434
Views
3
CrossRef citations to date
0
Altmetric
Review

The Role of Intra-Yarn Shear in Integrated Multi-Scale Deformation Analyses of Woven Fabrics: A Critical Review

, , , & ORCID Icon

References

  • M. Haghi Kashani and A. S. Milani, Damage predictions in woven and non-woven fabrics. Non-woven fabrics, InTech 233–262 (2016).
  • M. J. King, P. Jearanaisilawong, and S. Socrate, A continuum constitutive model for the mechanical behavior of woven fabrics, Int. J. Solids Struct. 42(13), 867–896 (2005).
  • W. F. Kilby, 2-Planar stress–strain relationships in woven and fabrics, J. Text. Inst. Trans. 54, 9–27 (1963).
  • P. Boisse, N. Hamila, E. Vidal-Sallé, and F. Dumont, Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses, Compos. Sci. Technol. 71, 683–692 (2011).
  • K. Buet-Gautier and P.Boisse, Experimental analysis and modeling of biaxial mechanical behavior of woven composite reinforcements, J. Exp. Mech. 41(3), 260–269 (2001).
  • W. Lee, J. H. Byun, M. K. Um, J. Cao, P. Boisse, and I. L. LaMCoS, Coupled non-orthogonal constitutive model for woven fabric composites, 17th International Conference on Composite Materials, (2009).
  • J. Launay, G. Hivet, A. v. Duong, and P. Boisse, Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements, Compos. Sci. Technol. 68, 506–515 (2008).
  • F. Nosrat-Nezami, T. Gereke, C. Eberdt, and C. Cherif, Characterization of the shear–tension coupling of carbon-fibre fabric under controlled membrane tensions for precise simulative predictions of industrial preforming processes, Compos. Part A Appl. Sci. Manuf. 67, 131–139 (2014).
  • M. Haghi Kashani, A. Rashidi, B. Crawford, and A. S. Milani, Analysis of a two-way tension-shear coupling in woven fabrics under combined loading tests: Global to local transformation of non-orthogonal normalized forces and displacements, Compos. Part A: Appl. Sci. Manuf. 88, 272–285 (2016).
  • B. Zhu, Sheet forming of woven textile composite preforms: formability and wrinkling, Ph.D. dissertation, Hong Kong University of Science and Technology, (2007).
  • I. Taha, Y. Abdin, and S. Ebeid, Comparison of picture frame and Bias-Extension tests for the characterization of shear behaviour in natural fibre woven fabrics, Fibers Polym. 14(2), 338–344 (2013).
  • A. Milani, J. Nemes, G. Lebrun, and M. Bureau, A comparative analysis of a modified picture frame test for characterization of woven fabrics, Polym. Compos. 31(4), 561–568 (2009).
  • P. Harrison, M. J. Clifford, and A. C. Long, Shear characterisation of viscous woven textile composites: a comparison between picture frame and bias extension experiments, Compos. Sci. Technol. 64(10), 1453–1465 (2004).
  • P. Harrison, F. Abdiwi, Z. Guo, P. Potluri, and W. R. Yu, Characterising the shear–tension coupling and wrinkling behaviour of woven engineering fabrics, Compos. Part A: Appl. Sci. Manuf. 43(6), 903–914 (2012).
  • P. Harrison, M. J. Clifford, A. C. Long, and C. D. Rudd, A constituent-based predictive approach to modeling the rheology of viscous textile composites, Compos. Part A: Appl. Sci. Manuf. 35(7), 915–931 (2004).
  • H. Lin, M. J. Clifford, A. C. Long, and M. Sherburn, Finite element modeling of fabric shear, Model. Simul. Mater. Sci. Eng. 17(1), 015008 (2008).
  • S. V. Lomov, A. Willems, I. Verpoest, Y. Zhu, M. Barburski, and T. Stoilova, Picture frame test of woven composite reinforcements with a full-field strain registration, Text Res. J. 76(3), 243–252 (2006).
  • P. Grosberg and B. J. Park, The mechanical properties of woven fabrics Part V: The initial modulus and the frictional restraint in shearing of plain weave fabrics, Tex. Res. J. 36(5), 420–431 (1966).
  • M. Nguyen, I. Herszberg, and R. Paton, The shear properties of woven carbon fabric, Compos. Struct. 47(1), 767–779 (1999).
  • H. Sun and N. Pan, Shear deformation analysis for woven fabrics, Compos. Struct. 67(3), 317–322 (2005).
  • S. Kawabata, M. Niwa, and H. Kawai, 5—The finite-deformation theory of plain-weave fabrics. Part III: The shear-deformation theory, J. Text Inst. Trans. 64(2), 62–85 (1973).
  • S. V. Lomov and I. Verpoest, Model of shear of woven fabric and parametric description of shear resistance of glass woven reinforcements, Compos. Sci. Technol. 66(7), 919–933 (2006).
  • B. Zhu, T. X. Yu, and X. M. Tao, An experimental study of in-plane large shear deformation of woven fabric composite, Compos. Sci. Technol. 67(2), 252–261 (2007).
  • P. V. Cavallaro, M. E. Johnson, A. M. Sadegh, Mechanics of plain-woven fabrics for inflated structures, Compos. Struct. 61(4), 375–393 (2003).
  • C. Mack and H. M. Taylor, 39—the fitting of woven cloth to surfaces, J. Text Ins. Trans. 47(9),477–488 (1956).
  • T. M. McBride and J. Chen, Unit-cell geometry in plain-weave fabrics during shear deformations, Compos. Sci. Technol. 57(3), 345–351 (1997).
  • P. Badel, E. Vidal-Salle, and P. Boisse, Computational determination of in-plane shear mechanical behaviour of textile composite reinforcements, Comput. Mater. Sci. 40, 439–448 (2007).
  • M. Komeili, Multi-scale characterization and modeling of shear-tension interaction in woven fabrics for composite forming and structural applications, Ph.D. dissertation, University of British Columbia, (2014).
  • A. S. Milani, J. A. Nemes, R. C. Abeyaratne, and G. A. Holzapfel, A method for the approximation of non-uniform fiber misalignment in textile composites using picture frame test, Compos. Part A: Appl. Sci. Manuf. 38(6), 1493–1501 (2007).
  • P. Boisse, Simulations of woven composite reinforcement forming. woven fabric engineering, InTech 387–414 (2010).
  • A. S. Milani and J. A. Nemes, An intelligent inverse method for characterization of textile reinforced thermoplastic composites using a hyperelastic constitutive model, Compos. Sci. Technol. 64, 1565–1576 (2004).
  • G. Lin, Y. Wang, X. Du, and X. He, Research on the shear behaviour of plain weave prepreg at lateral compaction Stage. Exp. Mech. 44, 164–169 (2008).
  • T. G. Gutowski, G. Dillon, S. Chey, and H. Li, Laminate wrinkling scaling laws for ideal composites, Compos. Manuf. 6, 123–134 (1995).
  • W. Soll and T. Gutowski, Forming thermoplastic composite parts, Mater. Pathway Future 1004–1014 (1988).
  • G. McGuinness and C. ÓBrádaigh, Characterisation of thermoplastic composite melts in rhombus-shear: the picture-frame experiment, Compos. Part A: Appl. Sci. Manuf. 29(1), 115–132 (1998).
  • A. Prodromou and J. Chen, On the relationship between shear angle and wrinkling of textile composite preforms, Compos. Part A: Appl. Sci. Manuf. 28(5), 491–503 (1997).
  • W. R. Yu, F. Pourboghrat, K. Chung, M. Zampaloni, and T. J. Kang, Non-orthogonal constitutive equation for woven fabric reinforced thermoplastic composites, Compos. Part A: Appl. Sci. Manuf. 33(8), 1095–1105 (2002).
  • W. R. Yu, M. Zampaloni, F. Pourboghrat, K. Chung, and T. J. Kang, Sheet hydroforming of woven FRT composites: non-orthogonal constitutive equation considering shear stiffness and undulation of woven structure, Compos. Struct. 61(4), 353–362 (2003).
  • K. Horsting and B. Wulfhorst, Drapeability of textile reinforcement fabrics for composites, Adv. Mater.Expand. Horiz. 876–886 (1993).
  • K. Weissenberg, 5—The use of a trellis model in the mechanics of homogenous materials, J. Text Ins. Trans. 40(2), 89–110 (1949).
  • M. Komeili and A. S. Milani, On effect of shear-tension coupling in forming simulation of woven fabric reinforcements, Compos. Part B: Eng. 99, 17–29 (2016).
  • R. Tavana, S. S. Najar, M. T. Abadi, and M. Sedighi, Meso/macro-scale finite element model for forming process of woven fabric reinforcements, J. Compos. Mater. 47(17), 2075–2085 (2012).
  • G. Hivet and P. Boisse, Consistent mesoscopic mechanical behaviour model for woven composite reinforcements in biaxial tension, Compos. Part B: Eng. 39, 345–361 (2008).
  • B. Benboubaker, B. Haussy, and J. Ganghoffer, Discrete models of woven structures. Macroscopic approach, Compos. Part B: Eng. 38, 498–505 (2007).
  • W. Lee, J. Cao, P. Badel, and P. Boisse, Non-orthogonal constitutive model for woven composites incorporating tensile effect on shear behavior, Int. J. Mater. Form. 1, 891–894 (2008).
  • Z. Y. Jenny, Z. Cai, and F. K. Ko, Formability of textile preforms for composite applications. Part 1: Characterization experiments, Compos. Manufact. 5(2), 113–122 (1994).
  • Z. Cai, Z. Y. Jenny, and F. K. Ko, Formability of textile preforms for composite applications. Part 2: Evaluation experiments and modeling, Compos. Manufact. 5(2), 123–132 (1994).
  • A. Rashidi, Towards mitigation of wrinkles during forming of woven fabric composites: an experimental characterization, MASc dissertation, University of British Columbia, (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.