2,808
Views
91
CrossRef citations to date
0
Altmetric
Reviews

Graphene for Thermoelectric Applications: Prospects and Challenges

, , & ORCID Icon

References

  • Z.-Y. Juang, C.-C. Tseng, C.-H. Chen, and L.-J. Li, Graphene-based thermoelectric materials. AAPPS Bull. 23(4) (2013).
  • C. B. Vining, An inconvenient truth about thermoelectrics. Nat. Mater. 8(2), 83–85 (2009).
  • A. Dey, O. P. Bajpai, A. K. Sikder, S. Chattopadhyay, and M. A. S. Khan, Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting. Renew. Sustain. Energy Rev. 53, 653–671 (2016).
  • N. Neophytou, and M. Thesberg, Modulation doping and energy filtering as effective ways to improve the thermoelectric power factor. J. Comput. Electron. 15, 1–11 (2016).
  • C. Rocha, M. Rümmeli, I. Ibrahim, H. Sevincli, F. Börrnert, J. Kunstmann, A. Bachmatiuk, M. Pötschke, W. Li, and S. Makharza, Tailoring the physical properties of graphene, in Graphene, CRC Press, Boca Raton, FL, USA, 1–26 (2011).
  • Z.-G. Chen, G. Han, L. Yang, L. Cheng, and J. Zou, Nanostructured thermoelectric materials: Current research and future challenge. Prog. Nat. Sci. 22(6), 535–549 (2012).
  • A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011).
  • S. K. Tiwari, V. Kumar, A. Huczko, R. Oraon, A. De Adhikari, and G. Nayak, Magical allotropes of carbon: prospects and applications. Crit. Rev. Solid State Mater. Sci. 1–61 (2016).
  • Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010).
  • L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano. 4(5), 2865–2873 (2010).
  • X. An, and C. Y. Jimmy, Graphene-based photocatalytic composites. Rsc Adv. 1(8), 1426–1434 (2011).
  • X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Approaching ballistic transport in suspended graphene. Nat. Nanotech. 3(8), 491–495 (2008).
  • Q. Zheng, Z. Li, J. Yang, and J.-K. Kim, Graphene oxide-based transparent conductive films. Prog. Mater. Sci. 64, 200–247 (2014).
  • S. P. Lim, A. Pandikumar, N. M. Huang, and H. N. Lim, Reduced graphene oxide–titania nanocomposite‐modified photoanode for efficient dye‐sensitized solar cells. Int. J. Energ. Res. 39(6), 812–824 (2015).
  • M. Mao, J. Hu, and H. Liu, Graphene‐based materials for flexible electrochemical energy storage. Int. J. Energ. Res. 39(6), 727–740 (2015).
  • S. D. Sarma, S. Adam, E. Hwang, and E. Rossi, Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83(2), 407 (2011).
  • P. Dollfus, and V. H. Nguyen, Thermoelectric effects in graphene nanostructures. J. Phys. Condens. Matt. 27(13), 133204 (2015).
  • Y. Xu, Z. Li, and W. Duan, Thermal and thermoelectric properties of graphene. Small 10(11), 2182–2199 (2014).
  • D. Gunlycke, H. Lawler, and C. White, Room-temperature ballistic transport in narrow graphene strips. Phys. Rev. B 75(8), 085418 (2007).
  • P. Avouris, and C. Dimitrakopoulos, Graphene, synthesis and applications. Mater. Today 15(3), 86–97 (2012).
  • J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4(1), 43–48 (2009).
  • F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, Graphene photonics and optoelectronics. Nat. Photon. 4(9), 611–622 (2010).
  • Y. Huang, E. Sutter, N. N. Shi, J. Zheng, T. Yang, D. Englund, H.-J. Gao, and P. Sutter, Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano. 9(11), 10612–10620 (2015).
  • M. Yi, and Z. Shen, A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3(22), 11700–11715 (2015).
  • A. Cortes, C. Celedon, and R. Zarate, CVD synthesis of graphene from acetylene catalyzed by a reduced CuO thin film deposited on SiO2 substrates. J. Chil. Chem. Soc. 60(2), 2911–2913 (2015).
  • A. Cabrero-Vilatela, R. S. Weatherup, P. Braeuninger-Weimer, S. Caneva, and S. Hofmann, Towards a general growth model for graphene CVD on transition metal catalysts. Nanoscale 8(4), 2149–2158 (2016).
  • G. Deokar, J. Avila, I. Razado-Colambo, J.-L. Codron, C. Boyaval, E. Galopin, M.-C. Asensio, and D. Vignaud, Towards high quality CVD graphene growth and transfer. Carbon 89, 82–92 (2015).
  • M. Hajlaoui, H. Sediri, D. Pierucci, H. Henck, T. Phuphachong, M. G. Silly, L.-A. de Vaulchier, F. Sirotti, Y. Guldner, and R. Belkhou, High electron mobility in epitaxial trilayer graphene on off-axis SiC (0001). Sci. Rep. 6 (2016).
  • T. Rana, M. Chandrashekhar, K. Daniels, and T. Sudarshan, Epitaxial growth of graphene on SiC by Si selective etching using SiF4 in an inert ambient. Jpn. J. Appl. Phys. 54(3), 030304 (2015).
  • M. Aunkor, I. Mahbubul, R. Saidur, and H. Metselaar, The green reduction of graphene oxide. RSC Adv. 6(33), 27807–27828 (2016).
  • G. Xu, J. Malmström, N. Edmonds, N. Broderick, J. Travas-Sejdic, and J. Jin, Investigation of the reduction of graphene oxide by lithium triethylborohydride. J. Nanomater. 2016 (2016).
  • J. Munuera, J. Paredes, S. Villar-Rodil, M. Ayán-Varela, A. Martínez-Alonso, and J. Tascón, Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide-free graphene flakes. Nanoscale (2016).
  • A. Ciesielski, and P. Samorì, Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 43(1), 381–398 (2014).
  • N. Sankeshwar, S. Kubakaddi, and B. Mulimani, Thermoelectric power in graphene. In Advances in Graphene Science, Intech, Croatia (2013). pp. 1–56.
  • A. C. Neto, F. Guinea, N. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009).
  • A. K. Geim, and K. S. Novoselov, The rise of graphene. Nat.. Mater. 6(3), 183–191 (2007).
  • N. Ferralis, Probing mechanical properties of graphene with Raman spectroscopy. J. Mater. Sci. 45(19), 5135–5149 (2010).
  • S. Pei, and H.-M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012).
  • D. B. Farmer, V. Perebeinos, Y.-M. Lin, C. Dimitrakopoulos, and P. Avouris, Charge trapping and scattering in epitaxial graphene. Phys. Rev. B 84(20), 205417 (2011).
  • K. I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9), 351–355 (2008).
  • J.-H. Chen, C. Jang, M. Ishigami, S. Xiao, W. Cullen, E. Williams, and M. Fuhrer, Diffusive charge transport in graphene on SiO 2. Solid State Commun. 149(27), 1080–1086 (2009).
  • W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 80(23), 235402 (2009).
  • K. Nomura, and A. H. MacDonald, Quantum Hall ferromagnetism in graphene. Phys. Rev. Lett. 96(25), 256602 (2006).
  • S. Adam, E. Hwang, V. Galitski, and S. D. Sarma, A self-consistent theory for graphene transport. Proc. Nat. Acad. Sci. 104(47), 18392–18397 (2007).
  • O. V. Yazyev, and S. G. Louie, Electronic transport in polycrystalline graphene. Nature Mater. 9(10), 806–809 (2010).
  • R. Nair, P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, N. Peres, and A. Geim, Universal dynamic conductivity and quantized visible opacity of suspended graphene. arXiv preprint arXiv:0803.3718 (2008).
  • I. S. Nefedov, C. A. Valaginnopoulos, and L. A. Melnikov, Perfect absorption in graphene multilayers. J. Opt. 15(11), 114003 (2013).
  • S. Thongrattanasiri, F. H. Koppens, and F. J. G. de Abajo, Complete optical absorption in periodically patterned graphene. Phys. Rev Lett. 108(4), 047401 (2012).
  • J. R. Piper, and S. Fan, Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photon. 1(4), 347–353 (2014).
  • A. Guermoune, T. Chari, F. Popescu, S. S. Sabri, J. Guillemette, H. S. Skulason, T. Szkopek, and M. Siaj, Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon 49(13), 4204–4210 (2011).
  • Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. Hwang, S. D. Sarma, H. Stormer, and P. Kim, Measurement of scattering rate and minimum conductivity in graphene. Phys. Rev. Lett. 99(24), 246803 (2007).
  • J. L. Tedesco, B. L. VanMil, R. L. Myers-Ward, J. M. McCrate, S. A. Kitt, P. M. Campbell, G. G. Jernigan, J. C. Culbertson, C. R. Eddy Jr., and D. K. Gaskill, Hall effect mobility of epitaxial graphene grown on silicon carbide. Appl. Phys. Lett. 95(12), 122102 (2009).
  • C. Gómez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7(11), 3499–3503 (2007).
  • S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, and Y. I. Song, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotech. 5(8), 574–578 (2010).
  • T. Kobayashi, N. Kimura, J. Chi, S. Hirata, and D. Hobara, Channel‐length‐dependent field‐effect mobility and carrier concentration of reduced graphene oxide thin‐film transistors. Small 6(11), 1210–1215 (2010).
  • S. Wang, P. K. Ang, Z. Wang, A. L. L. Tang, J. T. Thong, and K. P. Loh, High mobility, printable, and solution-processed graphene electronics. Nano Lett. 10(1), 92–98 (2009).
  • A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2008).
  • J. Kang, Y. Jang, Y. Kim, S.-H. Cho, J. Suhr, B. H. Hong, J.-B. Choi, and D. Byun, An Ag-grid/graphene hybrid structure for large-scale, transparent, flexible heaters. Nanoscale 7(15), 6567–573 (2015).
  • C.-Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.-H. Tsai, and L.-J. Li, Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chem. Mater. 21(23), 5674–5680 (2009).
  • H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano. 2(3), 463–470 (2008).
  • W. Wu, Q. Yu, P. Peng, Z. Liu, J. Bao, and S.-S. Pei, Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes. Nanotechnology 23(3), 035603 (2011).
  • A. Nekahi, P. Marashi, and D. Haghshenas, Transparent conductive thin film of ultra large reduced graphene oxide monolayers. Appl. Surf. Sci. 295, 59–65 (2014).
  • M. Batmunkh, C. J. Shearer, M. J. Biggs, and J. G. Shapter, Solution processed graphene structures for perovskite solar cells. J. Mater. Chem. A 4(7), 2605–2616 (2016).
  • X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9(12), 4359–4363 (2009).
  • E. Pop, V. Varshney, and A. K. Roy, Thermal properties of graphene: Fundamentals and applications. MRS Bull. 37(12), 1273–1281 (2012).
  • S. Chen, A. L. Moore, W. Cai, J. W. Suk, J. An, C. Mishra, C. Amos, C. W. Magnuson, J. Kang, and L. Shi, Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. ACS Nano 5(1), 321–328 (2010).
  • Q. Zheng, and J.-K. Kim, Improvement of electrical conductivity and transparency. In Graphene for Transparent Conductors; Synthesis, Properties and Applications, Springer, New York (2015). pp. 123–178.
  • S. V. Muley, and N. Ravindra, Thermoelectric properties of pristine and doped graphene nanosheets and graphene nanoribbons: Part I. JOM 1–7 (2016).
  • J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, and D. Broido, Two-dimensional phonon transport in supported graphene. Science 328(5975), 213–216 (2010).
  • J.-W. Jiang, J.-S. Wang, and B.-S. Wang, Minimum thermal conductance in graphene and boron nitride superlattice. Appl. Phys. Lett. 99(4), 043109 (2011).
  • Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438(7065), 201–204 (2005).
  • Z. Gang, Thermal conduction of graphene. In Nanoscale Energy Transport and Harvesting: A Computational Study, Pan Stanford Publishing, Singapore (2015). pp. 91–141.
  • E. Watanabe, S. Yamaguchi, J. Nakamura, and A. Natori, Ballistic thermal conductance of electrons in graphene ribbons. Phys. Rev. B 80(8), 085404 (2009).
  • S. Yigen, and A. Champagne, Wiedemann–Franz relation and thermal-transistor effect in suspended graphene. Nano Lett. 14(1), 289–293 (2013).
  • K. Saito, J. Nakamura, and A. Natori, Ballistic thermal conductance of a graphene sheet. Phys. Rev. B 76(11), 115409 (2007).
  • N. Mounet, and N. Marzari, First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B 71(20), 205214 (2005).
  • X. Gu, and R. Yang, Phonon transport and thermal conductivity in two-dimensional materials. arXiv preprint arXiv:1509.07762 (2015).
  • N. Mingo, and D. Broido, Carbon nanotube ballistic thermal conductance and its limits. Phys. Rev. Lett. 95(9), 096105 (2005).
  • D. Nika, E. Pokatilov, A. Askerov, and A. Balandin, Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Phys. Rev. B 79(15), 155413 (2009).
  • V. N. Popov, Low-temperature specific heat of nanotube systems. Phys. Rev. B 66(15), 153408 (2002).
  • E. Munoz, J. Lu, and B. I. Yakobson, Ballistic thermal conductance of graphene ribbons. Nano Lett. 10(5), 1652–1656 (2010).
  • L. Wirtz, and A. Rubio, The phonon dispersion of graphite revisited. Solid State Commun. 131(3), 141–152 (2004).
  • M. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. Cancado, A. Jorio, and R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9(11), 1276–1290 (2007).
  • A. Politano, Spectroscopic investigations of phonons in epitaxial graphene. Crit. Rev. Solid State Mater. Sci. 1–30 (2016).
  • H. Tomita, and J. Nakamura, Ballistic phonon thermal conductance in graphene nanoribbons. J. Vac. Sci. Technol. B 31(4), 04D104 (2013).
  • Z. Huang, T. S. Fisher, and J. Y. Murthy, Simulation of phonon transmission through graphene and graphene nanoribbons with a Green's function method. J. Appl. Phys. 108(9), 094319 (2010).
  • R. Prasher, Thermal boundary resistance and thermal conductivity of multiwalled carbon nanotubes. Phys. Rev. B 77(7), 075424 (2008).
  • C. Jeong, R. Kim, M. Luisier, S. Datta, and M. Lundstrom, On Landauer versus Boltzmann and full band versus effective mass evaluation of thermoelectric transport coefficients. J. Appl. Phys. 107(2), 023707 (2010).
  • Y. Xu, X. Chen, B.-L. Gu, and W. Duan, Intrinsic anisotropy of thermal conductance in graphene nanoribbons. Appl. Phys. Lett. 95(23), 233116 (2009).
  • B. S. Lee, and J. S. Lee, Thermal conductivity reduction in graphene with silicon impurity. Appl. Phys. A 121(3), 1193–1202 (2015).
  • B. Gallagher, and P. Butcher, Classical transport and thermoelectric effects in low dimensional and mesoscopic semiconductor structures. In Handbook on Semiconductors 1, Elsevier, Amsterdam, Netherlands (1992). pp. 721–816.
  • A. Reshak, S. A. Khan, and S. Auluck, Thermoelectric properties of a single graphene sheet and its derivatives. J. Mater. Chem. C 2(13), 2346–2352 (2014).
  • S. V. Muley, and N. M. Ravindra, Thermoelectric properties of pristine and doped graphene nanosheets and graphene nanoribbons: Part II. JOM 68(6), 1660–1666 (2016).
  • D. K. Ferry, S. M. Goodnick, and J. Bird, Transport in Nanostructures, Cambridge University Press, UK (2009).
  • N. Sankeshwar, R. Vaidya, and B. Mulimani, Behavior of thermopower of graphene in Bloch–Grüneisen regime. Phys. Status Solidi 250(7), 1356–1362 (2013).
  • S. Kubakaddi, Interaction of massless Dirac electrons with acoustic phonons in graphene at low temperatures. Phys. Rev. B 79(7), 075417 (2009).
  • S. Kubakaddi, and K. Bhargavi, Enhancement of phonon-drag thermopower in bilayer graphene. Phys. Rev. B 82(15), 155410 (2010).
  • Y.-W. Son, M. L. Cohen, and S. G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803 (2006).
  • R. Vaidya, M. Kamatagi, N. Sankeshwar, and B. Mulimani, Diffusion thermopower in graphene. Semicond. Sci. Technol. 25(9), 092001 (2010).
  • J. G. Checkelsky, and N. Ong, Thermopower and Nernst effect in graphene in a magnetic field. Phys. Rev. B 80(8), 081413 (2009).
  • D. Wang, and J. Shi, Effect of charged impurities on the thermoelectric power of graphene near the Dirac point. Phys. Rev. B 83(11), 113403 (2011).
  • X. Wu, Y. Hu, M. Ruan, N. K. Madiomanana, C. Berger, and W. A. de Heer, Thermoelectric effect in high mobility single layer epitaxial graphene. Appl. Phys. Lett. 99(13), 133102 (2011).
  • X. Liu, D. Wang, P. Wei, L. Zhu, and J. Shi, Effect of carrier mobility on magnetothermoelectric transport properties of graphene. Phys. Rev. B 86(15), 155414 (2012).
  • A. Babichev, V. Gasumyants, and V. Butko, Resistivity and thermopower of graphene made by chemical vapor deposition technique. J. Appl. Phys. 113(7), 076101 (2013).
  • S.-G. Nam, D.-K. Ki, and H.-J. Lee, Thermoelectric transport of massive Dirac fermions in bilayer graphene. Phys. Rev. B 82(24), 245416 (2010).
  • C.-R. Wang, W.-S. Lu, L. Hao, W.-L. Lee, T.-K. Lee, F. Lin, I.-C. Cheng, and J.-Z. Chen, Enhanced thermoelectric power in dual-gated bilayer graphene. Phys. Rev. Lett. 107(18), 186602 (2011).
  • D. Sim, D. Liu, X. Dong, N. Xiao, S. Li, Y. Zhao, L.-J. Li, Q. Yan, and H. H. Hng, Power factor enhancement for few-layered graphene films by molecular attachments. J. Phys. Chem. C 115(5), 1780–1785 (2011).
  • L. Mahmoud, M. Alhwarai, Y. A. Samad, B. Mohammad, K. Laio, and I. Elnaggar, Characterization of a graphene-based thermoelectric generator using a cost-effective fabrication process. Energy Procedia 75, 615–620 (2015).
  • J. Gao, C. Liu, L. Miao, X. Wang, Y. Peng, and Y. Chen, Enhanced power factor in flexible reduced graphene oxide/nanowires hybrid films for thermoelectrics. RSC Adv. 6(38), 31580–31587 (2016).
  • B. Liang, Z. Song, M. Wang, L. Wang, and W. Jiang, Fabrication and thermoelectric properties of graphene/Bi 2 Te 3 composite materials. J. Nanomater. 2013, 6 (2013).
  • J. Dong, W. Liu, H. Li, X. Su, X. Tang, and C. Uher, In situ synthesis and thermoelectric properties of PbTe–graphene nanocomposites by utilizing a facile and novel wet chemical method. J. Mater. Chem. A 1(40), 12503–12511 (2013).
  • S. Zhou, Y. Guo, and J. Zhao, Enhanced thermoelectric properties of graphene oxide patterned by nanoroads. Phys. Chem. Chem. Phys. 18(15), 10607–10615 (2016).
  • M. S. Hossain, F. Al-Dirini, F. M. Hossain, and E. Skafidas, High performance graphene nano-ribbon thermoelectric devices by incorporation and dimensional tuning of nanopores. Scientific Reports 5 (2015).
  • L. A. Algharagholy, Q. Al-Galiby, H. A. Marhoon, H. Sadeghi, H. M. Abduljalil, and C. J. Lambert, Tuning thermoelectric properties of graphene/boron nitride heterostructures. Nanotechnology 26(47), 475401 (2015).
  • S. Koniakhin, and E. Eidelman, Phonon drag thermopower in graphene in equipartition regime. EPL (Europhys. Lett.) 103(3), 37006 (2013).
  • Y. M. Zuev, W. Chang, and P. Kim, Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102(9), 096807 (2009).
  • C. Zhang, L. Fu, N. Liu, M. Liu, Y. Wang, and Z. Liu, Synthesis of nitrogen‐doped graphene using embedded carbon and nitrogen sources. Adv. Mater. 23(8), 1020–1024 (2011).
  • P. Wei, W. Bao, Y. Pu, C. N. Lau, and J. Shi, Anomalous thermoelectric transport of Dirac particles in graphene. Phys. Rev. Lett. 102(16), 166808 (2009).
  • R. Shishir, F. Chen, J. Xia, N. Tao, and D. Ferry, Room temperature carrier transport in graphene. J. Comput. Electron. 8(2), 43–50 (2009).
  • T. Stauber, N. Peres, and F. Guinea, Electronic transport in graphene: A semiclassical approach including midgap states. Phys. Rev. B 76(20), 205423 (2007).
  • A. Nissimagoudar, and N. Sankeshwar, Electronic thermal conductivity and thermopower of armchair graphene nanoribbons. Carbon 52, 201–208 (2013).
  • W. Bao, S. Liu, and X. Lei, Thermoelectric power in graphene. J. Phys. Condens. Matt. 22(31), 315502 (2010).
  • Y. Lan, A. J. Minnich, G. Chen, and Z. Ren, Enhancement of thermoelectric figure‐of‐merit by a bulk nanostructuring approach. Adv. Funct. Mater. 20(3), 357–376 (2010).
  • H. Yan, and K. Kou, Enhanced thermoelectric properties in polyaniline composites with polyaniline-coated carbon nanotubes. J. Mater. Sci. 49(3), 1222–1228 (2014).
  • T. Harman, P. Taylor, M. Walsh, and B. LaForge, Quantum dot superlattice thermoelectric materials and devices. Science 297 (5590), 2229–2232 (2002).
  • J.-W. G. Bos, and R. A. Downie, Half-Heusler thermoelectrics: a complex class of materials. J. Phys. Condens. Matt. 26(43), 433201 (2014).
  • P. Vaqueiro, and A. V. Powell, Recent developments in nanostructured materials for high-performance thermoelectrics. J. Mater. Chem. 20(43), 9577–9584 (2010).
  • A.-Y. Lu, S.-Y. Wei, C.-Y. Wu, Y. Hernandez, T.-Y. Chen, T.-H. Liu, C.-W. Pao, F.-R. Chen, L.-J. Li, and Z.-Y. Juang, Decoupling of CVD graphene by controlled oxidation of recrystallized Cu. RSC Adv. 2(7), 3008–3013 (2012).
  • H. J. Goldsmid, Bismuth telluride and its alloys as materials for thermoelectric generation. Materials 7(4), 2577–2592 (2014).
  • E. Kan, J. Yang, and Z. Li, Graphene nanoribbons: geometric, electronic, and magnetic properties. In Physics and Applications of Graphene- theory, Intech, Croatia, Europe (2011). pp. 331–348.
  • J. Palacios, J. Fernández-Rossier, L. Brey, and H. Fertig, Electronic and magnetic structure of graphene nanoribbons. Semicond. Sci. Technol. 25(3), 033003 (2010).
  • W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, Synthesis of graphene and its applications: a review. Crit. Rev. Solid State Mater. Sci. 35(1), 52–71 (2010).
  • M. M. Rojo, O. C. Calero, A. Lopeandia, J. Rodriguez-Viejo, and M. Martín-Gonzalez, Review on measurement techniques of transport properties of nanowires. Nanoscale 5(23), 11526–11544 (2013).
  • S. K. Bux, J.-P. Fleurial, and R. B. Kaner, Nanostructured materials for thermoelectric applications. Chem. Commun. 46(44), 8311–8324 (2010).
  • J. R. Szczech, J. M. Higgins, and S. Jin, Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J. Mater. Chem. 21(12), 4037–4055 (2011).
  • G. Pennelli, Review of nanostructured devices for thermoelectric applications. Beilstein J. Nanotechnol. 5(1), 1268–1284 (2014).
  • A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175), 163–167 (2008).
  • H. Wu, L.-D. Zhao, F. Zheng, D. Wu, Y. Pei, X. Tong, M. Kanatzidis, and J. He, Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0. 7S0. 3. Nat. Commun. 5 (2014).
  • L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508(7496), 373–377 (2014).
  • X. Fan, Z. Shen, A. Liu, and J.-L. Kuo, Band gap opening of graphene by doping small boron nitride domains. Nanoscale 4(6), 2157–2165 (2012).
  • M. Mehrali, E. Sadeghinezhad, S. T. Latibari, M. Mehrali, H. Togun, M. Zubir, S. Kazi, and H. S. C. Metselaar, Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids. J. Mater. Sci. 49(20), 7156–7171 (2014).
  • B. Guo, L. Fang, B. Zhang, and J. R. Gong, Graphene doping: a review. Insciences J. 1(2), 80–89 (2011).
  • N. Neophytou, and H. Kosina, On the interplay between electrical conductivity and Seebeck coefficient in ultra-narrow silicon nanowires. J. Electron. Mater. 41(6), 1305–1311 (2012).
  • R. Kim, and M. S. Lundstrom, Computational study of the Seebeck coefficient of one-dimensional composite nano-structures. J. Appl. Phys. 110(3), 034511 (2011).
  • A. A. Patel, and S. Mukerjee, Thermoelectricity in graphene: Effects of a gap and magnetic fields. Phys. Rev. B 86(7), 075411 (2012).
  • S. Sharapov, and A. Varlamov, Anomalous growth of thermoelectric power in gapped graphene. Phys. Rev. B 86(3), 035430 (2012).
  • L. Hao, and T. Lee, Thermopower of gapped bilayer graphene. Phys. Rev. B 81(16), 165445 (2010).
  • C. Ataca, E. Aktürk, S. Ciraci, and H. Ustunel, High-capacity hydrogen storage by metallized graphene. Appl. Phys. Lett. 93(4), 043123 (2008).
  • X. Wang, G. Sun, P. Routh, D.-H. Kim, W. Huang, and P. Chen, Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev. 43(20), 7067–7098 (2014).
  • P. Ayala, R. Arenal, A. Loiseau, A. Rubio, and T. Pichler, The physical and chemical properties of heteronanotubes. Rev. Mod. Phys. 82(2), 1843 (2010).
  • L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. Wang, K. Storr, and L. Balicas, Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9(5), 430–435 (2010).
  • D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9(5), 1752–1758 (2009).
  • X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, N-doping of graphene through electrothermal reactions with ammonia. Science 324(5928), 768–771 (2009).
  • X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov, and H. Dai, Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 131(43), 15939–15944 (2009).
  • B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, and J. R. Gong, Controllable N-doping of graphene. Nano Lett. 10(12), 4975–4980 (2010).
  • H. Wang, Y. Zhou, D. Wu, L. Liao, S. Zhao, H. Peng, and Z. Liu, Synthesis of boron‐doped graphene monolayers using the sole solid feedstock by chemical vapor deposition. Small 9(8), 1316–1320 (2013).
  • X. Lü, J. Wu, T. Lin, D. Wan, F. Huang, X. Xie, and M. Jiang, Low-temperature rapid synthesis of high-quality pristine or boron-doped graphene via Wurtz-type reductive coupling reaction. J. Mater. Chem. 21(29), 10685–10689 (2011).
  • G. Bepete, D. Voiry, M. Chhowalla, Z. Chiguvare, and N. J. Coville, Incorporation of small BN domains in graphene during CVD using methane, boric acid and nitrogen gas. Nanoscale 5(14), 6552–6557 (2013).
  • L. Panchakarla, K. Subrahmanyam, S. Saha, A. Govindaraj, H. Krishnamurthy, U. Waghmare, and C. Rao, Synthesis, structure, and properties of boron-and nitrogen-doped graphene. Adv. Mater. 21(46), 4726 (2009).
  • Y. Ding, Y. Wang, and J. Ni, Electronic properties of graphene nanoribbons embedded in boron nitride sheets. Appl. Phys. Lett. 95(12), 123105 (2009).
  • K.-T. Lam, Y. Lu, Y. P. Feng, and G. Liang, Stability and electronic structure of two dimensional Cx (BN) y compound. Appl. Phys. Lett. 98(2), 022101 (2011).
  • G. Seol, and J. Guo, Bandgap opening in boron nitride confined armchair graphene nanoribbon. Appl. Phys. Lett. 98(14), 3107 (2011).
  • K. Yang, Y. Chen, R. D'Agosta, Y. Xie, J. Zhong, and A. Rubio, Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons. Phys. Rev. B 86(4), 045425 (2012).
  • B. Mortazavi, A. Rajabpour, S. Ahzi, Y. Rémond, and S. M. V. Allaei, Nitrogen doping and curvature effects on thermal conductivity of graphene: A non-equilibrium molecular dynamics study. Solid State Commun. 152(4), 261–264 (2012).
  • B. Mortazavi, and S. Ahzi, Molecular dynamics study on the thermal conductivity and mechanical properties of boron doped graphene. Solid State Commun. 152(15), 1503–1507 (2012).
  • E. Aktürk, C. Ataca, and S. Ciraci, Effects of silicon and germanium adsorbed on graphene. Appl. Phys. Lett. 96(12), 123112 (2010).
  • E.-J. Kan, H. Xiang, J. Yang, and J. Hou, Electronic structure of atomic Ti chains on semiconducting graphene nanoribbons: a first-principles study. J. Chem. Phys. 127(16), 164706 (2007).
  • G. Rajasekaran, P. Narayanan, and A. Parashar, Effect of point and line defects on mechanical and thermal properties of graphene: a review. Crit. Rev. Solid State Mater. Sci. 41(1), 47–71 (2016).
  • I. Vlassiouk, S. Smirnov, I. Ivanov, P. F. Fulvio, S. Dai, H. Meyer, M. Chi, D. Hensley, P. Datskos, and N. V. Lavrik, Electrical and thermal conductivity of low temperature CVD graphene: the effect of disorder. Nanotechnology 22(27), 275716 (2011).
  • H. Huang, Y. Xu, X. Zou, J. Wu, and W. Duan, Tuning thermal conduction via extended defects in graphene. Phys. Rev. B 87(20), 205415 (2013).
  • D. Bahamon, A. Pereira, and P. Schulz, Third edge for a graphene nanoribbon: a tight-binding model calculation. Phys. Rev. B 83(15), 155436 (2011).
  • N. Xiao, X. Dong, L. Song, D. Liu, Y. Tay, S. Wu, L.-J. Li, Y. Zhao, T. Yu, and H. Zhang, Enhanced thermopower of graphene films with oxygen plasma treatment. ACS Nano 5 (4), 2749–2755 (2011).
  • Y. Ouyang, and J. Guo, A theoretical study on thermoelectric properties of graphene nanoribbons. Appl. Phys. Lett. 94(26), 263107 (2009).
  • B. Qiu, and X. Ruan, Reduction of spectral phonon relaxation times from suspended to supported graphene. Appl. Phys. Lett. 100(19), 193101 (2012).
  • Z.-Y. Ong, and E. Pop, Effect of substrate modes on thermal transport in supported graphene. Phys. Rev. B 84(7), 075471 (2011).
  • S. Chen, Q. Li, Q. Zhang, Y. Qu, H. Ji, R. S. Ruoff, and W. Cai, Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping. Nanotechnology 23(36), 365701 (2012).
  • Y. Lu, and J. Guo, Thermal transport in grain boundary of graphene by non-equilibrium Green's function approach. Appl. Phys. Lett. 101(4), 043112 (2012).
  • S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006).
  • H. Le Ferrand, S. Bolisetty, A. F. Demirörs, R. Libanori, A. R. Studart, and R. Mezzenga, Magnetic assembly of transparent and conducting graphene-based functional composites. Nat. Commun. 7, 12078 (2016).
  • D. Li, and R. B. Kaner, Graphene-based materials. Nat. Nanotechnol. 3, 101 (2008).
  • G. P. Moriarty, J. H. Whittemore, K. A. Sun, J. W. Rawlins, and J. C. Grunlan, Influence of polymer particle size on the percolation threshold of electrically conductive latex‐based composites. J. Polym. Sci., Part B Polym. Phys. 49 (21), 1547–1554 (2011).
  • X.-H. Li, X. Li, K.-N. Liao, P. Min, T. Liu, A. Dasari, and Z.-Z. Yu, Thermally annealed anisotropic graphene aerogels and their electrically conductive epoxy composites with excellent electromagnetic interference shielding efficiencies. ACS Appl. Mater. Inter. 8(48), 33230–33239 (2016).
  • G. J. Snyder, and E. S. Toberer, Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008).
  • M. Culebras, C. M. Gómez, and A. Cantarero, Review on polymers for thermoelectric applications. Materials 7 (9), 6701–6732 (2014).
  • K. Zhang, Y. Zhang, and S. Wang, Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Sci. Rep. 3, 3448 (2013).
  • P. N. Khanam, D. Ponnamma, and M. AL-Madeed, Electrical properties of graphene polymer nanocomposites. In Graphene-Based Polymer Nanocomposites in Electronics, Springer, Switzerland (2015). pp. 25–47.
  • G. H. Kim, D. H. Hwang, and S. I. Woo, Thermoelectric properties of nanocomposite thin films prepared with poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate) and graphene. Phys. Chem. Chem. Phys. 14(10), 3530–3536 (2012).
  • D. Yoo, J. Kim, and J. H. Kim, Direct synthesis of highly conductive PEDOT: PSS/graphene composites and their applications in energy harvesting systems. Nano Res. 7, 717–730 (2014).
  • J. Xiang, and L. T. Drzal, Templated growth of polyaniline on exfoliated graphene nanoplatelets (GNP) and its thermoelectric properties. Polymer 53(19), 4202–4210 (2012).
  • Y. Du, S. Z. Shen, W. Yang, R. Donelson, K. Cai, and P. S. Casey, Simultaneous increase in conductivity and Seebeck coefficient in a polyaniline/graphene nanosheets thermoelectric nanocomposite. Synth. Met. 161(23), 2688–2692 (2012).
  • A. Dey, S. Panja, A. K. Sikder, and S. Chattopadhyay, One pot green synthesis of graphene–iron oxide nanocomposite (GINC): an efficient material for enhancement of thermoelectric performance. RSC Adv. 5(14), 10358–10364 (2015).
  • D. Li, J. Cui, H. Li, D. Huang, M. Wang, and Y. Shen, Graphene oxide modified hole transport layer for CH 3 NH 3 PbI 3 planar heterojunction solar cells. Sol. Energy 131, 176–182 (2016).
  • R. Bkakri, N. Chehata, A. Ltaief, O. E. Kusmartseva, F. Kusmartsev, M. Song, and A. Bouazizi, Effects of the graphene content on the conversion efficiency of P3HT: Graphene based organic solar cells. J. Phys. Chem. Solids 85, 206–211 (2015).
  • T. Mahmoudi, W.-Y. Rho, H.-Y. Yang, S. R. P. Silva, and Y.-B. Hahn, Highly conductive and dispersible graphene and its application in P3HT-based solar cells. Chem. Commun. 50(63), 8705–8708 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.