 85, 195447 (2012).
  • Y. Y. Zhang, Y. Cheng, Q. X. Pei, C. M. Wang, and Y. Xiang, Thermal conductivity of defective graphene, Phys. Lett. A 376, 3668–3672 (2012).
  • F. Hao, D. N. Fang, and Z. P. Xu, Mechanical and thermal transport properties of graphene with defects, Appl. Phys. Lett. 99, 041901 (2011).
  • C. Sevik, H. Sevincli, G. Cuniberti, and T. Cagin, Phonon engineering in carbon nanotubes by controlling defect concentration, Nano Lett. 11, 4971–4977 (2011).
  • H. Yang, Y. Tang, Y. Liu, X. Yu, and P. Yang, Thermal conductivity of graphene nanoribbons with defects and nitrogen doping, React. Funct. Polym. 79, 29–35 (2014).
  • E. T. Swartz and R. O. Pohl, Thermal boundary resistance, Rev. Mod. Phys. 61, 605–668 (1989).
  • D. Liu, P. Yang, X. Yuan, J. Guo, and N. Liao, The defect location effect on thermal conductivity of graphene nanoribbons based on molecular dynamics, Phys. Lett. A 379, 810–814 (2014).
  • S. Ogata and Y. Shibutani, Ideal tensile strength and band gap of single-walled carbon nanotubes, Phys. Rev. B Condens. Matter 68, 165409 (2003).
  • L. L. Bonilla and A. Carpio, Driving dislocations in graphene, Science 337, 161–162 (2012).
  • O. V. Yazyev and S. G. Louie, Topological defects in graphene: Dislocations and grain boundaries, Phys. Rev. B Condens. Matter 81, 195420 (2010).
  • J. H. Warner, E. R. Margine, M. Mukai, A. W. Robertson, F. Giustino, and A. I. Kirklandd, Dislocation-driven deformations in graphene, Science 337, 209–212 (2012).
  • G. D. Lee, E. Yoon, N. M. Hwang, C. Zhuang, and K. M. Ho, Formation and development of dislocation in graphene, Appl. Phys. Lett. 102, 021603 (2013).
  • B. Butz, C. Dolle, F. Niekiel, K. Weber, D. Waldmann, H. B. Weber, B. Meyer, and E. Spiecker, Dislocations in bilayer graphene, Nature 505, 533 (2014).
  • M. P. Ariza, M. Ortiz, and R. Serrano, Long-term dynamic stability of discrete dislocations in graphene at finite temperature, Int. J. Fract. 166, 215–223 (2010).
  • A. Carpio, L. L. Bonilla, F. de Juan, and M. A. H. Vozmediano, Dislocations in graphene, New J. Phys. 10, 053021 (2008).
  • P. Nemes-Incze, K. J. Yoo, L. Tapaszto, G. Dobrik, J. Labar, Z. E. Horvath, C. Hwang, and L. P. Biro, Revealing the grain structure of graphene grown by chemical vapor deposition, Appl. Phys. Lett. 99, 023104 (2011).
  • H. I. Rasool, C. Ophus, W. S. Klug, A. Zettl, and J. K. Gimzewski, Measurement of the intrinsic strength of crystalline and polycrystalline graphene, Nature Commun. 4, 2811 (2013).
  • P. Xu, D. Qi, J. K. Schoelz, J. Thompson, P. M. Thibado, V. D. Wheeler, L. O. Nyakiti, R. L. Myers-Ward, C. R. Eddy Jr., D. K. Gaskill, M. Neek-Amal, and F. M. Peeters, Multilayer graphene, Moire patterns, grain boundaries and defects identified by scanning tunneling microscopy on the m-plane, non-polar surface of SiC, Carbon 80, 75–81 (2014).
  • C. S. Ruiz-Vargas, H. L. Zhuang, P. Y. Huang, A. M. van der Zande, S. Garg, P. L. McEuen, D. A. Muller, R. G. Hennig, and J. Park, Softened elastic response and unzipping in chemical vapor deposition graphene membranes, Nano Lett. 11, 2259–2263 (2011).
  • T. H. Liu, C. W. Pao, and C. C. Chang, Effects of dislocation densities and distributions on graphene grain boundary failure strengths from atomistic simulations, Carbon 50, 3465–3472 (2013).
  • L. Yi, Z. Yin, Y. Zhang, and T. Chang, A theoretical evaluation of the temperature and strain-rate dependent fracture strength of tilt grain boundaries in graphene, Carbon 51, 373–380 (2013).
  • M. Q. Chen, S. S. Quek, Z. D. Sha, C. H. Chiu, Q. X. Pei, and Y. W. Zhang, Effect of grain size, temperature and strain rate on the mechanical properties of polycrystalline graphene – A molecular dynamics study, Carbon 85, 135–146 (2015).
  • J.R. Yin, W. H. Wu, W. Xie, Y. H. Ding, and P. Zhang, Influence of line defects on relaxation properties of graphene: A molecular dynamics stydy, Physica E 68, 102–106 (2015).
  • F. Hao and D. Fang, Mechanical deformation and fracture mode of polycrystalline graphene: Atomistic simulations, Phys. Lett. A 376, 1942–1947 (2012).
  • K. Zhang, J. Zhao, and J. P. Lu, Intrinsic strength and failure behaviors of graphene grain boundaries, ACS Nano 6, 2704–2711 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.