1,070
Views
45
CrossRef citations to date
0
Altmetric
Reviews

Ammonium Nitrate as an Eco–Friendly Oxidizer for Composite Solid Propellants: Promises and Challenges

&

References

  • T. Brinck, Green Energetic Materials, John Wiley & Sons, 2014.
  • G. P. Sutton and O. Biblarz, Rocket Propulsion Elements, Wiley, 2011.
  • T. A. Ward, Aerospace Propulsion Systems, John Wiley & Sons, 2010.
  • N. Kubota, Propellants and Explosives: Thermochemical Aspects of Combustion, John Wiley & Sons, 2015.
  • J. P. Agrawal, High Energy Materials: Propellants, Explosives and Pyrotechnics, John Wiley & Sons, 2010.
  • G. K. Lund, M. J. Spinti, and D. W. Doll, Solid propellant formualtions producing acid neutralizing exhaust, U.S. Patent No. 5,180,452 (1993).
  • Q. Li, Y. He, and R. Peng, Graphitic carbon nitride (g–C3N4) as a metal-free catalyst for thermal decomposition of ammonium perchlorate, RSC Adv. 5, 24507 (2015).
  • G. Tang, S. Tian, Z. Zhou, Y. Wen, A. Pang, Y. Zhang, D. Zeng, H. Li, B. Shan, and C. Xie, ZnO micro/nanocrystals with tunable exposed (0001) facets for enhanced catalytic activity on the thermal decomposition of ammonium perchlorate, J. Phys. Chem. C 118, 11833 (2014).
  • A. Dey, J. Athar, P. Varma, H. Prasant, A. K. Sikder, and S. Chattopadhyay, Graphene-iron oxide nanocomposite (GINC): An efficient catalyst for ammonium perchlorate (AP) decomposition and burn rate enhancer for AP based composite propellant, RSC Adv. 5, 1950 (2015).
  • B. A. McDonald, J. R. Rice, and M. W. Kirkham, Humidity induced burning rate degradation of an iron oxide catalyzed ammonium perchlorate/HTPB composite propellant, Combust. Flame 161, 363 (2014).
  • S. Chaturvedi and P. N. Dave, Review on thermal decomposition of ammonium nitrate, J. Energ. Mater. 31, 1 (2013).
  • G. da Silva, S. C. Rufino, and K. Iha, Green propellants-oxidizers, J. Aerosp. Technol. Manag. 5, 139 (2013).
  • P. Ding, H. Wang, L. Wen, G. Cheng, C. Lu, and H. Yang, Studies on synthetic technology and reduced sensitivity technology of hydrazinium nitroformate, Ind. Eng. Chem. Res. 53, 13851 (2014).
  • M. J. Tummers, A. E. D. M. van der Heijden, and E. H. van Veen, Selection of burning rate modifiers for hydrazinium nitroformate, Combust. Flame 159, 882 (2012).
  • E. Landsem, T. L. Jensen, F. K. Hansen, E. Unneberg, and T. E. Kristensen, Mechanical properties of smokeless composite rocket propellants based on prilled ammonium dinitramide, Propellants Explos. Pyrotech. 37, 691 (2012).
  • S. Cerri, M. A. Bohn, K. Menke, and L. Galfetti, Characterization of ADN/GAP-based and ADN/Desmophen based propellant formulations and comparison with AP analogues, Propellants Explos. Pyrotech. 39, 192 (2014).
  • M. Pandey, S. Jha, R. Kumar, S. Mishra, and R. Jha, The pressure effect study on the burning rate of ammonium nitrate-HTPB-based propellant with the influence catalysts, J. Therm. Anal. Calorim. 107, 135 (2012).
  • H. Matsunaga, H. Habu, and A. Miyake, Thermal decomposition of the high-performance oxidizer ammonium dinitramide under pressure, J. Therm. Anal. Calorim. 116, 1227 (2014).
  • K. Serizawa and K. Takahashi, Gas generating composition and gas generator, U.S. Patent No. 7,335,270 (2008).
  • T. M. Klapötke, Chemistry of High-Energy Materials, De Gruyter, 2011.
  • M. Y. Nagamachi, J. I. S. Oliveira, A. M. Kawamoto, and L. D. Rita de Cássia, ADN-the new oxidizer around the corner for an environmentally friendly smokeless propellant, J. Aerosp. Technol. Manag. 1, 153 (2011).
  • T. T. Vo, D. A. Parrish, and J. M. Shreeve, Tetranitroacetimidic acid: A high oxygen oxidizer and potential replacement for ammonium perchlorate, J. Am. Chem. Soc. 136, 11934 (2014).
  • K. Sellers, K. Weeks, W. R. Alsop, S. R. Clough, M. Hoyt, B. Pugh, and J. Robb, Perchlorate: Environmental Problems and Solutions, Taylor & Francis, 2006.
  • R. Perciasepe, Part III: Environmental Protection Agency. Announcement of the drinking water contaminant candidate list; notice, Federal Register 63, 10273 (1998).
  • E. T. Urbansky, Perchlorate as an environmental contaminant, Environ. Sci. Pollut. Res. 9, 187 (2002).
  • E. G. Mahadevan, Ammonium Nitrate Explosives for Civil Applications: Slurries, Emulsions and Ammonium Nitrate Fuel Oils, Wiley, 2013.
  • J. Akhavan, The Chemistry of Explosives, Royal Society of Chemistry, 2011.
  • B. Zygmunt and D. Buczkowski, Agriculture grade ammonium nitrate as the basic ingredient of massive explosive charges, Propellants Explos. Pyrotech. 37, 685 (2012).
  • M. Eagleson, Concise Encyclopedia Chemistry, Walter de Gruyter, 1994.
  • C. Oommen and S. Jain, Ammonium nitrate: A promising rocket propellant oxidizer, J. Hazard. Mater. 67, 253 (1999).
  • R. R. Tatiya, Surface and Underground Excavations, 2nd ed.: Methods, Techniques and Equipment, Taylor & Francis, 2013.
  • D. Hildenbrand, K. Lau, and D. Chandra, Thermochemistry of gaseous ammonium nitrate, NH4NO3 (g), J. Phys. Chem. B 114, 330 (2009).
  • D. Hildenbrand, K. Lau, and D. Chandra, Revised thermochemistry of gaseous ammonium nitrate, NH4NO3 (g), J. Phys. Chem. A 114, 11654 (2010).
  • R. Meyer, J. Köhler, and A. Homburg, Explosives, John Wiley & Sons, 2008.
  • B. Fabiano, R. Kersten, A. Barbucci, and M. Boers, Experimental and theoretical approach to the assessment of stability criteria for safe transport of ammonium nitrate based emulsions, Chem. Biochem. Eng. Q. 27, 307 (2013).
  • S. Cagnina, P. Rotureau, G. Fayet, and C. Adamo, Modeling chemical incompatibility: Ammonium nitrate and sodium salt of dichloroisocyanuric acid as a case study, Ind. Eng. Chem. Res. 53, 13920 (2014).
  • W. Pittman, Z. Han, B. Harding, C. Rosas, J. Jiang, A. Pineda, and M. S. Mannan, Lessons to be learned from an analysis of ammonium nitrate disasters in the last 100 years, J. Hazard. Mater. 280, 472 (2014).
  • X. R. Li and H. Koseki, Study on the contamination of chlorides in ammonium nitrate, Process Saf. Environ. Prot. 83, 31 (2005).
  • G. Marlair and M. A. Kordek, Safety and security issues relating to low capacity storage of AN based fertilizers, J. Hazard. Mater. 123, 13 (2005).
  • D. Buczkowski, Explosive properties of mixtures of ammonium nitrate(V) and materials of plant origin-danger of unintended explosion, Cent. Eur. J. Energ. Mater. 11, 115 (2014).
  • I. N. Zyuzin and D. B. Lempert, Ways to create fuels for stoichiometric gas-generating CHNO-compositions with low ammonium nitrate fraction, Propellants Explos. Pyrotech. 32, 42 (2007).
  • A. J. Harrison, A. Otte, T. Carvajal, R. Pinal, and S. P. Beaudoin, Cohesive Hamaker constants and dispersive surface energies of RDX, PETN, TNT, and ammonium nitrate-based explosives, Propellants Explos. Pyrotech. DOI: 10.1002/prep.201500021, (2015).
  • W. Engel and K. Menke, Development of propellants containing ammonium nitrate, Def. Sci. J. 46, 311 (1996).
  • U. Teipel, Energetic Materials: Particle Processing and Characterization, John Wiley & Sons, 2006.
  • B. Lucas, M. Ahtee, and A. Hewat, The crystal structure of phase II ammonium nitrate, Acta Crystallogr. Sec. B 35, 1038 (1979).
  • A. R. Sudhakar and S. Mathew, Thermal behaviour of CuO doped phase stabilised ammonium nitrate, Thermochim. Acta 451, 5 (2006).
  • M. Dunuwille and C. S. Yoo, Phase diagram of ammonium nitrate, J. Chem. Phys. 139, 214503 (2013).
  • J. L. Atwood and J. W. Steed, Encyclopedia of Supramolecular Chemistry, M. Dekker, 2004.
  • S. Nagayama, K. Katoh, E. Higashi, K. Nakano, K. Kumagae, H. Habu, Y. Wada, and M. Arai, Differential scanning calorimetry analysis of crystal structure transformation in spray dried particles consisting of ammonium nitrate, potassium nitrate, and a polymer, J. Therm. Anal. Calorim. 118, 1215 (2014).
  • H. B. Wu, M. N. Chan, and C. K. Chan, FTIR characterization of polymorphic transformation of ammonium nitrate, Aerosol Sci. Technol. 41, 581 (2007).
  • M. J. Herrmann and W. Engel, Phase transitions and lattice dynamics of ammonium nitrate, Propellants Explos. Pyrotech. 22, 143 (1997).
  • A. J. Davidson, R. Chellappa, S. D. M. Dattelbaum, and C. S. Yoo, Pressure induced isostructural metastable phase transition of ammonium nitrate, J. Phys. Chem. A 115, 11889 (2011).
  • D. C. Sorescu and D. L. Thompson, Classical and quantum mechanical studies of crystalline ammonium nitrate, J. Phys. Chem. A 105, 720 (2001).
  • H. H. Mantsch and D. Naumann, Terahertz spectroscopy: The renaissance of far infrared spectroscopy, J. Mol. Struct. 964, 1 (2010).
  • D. J. Cook, B. K. Decker, G. Maislin, and M. G. Allen, Proc. SPIE 5354, Terahertz and Gigahertz Electronics and Photonics III, 55, April 8 (2004).
  • E. M. Witko, W. D. Buchanan, and T. M. Korter, Terahertz spectroscopy and solid-state density functional theory simulations of the improvised explosive oxidizers potassium nitrate and ammonium nitrate, J. Phys. Chem. A 115, 12410 (2011).
  • A. Khachatrian, J. S. Melinger, and S. B. Qadri, Waveguide terahertz time domain spectroscopy of ammonium nitrate polycrystalline films, J. Appl. Phys. 111, 093103 (2012).
  • T. Giavani, H. Bildsøe, J. Skibsted, and H. J. Jakobsen, 14N MAS NMR spectroscopy and quadrupole coupling data in characterization of the IV↔III phase transition in ammonium nitrate, J. Phys. Chem. B 106, 3026 (2002).
  • R. Brown and A. McLaren, On the mechanism of the thermal transformations in solid ammonium nitrate, Proc. R. Soc. London, Ser. A Math. Phys. Sci. 266, 329 (1962).
  • C. A. van Driel, A. E. D. M. van der Heijden, S. de Boer, and G. M. van Rosmalen, The III-IV phase transition in ammonium nitrate: Mechanisms, J. Cryst. Growth 141, 404 (1994).
  • R. Davey, A. Ruddick, P. Guy, B. Mitchell, S. Maginn, and L. Polywka, The IV-III polymorphic phase transition in ammonium nitrate: A unique example of solvent mediation, J. Phys. D: Appl. Phys. 24, 176 (1991).
  • M. E. Harju, Solid-state transition mechanisms of ammonium nitrate phases IV, III, and II investigated by simultaneous Raman spectrometry and differential scanning calorimetry, Appl. Spectrosc. 47, 1926 (1993).
  • D. Hu, J. Chen, X. Ye, L. Li, and X. Yang, Hygroscopicity and evaporation of ammonium chloride and ammonium nitrate: Relative humidity and size effects on the growth factor, Atmos. Environ. 45, 2349 (2011).
  • R. Damse, Waterproofing materials for ammonium nitrate, Def. Sci. J. 54, 483 (2004).
  • T. K. Highsmith, C. J. Hinshaw, and R. B. Wardle, Phase-stabilized ammonium nitrate and method of making same, U.S. Patent No. 5,292,387 (1994).
  • A. E. Oberth, Phase-stabilization of ammonium nitrate by zinc diammine complexes, U.S. Patent No. 5,071,630 (1991).
  • F. P. Fabbiani and C. R. Pulham, High-pressure studies of pharmaceutical compounds and energetic materials, Chem. Soc. Rev. 35, 932 (2006).
  • C. S. Fazel, The packing and transportation of ammonium nitrate-ammonia compositions, U.S. Patent No. 2,077,469 (1937).
  • R. S. Scheffee and B. K. Wheatley, Eutectic mixtures of ammonium nitrate and amino guanidine nitrate, U.S. Patent No. 5,726,382 (1998).
  • E. D. Guth, Method for stabilizing of ammonium nitrate, U.S. Patent No. 3,018,164 (1962).
  • A. J. Lang and S. Vyazovkin, Ammonium nitrate−polymer glasses: A new concept for phase and thermal stabilization of ammonium nitrate, J. Phys. Chem. B 112, 11236 (2008).
  • C. Oommen and S. R. Jain, Phase modification of ammonium nitrate by potassium salts, J. Therm. Anal. Calorim. 55, 903 (1999).
  • B. K. Hamilton, Phase stabilized ammonium nitrate, U.S. Patent No. 6,872,265 (2005).
  • L. Henderson, Ammonium nitrate propellant compositions, U.S. Patent No. 3,720,553 (1973).
  • W. C. Fleming, H. J. McSpadden, and D. E. Olander, Ammonium nitrate propellants and methods for preparing the same, US Patent No. 6,913,661 (2005).
  • L. C. Warren and L. K. Asaoka, Silicon as high performance fuel additive for ammonium nitrate propellant formulations, U.S. Patent No. 5,500,061 (1996).
  • K. Menke, J. Bohnlein-Mauss, H. Schmid, K. M. Bucerius, and W. Engel, Solid propellant based on phase-stabilized ammonium nitrate, U.S. Patent No. 5,589,661 (1996).
  • W. Engel, N. Eisenreich, and K. D. Thiel, Process for producing phase-stabilized ammonium nitrate, U.S. Patent No. 5,063,036 (1991).
  • H. Hommel and H. Schubert, Process for the production of particulate ammonium nitrate for solid fuels or explosives, U.S. Patent No. 4,925,600 (1990).
  • W. Engel, Thermoanalytical investigation of stored ammonium nitrate doped with diammine copper-(II), Propellants Explos. Pyrotech. 10, 84 (1985).
  • S. Mathew, N. Eisenreich, and W. Engel, Thermal analysis using X-ray diffractometry for the investigation of the solid state reaction of ammonium nitrate and copper oxide, Thermochim. Acta 269-270, 475 (1995).
  • K. Shiota, H. Matsunaga, and A. Miyake, Thermal analysis of ammonium nitrate and basic copper(II) nitrate mixtures, J. Therm. Anal. Calorim. DOI: 10.1007/s10973-015-4536-x, 1 (2015).
  • I. Levchenko, G. Klyakin, I. Vyazenova, and V. Taranushich, Thermal decomposition of ammonium nitrate with three component additives, Russ. J. Appl. Chem. 84, 1511 (2011).
  • T. Kaljuvee, E. Edro, and R. Kuusik, Influence of lime-containing additives on the thermal behaviour of ammonium nitrate, J. Therm. Anal. Calorim. 92, 215 (2008).
  • A. A. Vargeese, S. S. Joshi, and V. Krishnamurthy, Use of potassium ferrocyanide as habit modifier in the size reduction and phase modification of ammonium nitrate crystals in slurries, J. Hazard. Mater. 180, 583 (2010).
  • A. A. Vargeese, K. Muralidharan, and V. Krishnamurthy, Thermal stability of habit modified ammonium nitrate: Insights from isoconversional kinetic analysis, Thermochim. Acta 524, 165 (2011).
  • N. Golovina, G. Nechiporenko, G. Nemtsev, I. Zyuzin, G. B. Manelis, and D. Lempert, Ammonium nitrate phase state stabilization with small amounts of some organic compounds, Cent. Eur. J. Energ. Mater. 6, 45 (2009).
  • N. Golovina, G. Nechiporenko, G. Nemtsev, G. P. Dolganova, V. P. Roshchupkin, D. B. Lempert, and G. B. Manelis, Phase state stabilization of ammonium nitrate for creating an oxidizing agent for smokeless gas-generating formulations yielding no toxic combustion products, Russ. J. Appl. Chem. 80, 24 (2007).
  • A. J. Lang and S. Vyazovkin, Phase and thermal stabilization of ammonium nitrate in the form of PVP-AN glass, Mater. Lett. 62, 1757 (2008).
  • J. D. Yeager, R. Chellappa, S. Singh, and J. Majewski, Thermal behavior of glassy phase stabilized ammonium nitrate (PSAN) thin films, Mater. Today Commun. 3, 1 (2015).
  • A. E. Jablonski, A. J. Lang, and S. Vyazovkin, Isoconversional kinetics of degradation of polyvinylpyrrolidone used as a matrix for ammonium nitrate stabilization, Thermochim. Acta, 474, 78 (2008).
  • T. Lee, J. W. Chen, H. L. Lee, T. Y. Lin, Y. C. Tsai, S. L. Cheng, S. W. Lee, J. C. Hu, and L. T. Chen, Stabilization and spheroidization of ammonium nitrate: Co-crystallization with crown ethers and spherical crystallization by solvent screening, Chem. Eng. J. 225, 809 (2013).
  • J. Zhang, X. Wang, and D. Lin, Study on hygroscopicity of ammonium nitrate particle coated by precipitation polymerization of styrene, Adv. Fine Petrochem. 12, 016 (2008).
  • S. Nagayama, K. Katoh, E. Higashi, M. Hayashi, K. Kumagae, H. Habu, Y. Wada, K. Nakano, and M. Arai, Moisture proofing of spray dried particles comprising ammonium nitrate/potassium nitrate/polymer, Propellants Explos. Pyrotech. DOI: 10.1002/prep.201400125, (2015).
  • J. Zhang, Study on properties of the coated AN with polyvinyl butyral, Chin. J. Explos. Propell. 24, 41 (2001).
  • J. Zheng, B. Cai, and Y. Wei, Study on surface modification of ammonium nitrate, Baopo Qicai. 40, 19 (2011).
  • X. Xiong and Z. Liu, Improvement of the hygroscopicity of AN by modified paraffin, Chin. J. Explos. Propell. 36, 50 (2013).
  • M. K. Bharti, R. Agarwal, P. Kami, S. R. Pathak, and M. Soni, Effect of addition of hydrophobic hydrocarbons on the hygroscopic tendency of ammonium nitrate crystals, IJCET 5, 2500 (2015).
  • J.-H. Liu, R.-X. Gao, Z.-Q. Chen, K.-Y. Wang, R.-Z. Hu, and Z.-C. Sun, Study on the antihygroscopicity and anticaking capacity of ammonium nitrate, Hanneng Cailiao 8, 145 (2000).
  • X. Zhang, J. Li, R. Yang, L. Zhu, and X. Zhao, Study on ammonium nitrate reactively coated by amines and their application in azido polyether propellants, JSRT 34, 86 (2011).
  • K. M. Doxsee and P. E. Francis, Crystallization of ammonium nitrate from nonaqueous solvents1, Ind. Eng. Chem. Res. 39, 3493 (2000).
  • X.-D. Zhang, J.-M. Li, R.-J. Yang, and X.-Q. Zhao, Surface modification of phase stabilized ammonium nitrate and its application in solid composite propellants, Chin. J. Explos. Propell. 1, 002 (2009).
  • D. G. Patil, S. R. Jain, and T. B. Brill, Thermal decomposition of energetic materials 56. On the fast thermolysis mechanism of ammonium nitrate and its mixtures with mangnesium and carbon, Propellants Explos. Pyrotech. 17, 99 (1992).
  • N. Koga and H. Tanaka, Effect of sample mass on the kinetics of thermal decomposition of a solid: Part 1. Isothermal mass loss process of molten NH4NO3, Thermochim. Acta 209, 127 (1992).
  • N. Koga and H. Tanaka, Effect of sample mass on the kinetics of thermal decomposition of a solid: Part 3. Non-isothermal mass loss process of molten NH4NO3, Thermochim. Acta 240, 141 (1994).
  • S. Vyazovkin, J. S. Clawson, and C. A. Wight, Thermal dissociation kinetics of solid and liquid ammonium nitrate, Chem. Mater. 13, 960 (2001).
  • R. Gunawan and D. Zhang, Thermal stability and kinetics of decomposition of ammonium nitrate in the presence of pyrite, J. Hazard. Mater. 165, 751 (2009).
  • T. P. Russell and T. B. Brill, Thermal decomposition of energetic materials 31-Fast thermolysis of ammonium nitrate, ethylenediammonium dinitrate and hydrazinium nitrate and the relationship to the burning rate, Combust. Flame 76, 393 (1989).
  • W. A. Rosser, S. H. Inami, and H. Wise, The kinetics of decomposition of liquid ammonium nitrate, J. Phys. Chem. 67, 1753 (1963).
  • K. Brower, J. C. Oxley, and M. Tewari, Evidence for homolytic decomposition of ammonium nitrate at high temperature, J. Phys. Chem. 93, 4029 (1989).
  • S. A. Skarlis, A. Nicolle, D. Berthout, C. Dujardin, and P. Granger, Combined experimental and kinetic modeling approaches of ammonium nitrate thermal decomposition, Thermochim. Acta 584, 58 (2014).
  • I. Rudjak, T. Kaljuvee, A. Trikkel, and V. Mikli, Thermal behaviour of ammonium nitrate prills coated with limestone and dolomite powder, J. Therm. Anal. Calorim. 99, 749 (2010).
  • A. Mirvakili, S. Bahrani, and A. Jahanmiri, An environmentally friendly configuration for ammonium nitrate decomposition, Ind. Eng. Chem. Res. 52, 13276 (2013).
  • D. Bonvin, Advanced Control of Chemical Processes 1994, Elsevier Science, 2014.
  • A. Mirvakili, F. Samimi, and A. Jahanmiri, Simultaneous ammonium nitrate decomposition and NOx emission reduction in a novel configuration of membrane reactor: A simulation study, J. Ind. Eng. Chem. 20, 2452 (2014).
  • J. C. Oxley, S. M. Kaushik, and N. S. Gilson, Thermal stability and compatibility of ammonium nitrate explosives on a small and large scale, Thermochim. Acta 212, 77 (1992).
  • A. G. Keenan, Differential thermal analysis of the thermal decomposition of ammonium nitrate, J. Am. Chem. Soc. 77, 1379 (1955).
  • Z. Xu, D. Liu, Y. Hu, Z. Ye, and Y. Wei, Infuence of iron ion on thermal behavior of ammonium nitrate and emulsion explosives, Cent. Eur. J. Energ. Mater. 7, 77 (2010).
  • R. Turcotte, P. Lightfoot, R. Fouchard, and D. Jones, Thermal hazard assessment of AN and AN based explosives, J. Hazard. Mater. 101, 1 (2003).
  • L. Friedman and J. Bigeleisen, Oxygen and nitrogen isotope effects in the decomposition of ammonium nitrate, J. Chem. Phys. 18, 1325 (1950).
  • A. Nazarian and C. Presser, Forensic analysis methodology for thermal and chemical characterization of homemade explosives, Thermochim. Acta, 576, 60 (2014).
  • Z. Han, S. Sachdeva, M. I. Papadaki, and M. S. Mannan, Ammonium nitrate thermal decomposition with additives, J. Loss Prevent. Proc. 35, 307, (2015).
  • K. Kajiyama, Y.-I. Izato, and A. Miyake, Thermal characteristics of ammonium nitrate, carbon, and copper(II) oxide mixtures, J. Therm. Anal. Calorim. 113, 1475 (2013).
  • J. Park and M. C. Lin, Thermal decomposition of gaseous ammonium nitrate at low pressure: Kinetic modeling of product formation and heterogeneous decomposition of nitric acid, J. Phys. Chem. A 113, 13556 (2009).
  • Y. S. Sayi, C. S. Yadav, P. S. Shankaran, G. C. Chhapru, K. L. Ramakumar, and V. Venugopal, Thermal decomposition of nitrogenous salts under vacuum, Int. J. Mass Spectrom. 214, 375 (2002).
  • W. M. Chien, D. Chandra, K. H. Lau, D. L. Hildenbrand, and A. M. Helmy, The vaporization of NH4NO3, J. Chem. Thermodyn. 42, 846 (2010).
  • A. A. Vargeese, S. Mija, and K. Muralidharan, Effect of copper oxide, titanium dioxide, and lithium fluoride on the thermal behavior and decomposition kinetics of ammonium nitrate, J. Energ. Mater. 32, 146 (2014).
  • S. K. Chan and R. Turcotte, Onset temperatures in hot wire ignition of AN based emulsions, Propellants Explos. Pyrotech. 34, 41 (2009).
  • J. C. Oxley, J. L. Smith, E. Rogers, and M. Yu, Ammonium nitrate: Thermal stability and explosivity modifiers, Thermochim. Acta 384, 23 (2002).
  • J. Sun, Z. Sun, Q. Wang, H. Ding, T. Wang, and C. Jiang, Catalytic effects of inorganic acids on the decomposition of ammonium nitrate, J. Hazard. Mater. 127, 204 (2005).
  • A. G. Dana, G. E. Shter, and G. S. Grader, Thermal analysis of aqueous urea ammonium nitrate alternative fuel, RSC Adv. 4, 34836 (2014).
  • J. C. Oxley, S. M. Kaushik, and N. S. Gilson, Thermal decomposition of ammonium nitrate based composites, Thermochim. Acta 153, 269 (1989).
  • S. Cagnina, P. Rotureau, G. Fayet, and C. Adamo, The ammonium nitrate and its mechanism of decomposition in the gas phase: A theoretical study and a DFT benchmark, PCCP 15, 10849 (2013).
  • T. R. Shan, A. C. van Duin, and A. P. Thompson, Development of a ReaxFF reactive force field for ammonium nitrate and application to shock compression and thermal decomposition, J. Phys. Chem. A 118, 1469 (2014).
  • S. N. Bulusu, Chemistry and Physics of Energetic Materials, Springer Netherlands, 2012.
  • R. Gunawan, S. Freij, D.-K. Zhang, F. Beach, and M. Littlefair, A mechanistic study into the reactions of ammonium nitrate with pyrite, Chem. Eng. Sci. 61, 5781 (2006).
  • C. S. Skordilis and P. J. Pomonis, The influence of Mn, Co and Cu cations on the thermal decomposition of NH4NO3 in pure form and supported on alumina, Thermochim. Acta 216, 137 (1993).
  • A. Kazakov, O. Ivanova, L. Kurochkina, and N. Plishkin, Kinetics and mechanism of thermal decomposition of ammonium nitrate and sulfate mixtures, Russ. J. Appl. Chem. 84, 1516 (2011).
  • K. Farhat, W. Cong, Y. Batonneau, and C. Kappenstein, Improvement of catalytic decomposition of ammonium nitrate with new bimetallic catalysts, AIAA Paper 4963 (2009).
  • D. E. Petrakis, A. T. Sdoukos, and P. J. Pomonis, Effect of the first row transition metal cations on the mode of decomposition of ammonium nitrate supported on alumina-aluminum phosphate and the final products obtained, Thermochim. Acta 196, 447 (1992).
  • A. A. Vargeese, K. Muralidharan, and V. Krishnamurthy, Kinetics of nano titanium dioxide catalyzed thermal decomposition of ammonium nitrate and ammonium nitrate based composite solid propellant, Propellants Explos. Pyrotech. 40, 260 (2015).
  • A. A. Vargeese and K. Muralidharan, Anatase-brookite mixed phase nano TiO2 catalyzed homolytic decomposition of ammonium nitrate, J. Hazard. Mater. 192, 1314 (2011).
  • A. A. Vargeese and K. Muralidharan, Kinetics and mechanism of hydrothermally prepared copper oxide nanorod catalyzed decomposition of ammonium nitrate, Appl. Catal. A: Gen. 447, 171 (2012).
  • Y.-I. Izato and A. Miyake, Thermal decomposition mechanism of ammonium nitrate and potassium chloride mixtures, J. Therm. Anal. Calorim. 121, 287, (2015).
  • A. I. Kazakov, Y. I. Rubtsov, D. B. Lempert, and G. B. Manelis, Kinetics of oxidation of organic acids by ammonium nitrate, Russ. J. Appl. Chem. 76, 1214 (2003).
  • Y. i. Izato and A. Miyake, Combustion characteristics of ammonium nitrate and carbon mixtures based on a thermal decomposition mechanism, Propellants Explos. Pyrotech. 38, 129 (2013).
  • B. A. Lurie and C. Lianshen, Kinetics and mechanism of thermal decomposition of ammonium nitrate powder under the action of carbon black, Combust. Explos. Shock Waves 36, 607 (2000).
  • Y. I. Rubtsov, A. I. Kazakov, D. B. Lempert, and G. B. Manelis, Kinetics and mechanism of thermal decomposition of guanidinium nitrate and its mixtures with ammonium nitrate, Russ. J. Appl. Chem. 77, 1083 (2004).
  • S. Mathew, K. Krishnan, and K. N. Ninan, A DSC study on the effect of RDX and HMX on the thermal decomposition of phase stabilized ammonium nitrate, Propellants Explos. Pyrotech. 23, 150 (1998).
  • S. Mathew, K. Krishnan, and K. Ninan, Effect of energetic materials on thermal decomposition of phase stabilised ammonium nitrate-An eco-friendly oxidiser, Def. Sci. J. 49, 65 (2013).
  • T. Naya and M. Kohga, Thermal decomposition behaviors and burning characteristics of AN/Nitramine based composite propellant, J. Energ. Mater. 33, 73 (2014).
  • J. C. Oxley, J. L. Smith, and W. Wang, Compatibility of ammonium nitrate with monomolecular explosives. 1, J. Phys. Chem. 98, 3893 (1994).
  • A. M. Lipanov, Solid propellant burning rate as a function of pressure, Combust. Explos. Shock Waves 49, 283 (2013).
  • H. Shekhar, Estimation of pressure index and temperature sensitivity coefficient of solid rocket propellants by static evaluation, Def. Sci. J. 59, 666 (2009).
  • B. J. Kosanke, B. T. Sturman, and R. M. Winokur, Encyclopedic Dictionary of Pyrotechnics: (and Related Subjects) - B&W, Journal of Pyrotechnics, Incorporated (2012).
  • T. Naya and M. Kohga, Burning characteristics of ammonium nitrate based composite propellants supplemented with MnO2, Propellants Explos. Pyrotech. 38, 87 (2013).
  • K. Hasue, A burning rate equation as a function of pressure and temperature for a BTA· NH3/PSAN mixture, J. Energ. Mater. 32, 199 (2014).
  • K. Hasue and K. Yoshitake, Equation of burning rate as a function of pressure and temperature for 1H-Tetrazole/Ammonium nitrate mixtures, J. Energ. Mater. 31, 251 (2013).
  • V. P. Sinditskii, V. Y. Egorshev, A. I. Levshenkov, and V. V. Serushkin, Ammonium nitrate: Combustion mechanism and the role of additives, Propellants Explos. Pyrotech. 30, 269 (2005).
  • B. S. Ermolaev, A. A. Sulimov, V. E. Khrapovskii, and V. A. Foteenkov, Initial stage of the explosion of ammonium nitrate and its powder mixtures, Russ. J. Phys. Chem. B 5, 640 (2011).
  • Z.-X. Xu, D.-B. Liu, and Y.-T. Hu, Investigation of ammonium nitrate based emulsion ignition characteristic, J. Loss Prevent. Proc. 26, 994 (2013).
  • V. P. Sinditskii, V. Y. Egorshev, D. Tomasi, and L. T. DeLuca, Combustion mechanism of ammonium nitrate based propellants, J. Propul. Power 24, 1068 (2008).
  • W. Andersen, K. Bills, E. Mishuck, G. Moe, and R. Schultz, A model describing combustion of solid composite propellants containing ammonium nitrate, Combust. Flame 3, 301 (1959).
  • R. Chaiken, A thermal layer mechanism of combustion of solid composite propellants: Application to ammonium nitrate propellants, Combust. Flame 3, 285 (1959).
  • V. P. Sinditskii, V. Y. Egorshev, V. V. Serushkin, A. I. Levshenkov, M. V. Berezin, and S. A. Filatov, Combustion of energetic materials governed by reactions in the condensed phase, Int. J. Energetic Mater. Chem. Propul. 9, 147 (2010).
  • V. Sinditskii, V. Y. Egorshev, V. Serushkin, A. Levshenkov, M. Berezin, S. Filatov, and S. Smirnov, Evaluation of decomposition kinetics of energetic materials in the combustion wave, Thermochim. Acta 496, 1 (2009).
  • V. Sinditskii, V. Y. Egorshev, V. Serushkin, and S. Filatov, Combustion of energetic materials controlled by condensed phase reactions, Combust. Explos. Shock Waves 48, 81 (2012).
  • B. Kondrikov, V. Annikov, V. Y. Egorshev, L. DeLuca, and C. Bronzi, Combustion of ammonium nitrate based compositions, metal containing and water-impregnated compounds, J. Propul. Power 15, 763 (1999).
  • T. Naya and M. Kohga, Burning characteristics of ammonium nitrate based composite propellants supplemented with Fe2O3, Propellants Explos. Pyrotech. 38, 547 (2013).
  • T. Naya and M. Kohga, Influence of Fe2O3 size on burning characteristics of ammonium nitrate/Fe2O3 propellants, J. Propul. Power 30, 864 (2014).
  • M. Kohga and S. Nishino, Burning characteristics of ammonium nitrate based composite propellants supplemented with ammonium dichromate, Propellants Explos. Pyrotech. 34, 340 (2009).
  • G. Singh and S. Prem Felix, Studies on energetic compounds: Part 36: Evaluation of transition metal salts of NTO as burning rate modifiers for HTPB-AN composite solid propellants, Combust. Flame 135, 145 (2003).
  • V. N. Popok and N. V. Bychin, Impact of metallic and nonmetallic nanopowders on the combustion characteristics of energetic materials based on ammonium nitrate, Nanotechnol. Russia 9, 541 (2014).
  • Y. Miyata and K. Hasue, Burning characteristics of Aminoguanidinium 5, 5′-Azobis-1H-Tetrazolate/Ammonium nitrate mixture-Effects of particle size and composition ratio on burning rate, J. Energ. Mater. 29, 344 (2011).
  • Y. Miyata and K. Hasue, Effect of initial temperature and pressure on the burning rate of AGAT/AN mixtures, J. Energ. Mater. 29, 26 (2011).
  • M. D. Judge and P. Lessard, An advanced GAP/AN/TAGN propellant. Part I: Ballistic properties, Propellants Explos. Pyrotech. 32, 175 (2007).
  • M. Kohga, T. Naya, and K. Okamoto, Burning characteristics of ammonium nitrate based composite propellants with a hydroxyl terminated polybutadiene/polytetrahydrofuran blend binder, Int. J. Aerospace Eng. 378483, (2012).
  • M. Kohga and K. Okamoto, Thermal decomposition behaviors and burning characteristics of ammonium nitrate/polytetrahydrofuran/glycerin composite propellant, Combust. Flame 158, 573 (2011).
  • M. Kohga and T. Naya, Thermal decomposition behaviors and burning characteristics of AN/RDX based composite propellants supplemented with MnO2 and Fe2O3, J. Energ. Mater. 33, 288 (2015).
  • V. Arkhipov, T. Gorbenko, M. Gorbenko, A. Pesterev, and L. Savel'eva, Effect of catalytic additives and aluminum particle size on the combustion of mixed compositions with a chlorine-free oxidizer, Combust. Explos. Shock Waves 48, 642 (2012).
  • D. Signoriello, L. Galfetti, L. T. De Luca, S. Cianfanelli, G. F. Klyakin, V. P. Sinditskii, V. A. Babuk, and A. B. Vorozhtsov, Solid propellants based on AN/AP co-crystals for green space access, Eur. Space Agency, [Spec. Publ.] SP, SP-635, deluca02/1 (2006).
  • J. Zhang and J. He, Calculation and analysis on energy characteristics of AN-based propellants, Hanneng Cailiao 13, 401 (2005).
  • X.-B. Zhao, L.-F. Hou, and X.-P. Zhang, Thermal decomposition and combustion of GAP/AN/nitrate ester propellants, Prog. Astronaut. Aeronaut. 185, 413 (2000).
  • K. Menke, J. Boehnlein-Mauss, and H. Schubert, Characteristic properties of AN/GAP propellants, Propellants, Explos. Pyrotech. 21, 139 (1996).
  • N. Kubota, K. Katoh and G. Nakashita, Combustion mechanism of GAP/AN propellants, Int. Annu. Conf. ICT 22, 42/1 (1991).
  • C. Oommen and S. R. Jain, Phase stabilized ammonium nitrate based propellants using binders with N-N Bonds, J. Propul. Power 16, 133 (2000).
  • X.-D. Zhang, J.-M. Li, R.-J. Yang, and X.-Q. Zhao, Effect of azodicarbonamide on the properties of BAMO/THF/PSAN propellants, Beijing Ligong Daxue Xuebao 30, 603 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.