1,530
Views
70
CrossRef citations to date
0
Altmetric
Reviews

Laser-based Surface Modifications of Aluminum and its Alloys

, , , , &

REFERENCES

  • T. Dursun and C. Soutis, Recent developments in advanced aircraft aluminium alloys, Mater. Des. 56(0), 862–871 (2014).
  • S. J. Kalita, Microstructure and corrosion properties of diode laser melted friction stir weld of aluminum alloy 2024 T351, Appl. Surf. Sci. 257(9), 3985–3997 (2011).
  • R. H. Richman and W. P. McNaughton, Correlation of cavitation erosion behavior with mechanical properties of metals, Wear 140(1), 63–82 (1990).
  • R. Figueroa, C. M. Abreu, M. J. Cristóbal, and G. Pena, Effect of nitrogen and molybdenum ion implantation in the tribological behavior of AA7075 aluminum alloy, Wear 276–277(0), 53–60 (2012).
  • J. I. Oñate, F. Alonso, and A. Garcı́a, Improvement of tribological properties by ion implantation, Thin Solid Films 317(1–2), 471–476 (1998).
  • F. Tang, X. Wu, S. Ge, J. Ye, H. Zhu, M. Hagiwara, and J. M. Schoenung, Dry sliding friction and wear properties of B4C particulate-reinforced Al-5083 matrix composites, Wear 264(7–8), 555–561 (2008).
  • F. Y. Zhang and M. F. Yan, Microstructure and mechanical properties of multiphase coating produced by plasma nitriding Ti coated GB-5083 aluminum alloy, Surf. Coat. Technol. 253(0), 268–276 (2014).
  • S. Bathula, R. C. Anandani, A. Dhar, and A. K. Srivastava, Microstructural features and mechanical properties of Al 5083/SiCp metal matrix nanocomposites produced by high energy ball milling and spark plasma sintering, Mater. Sci. Eng. A 545(0), 97–102 (2012).
  • A. A. D. Sarhan, E. Zalnezhad, and M. Hamdi, The influence of higher surface hardness on fretting fatigue life of hard anodized aerospace AL7075-T6 alloy, Mater. Sci. Eng. A 560(0), 377–387 (2013).
  • M. A. Ezazi, M. M. Quazi, E. Zalnezhad, and A. A. D. Sarhan, Enhancing the tribo-mechanical properties of aerospace AL7075-T6 by magnetron-sputtered Ti/TiN, Cr/CrN & TiCr/TiCrN thin film ceramic coatings, Ceram. Int. 40(10, Part A), 15603–15615 (2014).
  • E. Uhlmann, F. Sammler, M. Meixner, D. Heinrich, F. Gansert, W. Reimers, D. Berger, and I. Rieck, Analysis of residual stresses and wear mechanism of HF-CVD diamond coated cemented carbide tools, Product. Eng. 1–9 (2014).
  • J. A. Picas, A. Forn, R. Rilla, and E. Martín, HVOF thermal sprayed coatings on aluminium alloys and aluminium matrix composites, Surf. Coat. Technol. 200(1), 1178–1181 (2005).
  • S. Sepeur and G. Frenzer, Commercial applications of nanocomposite sol-gel coatings, In Sol-Gel Nanocomposites, M. Guglielmi, Kickelbick, Guido, Martucci, Alessandro, Eds., New York, USA: Springer (2014); pp. 191–221.
  • M. Zhong and W. Liu, Laser surface cladding: The state of the art and challenges, Proc. of the Institution of Mechanical Engineers, Part C: J. Mechan. Eng. Sci. 224(5), 1041–1060 (2010).
  • L. Dubourg and J. Archambeault, Technological and scientific landscape of laser cladding process in 2007, Surf. Coat. Technol. 202(24), 5863–5869 (2008).
  • A. Singh and S. P. Harimkar, Laser surface engineering of magnesium alloys: a review, Jom, 64(6), 716–733 (2012).
  • L. Pawlowski, Thick laser coatings: A review, J. Therm. Spray Technol. 8(2), 279–295 (1999).
  • S. K. Biswas, Wear of Metals: A Material Approach. Wear, in Materials, Mechanisms and Practices, Gwidon W. Stachowiak, Ed., Chichester, England: John Wiley & Sons, Ltd. (2006); pp. 21–36.
  • L. R. Migliore, Laser Materials Processing. New York, USA: CRC Press (1996); pp. 79–102.
  • L. Li, The advances and characteristics of high-power diode laser materials processing, Opt. Lasers Eng. 34(4), 231–253 (2000).
  • D. J. Richardson, J. Nilsson, and W. A. Clarkson, High power fiber lasers: current status and future perspectives Invited, J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
  • L. Li, The advances and characteristics of high-power diode laser materials processing, Opt. Lasers Eng. 34(4–6), 231–253 (2000).
  • L. Dubourg, H. Pelletier, D. Vaissiere, F. Hlawka, and A. Cornet, Mechanical characterisation of laser surface alloyed aluminium–copper systems, Wear 253(9), 1077–1085 (2002).
  • L. Quintino, A. Costa, R. Miranda, D. Yapp, V. Kumar, and C. J. Kong, Welding with high power fiber lasers–a preliminary study, Mater. Des, 28(4), 1231–1237 (2007).
  • Y. S. Touloukian and D. P. DeWitt, Thermophysical Properties of Matter-The TPRC Data Series. Volume 7. Thermal Radiative Properties-Metallic Elements and Alloys. DTIC Document (1970); pp. 13–26.
  • A. Miotello and P. M. Ossi, Laser-Surface Interactions for New Materials Production, vol. 130. New York, USA: Springer (2010); p. 17.
  • L. K. Ang, Y. Y. Lau, R. M. Gilgenbach, and H. L. Spindler, Analysis of laser absorption on a rough metal surface, Appl. Phys. Lett. 70(6), 696–698 (1997).
  • P. Peyre and R. Fabbro, Laser shock processing: a review of the physics and applications, Opt.. Quantum Electron. 27(12), 1213–1229 (1995).
  • T. Kek and J. Grum, Influence of the graphite absorber during laser surface hardening, Strojniški vestnik-J. Mechan. Eng. 56(2), 150–157 (2010).
  • C. Carey, W. J. Cantwell, G. Dearden, K. R. Edwards, S. P. Edwardson, J. D. Mullett, C. J. Williams, and K. G. Watkins, Effects of laser interaction with graphite coatings, In Proc. of the Laser Assisted Net Shape Eng., 673–686 (2007).
  • C. D'Amato, J. Buhagiar, and J.C. Betts, Tribological characteristics of an A356 aluminium alloy laser surface alloyed with nickel and Ni–Ti–C, Appl. Surf. Sci. 014. 313, 720–729 (2014).
  • J. E. Hatch and A. Aluminum, Aluminum: Properties and Physical Metallurgy, Metals Park, Ohio: ASM International (1984); pp. 17–19.
  • T. Sibillano, A. Ancona, V. Berardi, E. Schingaro, G. Basile, and P. Mario Lugarà, A study of the shielding gas influence on the laser beam welding of AA5083 aluminium alloys by in-process spectroscopic investigation, Optics Lasers Eng. 44(10), 1039–1051 (2006).
  • F. Brückner, D. Lepski, and E. Beyer, Modeling the influence of process parameters and additional heat sources on residual stresses in laser cladding, J. Therm. Spray Technol. 16(3), 355–373 (2007).
  • M. Wang, Y. Li, Z. Wang, and E. Bao, Effect of rare earth elements on the thermal cracking resistance of high speed steel rolls, J. Rare Earths 29(5), 489–493 (2011).
  • J. H. Ouyang, S. Nowotny, A. Richter, and E. Beyer, Laser cladding of yttria partially stabilized ZrO2 (YPSZ) ceramic coatings on aluminum alloys, Ceram. Int. 27(1), 15–24.
  • Z. Tao , C. Xun, W. Shunxing, and Z. Shian, Effect of CeO2 on microstructure and corrosive wear behavior of laser-cladded Ni/WC coating, Thin Solid Films 379(1–2), 128–132 (2000).
  • K. L. Wang, Q. B. Zhang, M. L. Sun, X. G. Wei, and Y. M. Zhu, Rare earth elements modification of laser-clad nickel-based alloy coatings, Appl. Surf. Sci. 174(3), 191–200 (2001).
  • F. Fariaut, C. Boulmer-Leborgne, N. Semmar, and E. Le Menn, High-speed mass-transport phenomena during carburization of aluminum alloy by laser plasma treatment, Appl. Phys. A 83(1), 95–101 (2006).
  • S. Elhadj, M. J. Matthews, and S. T. Yang, Combined infrared thermal imaging and laser heating for the study of materials thermophysical and processing properties at high temperatures, Crit. Rev. Solid State Mater. Sci. 39(3), 175–196 (2014).
  • H. W. Bergmann and B. L. Mordike, Laser surface melting, NASA STI/Recon Technical Report N, 88, 21435 (1986).
  • C. Allen, C. and A. Ball, A review of the performance of engineering materials under prevalent tribological and wear situations in South African industries, Tribol. Int. 29(2), 105–116 (1996).
  • M. M. Pariona, V. Teleginski, K. dos Santos, A. A. O. C. de Lima, A. J. Zara, K. T. Micene, and R. Riva, Influence of laser surface treated on the characterization and corrosion behavior of Al–Fe aerospace alloys, Appl. Surf. Sci. 276, 76–85 (2013).
  • G. Phanikumar et al., Microstructural evolution during remelting of laser surface alloyed hyper-monotectic Al–Bi alloy, Mater. Sci. Eng. A 371(1), p. 91–102 (2004).
  • M. A. Pinto et al., Microstructural and hardness investigation of an aluminum–copper alloy processed by laser surface melting, Mater. Characteriz. 50(2), 249–253 (2003).
  • J. Sušnik, R. Šturm, and J. Grum, Influence of laser surface remelting on Al-Si alloy properties, Strojniški vestnik-J. Mechan. Eng. 58(10), 614–620 (2012).
  • T. T. Wong, G. Y. Liang, and C. Y. Tang, The surface character and substructure of aluminium alloys by laser-melting treatment, J. Mater. Process. Technol. 66(1), 172–178 (1997).
  • M. Gremaud, D. R. Allen, M. Rappaz, and J. H. Perepezko, The development of nucleation controlled microstructures during laser treatment of Al Si alloys, Acta Materialia 44(7), 2669–2681 (1996).
  • E. Sicard, C. Boulmer-Leborgne, C. Andreazza-Vignolle, and M. Frainais, Excimer laser surface treatment of aluminum alloy in nitrogen, Appl. Phys. A 73(1), 55–60 (2001).
  • F. Fariaut, C. Boulmer-Leborgne, E. Le Menn, T. Sauvage, C. Andreazza, P. Andreazza, and C. Langlade, Surface carburization of aluminum alloys by excimer laser, Surf. Coat. Technol. 146, 324–330 (2001).
  • S. Tomida et al., Improvement in wear resistance of hyper-eutectic Al Si cast alloy by laser surface remelting, Surf. Coat. Technol. 169, 468–471 (2003).
  • J. Rams, A. Pardo, A. Urena, R. Arrabal, F. Viejo, and A. J. López, Surface treatment of aluminum matrix composites using a high power diode laser, Surf. Coat. Technol. 202(4), 1199–1203 (2007).
  • W. Serbiński, J. M. Olive, J. P. Frayret, and D. Desjardins, Morphology and corrosion characteristics of laser surface remelted Al-Si alloy at cryogenic conditions, Mater. Corros. 53(5), 335–340 (2002).
  • T. M. Yue, Y. X. Wu, and H. C. Man, Improvement in the corrosion resistance of aluminum 2009/SiCw composite by Nd: YAG laser surface treatment, J. Mater. Sci. Lett. 18(3), 173–175 (1999).
  • P. H. Chong, Z. Liu, P. Skeldon, and G. E. Thompson, Large area laser surface treatment of aluminium alloys for pitting corrosion protection, Appl. Surf. Sci. 208, 399–404 (2003).
  • Z. Liu, P. H. Chong, A. N. Butt, P. Skeldon, and G. E. Thompson, Corrosion mechanism of laser-melted AA 2014 and AA 2024 alloys, Appl. Surf. Sci. 247(1), 294–299 (2005).
  • R. Li, M. G. S. Ferreira, A. Almeida, R. Vilar, K. G. Watkins, M. A. McMahon, and W. M. Steen, Localized corrosion of laser surface melted 2024-T351 aluminium alloy, Surf. Coat. Technol. 81(2), 290–296 (1996).
  • Z. Liu, P. H. Chong, P. Skeldon, P. A. Hilton, J. T. Spencer, and B. Quayle, Fundamental understanding of the corrosion performance of laser-melted metallic alloys, Surf. Coat. Technol. 200(18), 5514–5525 (2006).
  • K. Surekha, B. S. Murty, and K. Prasad Rao, Comparison of corrosion behaviour of friction stir processed and laser melted AA 2219 aluminium alloy, Mater. Des. 32(8), 4502–4508 (2011).
  • W. L. Xu, T. M. Yue, H. C. Man, and C. P. Chan, Laser surface melting of aluminium alloy 6013 for improving pitting corrosion fatigue resistance, Surf. Coat. Technol. 200(16), 5077–5086 (2006).
  • T. M. Yue, Y. X. Wu, and H. C. Man, Laser surface treatment of aluminium 6013 SiCp composite for corrosion resistance enhancement, Surf. Coat. Technol. 114(1), 13–18 (1999).
  • A. Almeida, P. Petrov, I. Nogueira, and R. Vilar, Structure and properties of Al–Nb alloys produced by laser surface alloying, Mater. Sci. Eng. A 303(1), 273–280 (2001).
  • W. L. Xu, T. M. Yue, and H. C. Man, Nd: YAG laser surface melting of aluminium alloy 6013 for improving pitting corrosion fatigue resistance, J. Mater. Sci. 43(3), 942–951 (2008).
  • J. Borowski and K. Bartkowiak, Investigation of the influence of laser treatment parameters on the properties of the surface layer of aluminum alloys, Phys. Procedia 5, 449–456 (2010).
  • T. M. Yue, L. J. Yan, and C. P. Chan, Excimer laser surface treatment of aluminum alloy AA7075 to improve corrosion resistance, Surf. Coat. Technol. 179(2), 158–164 (2004).
  • T. M. Yue, L. J. Yan, and C. P. Chan, Stress corrosion cracking behavior of Nd: YAG laser-treated aluminum alloy 7075, Appl. Surf. Sci. 252(14), 5026–5034 (2006).
  • H. J. Hegge and J. T. M. De Hosson, Microstructure of laser treated Al alloys, Acta metallurgica et materialia 38(12), 2471–2477 (1990).
  • A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W. S. Miller, Recent development in aluminium alloys for aerospace applications, Mater. Sci. Eng. A 280(1),102–107 (2000).
  • D. A. Pineda and M. A. Martorano, Columnar to equiaxed transition in directional solidification of inoculated melts, Acta Materialia 61(5), 1785–1797 (2013).
  • C. W. Draper and J. M. Poate, Laser surface alloying, Laser 30(1) (1985).
  • V. V. Girzhon, A. V. Smolyakov, and I. V. Tantsyura, Structural state of surface layers of aluminum after laser alloying using a mixture of copper and iron powders, Phys. Met. Metallogr. 106(4), 384–388 (2008).
  • W. J. Tomlinson and A. S. Bransden, Cavitation erosion of laser surface alloyed coatings on Al-12% Si, Wear 185(1), 59–65 (1995).
  • M. H. Staia, M. Cruz, and N. B. Dahotre, Wear resistance of a laser alloyed A-356 aluminum/WC composite. Wear 251(1), 1459–1468 (2001).
  • M. H. Staia, M. Cruz, and N. B. Dahotre, Microstructural and tribological characterization of an A-356 aluminum alloy superficially modified by laser alloying, Thin Solid Films 377, 665–674 (2000).
  • C. D'Amato, J. Buhagiar, and J. C. Betts, Tribological characteristics of an A356 aluminium alloy laser surface alloyed with nickel and Ni-Ti-C, Appl. Surf. Sci. 313, 720–729 (2014).
  • H. D. Vora, R. S. Rajamure, S. Soundarapandian, S. G. Srinivasan, and N. B. Dahotre, Design and optimization of microstructure for improved corrosion resistance in laser surface alloyed aluminum with molybdenum, Int. J. Precis. Eng. Manuf. 14(8), 1421–1432 (2013).
  • H. D. Vora, R. S. Rajamure, S. Soundarapandian, S. G. Srinivasan, and N. B. Dahotre, Dilution of molybdenum on aluminum during laser surface alloying, J. Alloys Comp. 570, 133–143 (2013).
  • L. A. B. Mabhali, N. Sacks, and S. Pityana, Three body abrasion of laser surface alloyed aluminium AA1200, Wear 290, 1–9 (2012).
  • P. Kadolkar and N. B. Dahotre, Variation of structure with input energy during laser surface engineering of ceramic coatings on aluminum alloys, Appl. Surf. Sci. 199(1), 222–233 (2002).
  • Y. Fu and A. W. Batchelor, Laser alloying of aluminum alloy AA 6061 with Ni and Cr. Part II. The effect of laser alloying on the fretting wear resistance, Surf. Coat. Technol. 102(1), 119–126 (1998).
  • H. C. Man, S. Zhang, T. M. Yue, and F. T. Cheng, Laser surface alloying of NiCrSiB on Al6061 aluminium alloy, Surf. Coat. Technol. 148(2), 136–142 (2001).
  • H. C. Man, S. Zhang, and F. T. Cheng, Improving the wear resistance of AA 6061 by laser surface alloying with NiTi, Mater. Lett. 61(19), 4058–4061 (2007).
  • Y.-C. Chuang, S.-C. Lee, and H.-C. Lin, Effect of temperature on the sliding wear behavior of laser surface alloyed Ni-base on Al–Mg–Si alloy, Appl. Surf. Sci. 253(3), 1404–1410 (2006).
  • A. Almeida, F. Carvalho, P. A. Carvalho, and R. Vilar, Laser developed Al–Mo surface alloys: Microstructure, mechanical and wear behaviour, Surf. Coat. Technol. 200(16), 4782–4790 (2006).
  • S. Nath, S. Pityana, and J. Dutta Majumdar, Laser surface alloying of aluminium with WC+ Co+ NiCr for improved wear resistance, Surf. Coat. Technol. 206(15), 3333–3341 (2012).
  • D. K. Das, Surface roughness created by laser surface alloying of aluminium with nickel, Surf. Coat. Technol. 64(1), 11–15 (1994).
  • D. K. Das, K. S. Prasad, and A. G. Paradkar, Evolution of microstructure in laser surface alloying of aluminium with nickel, Mater. Sci. Eng. A 174(1), 75–84 (1994).
  • J. S. Selvan, G. Soundararajan, and K. Subramanian, Laser alloying of aluminium with electrodeposited nickel: optimisation of plating thickness and processing parameters, Surf. Coat. Technol. 124(2), 117–127 (2000).
  • L. Dubourg, F. Hlawka, and A. Cornet, Study of aluminium–copper–iron alloys: application for laser cladding, Surf. Coat. Technol. 151, 329–332 (2002).
  • A. Almeida, M. Anjos, R. Vilar, R. Li, M. G. S. Ferreira, W. M. Steen, and K. G. Watkins, Laser alloying of aluminium alloys with chromium, Surf. Coat. Technol. 70(2), 221–229 (1995).
  • L. Dubourg, F. Hlawka, and A. Cornet, Contraintes résiduelles et phases durcissantes dans les alliages superficiels aluminium–cuivre obtenus par alliation sous faisceau laser, Le Journal de Physique IV 10(PR10): p. Pr10-137–Pr10-144 (2000).
  • L. Sexton et al., Laser cladding of aerospace materials, J. Mater. Process. Technol. 122(1), 63–68 (2002).
  • E. Toyserkani, A. Khajepour, and S. F. Corbin, Laser Cladding. Boca Raton, FL: CRC Press, (2004), pp. 34–37.
  • S. Mondal, A. Bandyopadhyay, and P. K. Pal, Ni-Cr-Mo cladding on mild steel surface using CO2 laser and process modeling with response surface methodology (RSM), Int. J. Eng. Sci. Technol. 3, 6805–6811 (2011).
  • S. Mondal et al., Application of Taguchi-based gray relational analysis for evaluating the optimal laser cladding parameters for AISI1040 steel plane surface, Int. J. Adv. Manuf. Technol. 66(1–4), 91–96 (2013).
  • A. H. Wang and C. S. Xie, Microstructural study of laser-clad Fe-Al bronze on Al-Si alloy, J. Mater. Sci. 36(8), 1975–1979 (2001).
  • A. Grabowski et al., Laser remelting of Al-Fe-TiO powder composite on aluminium matrix, J. Achieve. Mater. Manuf. Eng. 33(1), 78–85 (2009).
  • T. T. Wong, G. Y. Liang, B. L. He, and C. H. Woo, Wear resistance of laser-clad Ni–Cr–B–Si alloy on aluminium alloy, J. Mater. Process. Technol. 100(1), 142–146 (2000).
  • R. Anandkumar, A. Almeida, R. Colaço, R. Vilar, V. Ocelik, and J. T. M. De Hosson, Microstructure and wear studies of laser clad Al-Si/SiC(p) composite coatings, Surf. Coat. Technol. 201(24), 9497–9505 (2007).
  • R. Anandkumar, A. Almeida, R. Vilar, V. Ocelik, and J. T. M. De Hosson, Influence of powder particle injection velocity on the microstructure of Al–12Si/SiCp coatings produced by laser cladding, Surf. Coat. Technol. 204(3), 285–290 (2009).
  • R. Anandkumar, A. Almeida, and R. Vilar, Wear behavior of Al–12Si/TiB2 coatings produced by laser cladding, Surf. Coat. Technol. 205(13–14), 3824–3832 (2011).
  • R. Anandkumar, A. Almeida, and R. Vilar, Microstructure and sliding wear resistance of an Al–12wt.% Si/TiC laser clad coating, Wear 282, 31–39 (2012).
  • J. Xu, Z. Li, W. Zhu, Z. Liu, and W. Liu, Investigation on microstructural characterization of in situ TiB/Al metal matrix composite by laser cladding, Mater. Sci Eng. A 447(1), 307–313 (2007).
  • J. Xu and W. Liu, Wear characteristic of in situ synthetic TiB2 particulate-reinforced Al matrix composite formed by laser cladding, Wear 260(4), 486–492 (2006).
  • J. Xu, W. Liu, Y. Kan, and M. Zhong, Microstructure and wear properties of laser cladding Ti–Al–Fe–B coatings on AA2024 aluminum alloy, Mater. Des. 27(5), 405–410 (2006).
  • S. Tomida, K. Nakata, S. Saji, and T. Kubo, Formation of metal matrix composite layer on aluminum alloy with TiC-Cu powder by laser surface alloying process, Surf. Coat. Technol. 142, 585–589 (2001).
  • S.-L. Chen and R.-L. Hsu, The effects of material composition on the quality of ceramic-metal composite cladding onto Al-alloys with a pulsed Nd-YAG laser, Int. J. Adv. Manufact. Technol. 15(7), 461–469 (1999).
  • P. H. Chong, H. C. Man, and T. M. Yue, Laser fabrication of Mo-TiC MMC on AA6061 aluminum alloy surface, Surf. Coat. Technol. 154(2), 268–275 (2002).
  • H. C. Man, Y. Q. Yang, and W. B. Lee, Laser induced reaction synthesis of TiC+ WC reinforced metal matrix composites coatings on Al 6061, Surf. Coat. Technol. 185(1), p. 74–80 (2004).
  • L. R. Katipelli, A. Agarwal, and N. B. Dahotre, Laser surface engineered TiC coating on 6061 Al alloy: microstructure and wear, Appl. Surf. Sci. 153(2), 65–78 (2000).
  • P. H. Chong, H. C. Man, and T. M. Yue, Microstructure and wear properties of laser surface-cladded Mo–WC MMC on AA6061 aluminum alloy, Surf. Coat. Technol. 145(1), 51–59 (2001).
  • D. Ravnikar, N. B. Dahotre, and J. Grum, Laser coating of aluminum alloy EN AW 6082-T651 with TiB2 and TiC: Microstructure and mechanical properties, Appl. Surf. Sci. 282, 914–922 (2013).
  • T. M. Yue, K. J. Huang, and H. C. Man, Laser cladding of Al2O3 coating on aluminium alloy by thermite reactions, Surf. Coat. Technol. 194(2), 232–237 (2005).
  • K. Huang, X. Lin, C. Xie, and T. M. Yue, Microstructure and wear behaviour of laser-induced thermite reaction Al2O3 ceramic coatings on pure aluminum and AA7075 aluminum alloy, J. Wuhan Univer. Technol. Mater. Sci. Ed. 23(1), 89–94 (2008).
  • K. Uenishi and K. F. Kobayashi, Formation of surface layer based on Al3Ti on aluminum by laser cladding and its compatibility with ceramics, Intermetallics 7(5), 553–559 (1999).
  • P. A. I. Popoola, S. L. Pityana, and O. M. Popoola, The effect of multiple laser alloyed tracklines on the corrosion properties of Al-MMC, J. Laser Applic. 3(3), 032003 (2011).
  • L. Dubourg, D. Ursescu, F. Hlawka, and A. Cornet, Laser cladding of MMC coatings on aluminium substrate: influence of composition and microstructure on mechanical properties, Wear 258(11), 1745–1754 (2005).
  • S. Dong et al., Laser remanufacturing technology and its applications. In Photonics Asia 2007. Beijing, China: International Society for Optics and Photonics (2007).
  • A. Ahmed et al., An overview of geometrical parameters of surface texturing for piston/cylinder assembly and mechanical seals, Meccanica 1–15 (2015).
  • J. Arnold and R. Volz, Laser powder technology for cladding and welding, J. Therm. Spray Technol. 8(2), p. 243–248 (1999).
  • K. H. Lo, F. T. Cheng, C. T. Kwok, and H. C. Man, Improvement of cavitation erosion resistance of AISI 316 stainless steel by laser surface alloying using fine WC powder, Surf. Coat. Technol. 165(3), 258–267 (2003).
  • A. Viswanathan, D. Sastikumar, H. Kumar, and A. K. Nath, Laser processed TiC–Al13Fe4 composite layer formation on Al–Si alloy, Opt. Lasers Eng. 50(9), 1321–1329 (2012).
  • O. Gingu, M. Mangra, and R. L. Orban, In-situ production of Al/SiCp composite by laser deposition technology, J. Mater. Process. Technol. 89, 187–190 (1999).
  • K. Labisz, Microstructure and mechanical properties of high power diode laser (HPDL) treated cast aluminium alloys, Materialwissenschaft und Werkstofftechnik 45(4), 314–324 (2014).
  • R. Blum and P. Molian, CO2 laser coating of nanodiamond on aluminum using an annular beam, Appl. Surf. Sci. 288, 1–8 (2014).
  • P. B. Kadolkar et al., State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys, Acta Materialia 55(4), 1203–1214 (2007).
  • P. Kadolkar and N. B. Dahotre, Effect of processing parameters on the cohesive strength of laser surface engineered ceramic coatings on aluminum alloys, Mater. Sci. Eng. A 342(1), 183–191 (2003).
  • R. Jendrzejewski, K. Van Acker, D. Vanhoyweghen, and G. Śliwiński, Metal matrix composite production by means of laser dispersing of SiC and WC powder in Al alloy, Appl. Surf. Sci. 255(10), 5584–5587 (2009).
  • C. Hu and T. N. Baker, A new aluminium silicon carbide formed in laser processing, J. Mater. Sci. 32(19), 5047–5051 (1997).
  • C. Hu, L. Barnard, S. Mridha, and T. N. Baker, The role of SiC particulate and Al 2O3 (Saffil) fibers in several alloys during the formation of in situ MMCs developed by laser processing, J. Mater. Process. Technol. 58(1), 87–95 (1996).
  • H. C. Man, C. T. Kwok, and T. M. Yue, Cavitation erosion and corrosion behaviour of laser surface alloyed MMC of SiC and Si3N4 on Al alloy AA6061, Surf. Coat. Technol. 132(1), p. 11–20 (2000).
  • H. V. Pokhmurs' ka, M. M. Student, N. R. Chervins' ka, K. R. Smetana, A. Wank, T. Hoenig, and H. Podlesak, Structure and properties of aluminum alloys modified with silicon carbide by laser surface treatment, Mater. Sci. 41(3), 316–323 (2005).
  • J. D. Majumdar, B. R. Chandra, A. K. Nath, and I. Manna, In situ dispersion of titanium boride on aluminium by laser composite surfacing for improved wear resistance, Surf. Coat. Technol. 201(3), 1236–1242 (2006).
  • J. Dutta Majumdar, B. R. Chandra, A. K. Nath, and I. Manna, Compositionally graded SiC dispersed metal matrix composite coating on Al by laser surface engineering, Mater. Sci. Eng. A 433(1), 241–250 (2006).
  • T. M. Chandrashekharaiah. and S. A. Kori, Effect of grain refinement and modification on the dry sliding wear behaviour of eutectic Al–Si alloys, Tribol. Int. 42(1), p. 59–65 (2009).
  • J. A. Vreeling, V. Ocelik, G. A. Hamstra, Y. T. Pei, and J. T. M. De Hosson, In-situ microscopy investigation of failure mechanisms in Al/SiC p metal matrix composite produced by laser embedding, Scripta Materialia 42(6), 589–595 (2000).
  • S. B. Sinnott and R. Andrews, Carbon nanotubes: synthesis, properties, and applications, Crit. Rev. Solid State Mater. Sci. 26(3), 145–249 (2001).
  • V. Sorkin, H. Pan, H. Shi, S. Y. Quek, and Y. W. Zhang, Nanoscale transition metal dichalcogenides: structures, properties, and applications. Crit. Rev. Solid State Mater. Sci. 39(5), 319–367 (2014).
  • W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, Synthesis of graphene and its applications: a review, Crit. Rev. Solid State Mater. Sci. 35(1), 52–71 (2010).
  • Y. Li, X.-Y. Yang, Y. Feng, Z.-Y. Yuan, and B.-L. Su, One-dimensional metal oxide nanotubes, nanowires, nanoribbons, and nanorods: synthesis, characterizations, properties and applications, Crit. Rev. Solid State Mater. Sci. 37(1), 1–74 (2012).
  • P.-A. Belanger and M. Rioux, Ring pattern of a lens-axicon doublet illuminated by a Gaussian beam, Appl. Opt. 17(7), 1080–1088 (1978).
  • K. A. H. Al Mahmud, M. A. Kalam, H. H. Masjuki, H. M. Mobarak, and N. W. M. Zulkifli, An updated overview of diamond-like carbon coating in tribology, Crit. Rev. Solid State Mater. Sci. 40(2), 90–118 (2014).
  • H. Zhang, Surface treatment of aluminium alloy by laser shock processing, Surf. Eng. 15(6), 454–456 (1999).
  • L. Lu, T. Huang, and M. Zhong, WC nano-particle surface injection via laser shock peening onto 5A06 aluminum alloy, Surf. Coat. Technol. 206(22), 4525–4530 (2012).
  • N. Hfaiedh, P. Peyre, H. Song, I. Popa, V. Ji, and V. Vignal, Finite Element analysis of Laser Shock Peening of 2050-T8 aluminum alloy, Int. J. Fatigue 70, 480–489 (2015).
  • K.-y Luo, J.-z. Lu, L.-f. Zhang, J.-w. Zhong, H.-b. Guan, and X.-m. Qian, The microstructural mechanism for mechanical property of LY2 aluminum alloy after laser shock processing, Mater. Design 31(5), 2599–2603 (2010).
  • M. Dorman, M. B. Toparli, N. Smyth, A. Cini, M. E. Fitzpatrick, and P. E. Irving, Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects, Mater. Sci. Eng. A 548, 142–151 (2012).
  • Z. Hong and Y. Chengye, Laser shock processing of 2024-T62 aluminum alloy, Mater. Sci. Eng. A 257(2), 322–327 (1998).
  • H. Krawiec, V. Vignal, H. Amar, and P. Peyre, Local electrochemical impedance spectroscopy study of the influence of ageing in air and laser shock processing on the micro-electrochemical behaviour of AA2050-T8 aluminium alloy, Electrochimica Acta 56(26), 9581–9587 (2011).
  • J. Z. Zhou, S. Huang, J. Sheng, J. Z. Lu, C. D. Wang, K. M. Chen, H. Y. Ruan, and H. S. Chen, Effect of repeated impacts on mechanical properties and fatigue fracture morphologies of 6061-T6 aluminum subject to laser peening, Mater. Sci. Eng. A 539, 360–368 (2012).
  • S. Sathyajith, S. Kalainathan, and S. Swaroop, Laser peening without coating on aluminum alloy Al-6061-T6 using low energy Nd: YAG laser, Opt. Laser Technol. 45, 389–394 (2013).
  • U. Sanchez-Santana, C. Rubio-Gonzalez, G. Gomez-Rosas, J. L. Ocana, C. Molpeceres, J. Porro, and M. Morales, Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing, Wear 260(7), 847–854 (2006).
  • U. Trdan and J. Grum, Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of cyclic polarisation and ElS methods, Corros. Sci. 59, 324–333 (2012).
  • C. Yang, P. D. Hodgson, Q. Liu, and L. Ye, Geometrical effects on residual stresses in 7050-T7451 aluminum alloy rods subject to laser shock peening, J. Mater. Process. Technol. 201(1), 303–309 (2008).
  • M. Kutsuna, H. Inoue, K. Saito, and K. Amano, Improvement of fatigue strength and friction energy loss of machinery parts by indirect laser peening, Welding in the World 53, 89–94 (2009).
  • M. Trueba and S. P. Trasatti, Study of Al alloy corrosion in neutral NaCl by the pitting scan technique, Mater. Chem. Phys. 121(3), 523–533 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.