1,637
Views
99
CrossRef citations to date
0
Altmetric
Reviews

A Review of Recent Progress in Solid State Fabrication of Composites and Functionally Graded Systems Via Friction Stir Processing

, , &

References

  • L. A. B. Mabhali, S. L. Pityana, and N. Sacks, Laser Surface alloying of aluminum (AA1200) with Ni and SiC powders, Mater. Manuf. Proces. 25(12), 1397–1403 (2010).
  • S. K. Ghosh and P. Saha, Crack and wear behavior of SiC particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process, Mater. Des. 32(1), 139–145 (2011).
  • S.-H. Choo, S. Lee, and S.-J. Kwon, Surface hardening of a gray cast iron used for a diesel engine cylinder block using high-energy electron beam irradiation, Metal. Mater. Trans. A 30(5), 1211–1221 (1999).
  • J. Xu, B. Zou, S. Tao, M. Zhang, and X. Cao, Fabrication and properties of Al2O3–TiB2–TiC/Al metal matrix composite coatings by atmospheric plasma spraying of SHS powders, J. Alloys Cmpd. 672, 251–259 ( 216).
  • J. L. Shi, H. G. Yan, B. Su, J. H. Chen, S. Q. Zhu, and G. Chen, Preparation of a functionally gradient aluminum alloy metal matrix composite using the technique of spray deposition, Mater. Manuf. Process. 26(10), 1236–1241 (2001).
  • H. Abdizadeh, R. Ebrahimifard, and M. A. Baghchesara, Investigation of microstructure and mechanical properties of nano MgO reinforced Al composites manufactured by stir casting and powder metallurgy methods: A comparative study, Compos. Part B: Eng. 56, 217–221 (2014).
  • J. Hashim, L. Looney, and M. S. J. Hashmi, Metal matrix composites: production by the stir casting method, J. Mater. Process. Technol. 92–93(0), 1–7 (1999).
  • H. Ye, X. Y. Liu, and H. Hong, Fabrication of metal matrix composites by metal injection molding—A review, J. Mater. Process. Technol. 200(1–3), 12–24 (2008).
  • E. A. Davis, and I. M. Ward, An Introduction to Metal Matrix Composites. Cambridge Solid State Science Series 1993. Cambridge University Press, New York.
  • Z. Y. Ma, Friction stir processing technology: a review, Metallurg. Mater. Trans. A 39(3), 642–658 (2008).
  • J. Gandra, R. Miranda, P. Vilaça, A. Velhinho, and J. P. Teixeira, Functionally graded materials produced by friction stir processing, J. Mater. Process. Technol. 211(11), 1659–1668 (2011).
  • Y. Hangai, K. Takahashi, T. Utsunomiya, S. Kitahara, O. Kuwazuru, and N. Yoshikawa, Fabrication of functionally graded aluminum foam using aluminum alloy die castings by friction stir processing, Mater. Sci. Eng.: A 534, 716–719 (2012).
  • P. Cavaliere, Mechanical properties of Friction Stir Processed 2618/Al2O3/20p metal matrix composite, Compos. Part A: Appl. Sci. Manuf. 36(12), 1657–1665 (2005).
  • S. Joseph, High temperature metal matrix composites for future aerospace systems, in 24th Joint Propulsion Conference, American Institute of Aeronautics and Astronautics, 1988.
  • R. S. Mishra and M. W. Mahoney, Friction Stir Welding and Processing, ASM International, (2007)
  • M.-K. B.-G. a. P. Asadi (ed.), Advances in Friction-Stir Welding and Processing, Woodhead Publishing, Elsevier (2014)
  • G. Çam and S. Mistikoglu, Recent developments in friction stir welding of Al-alloys, J. Mater. Eng. Perform. 23(6), 1936–1953 (2014).
  • W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Nurch, P. Temple-Smith, and C. Dawes, Friction Stir Butt Welding, G. B. (1991).
  • G. Çam and G. İpekoğlu, Recent developments in joining of aluminum alloys, Int. J. Adv. Manuf. Technol. 1–16 (2016).
  • R. S. Mishra, M. W.Mahoney, S. X. McFadden, N. A. Mara, and A. K. Mukherjee, High strain rate superplasticity in a friction stir processed 7075 Al alloy, Scripta Materialia 42(2), 163–168 (1999).
  • R. S. Mishra, Z. Y. Ma, and I. Charit, Friction stir processing: a novel technique for fabrication of surface composite, Mater. Sci. Eng.: A 341(1–2), 307–310 (2003).
  • Y. Gan, D. Solomon, and M. Reinbolt, Friction stir processing of particle reinforced composite materials, Materials 3(1), 329 (2010).
  • P. B. Berbon, W. H. Bingel, R. S. Mishra, C. C. Bampton, and M. W. Mahoney, Friction stir processing: a tool to homogenize nanocomposite aluminum alloys, Scripta Materialia 44(1), 61–66 (2001).
  • G. R. Argade, K. Kandasamy, S. K. Panigrahi, and R. S. Mishra, Corrosion behavior of a friction stir processed rare-earth added magnesium alloy, Corros. Sci. 58, 321–326 (2012).
  • N. Sun and D. Apelian, Friction stir processing of aluminum cast alloys for high performance applications, JOM 63(11), 44–50 (2011).
  • Y. Hangai, T. Utsunomiya, and M. Hasegawa, Effect of tool rotating rate on foaming properties of porous aluminum fabricated by using friction stir processing, J. Mater. Process. Technol. 210(2), 288–292 (2010).
  • B. S. S. Daniel, V. S. R. Murthy, and G. S. Murty, Metal-ceramic composites via in-situ methods, J. Mater. Process. Technol. 68(2), 132–155 (1997).
  • S. Rathee, S. Maheshwari, and A. N. Siddiquee, Issues and strategies in composite fabrication via friction stir processing: A review, Mater. Manuf. Process. 1–23 (2017).
  • R. M. Miranda, T. G. Santos, J. Gandra, N. Lopes, and R. J. C. Silva, Reinforcement strategies for producing functionally graded materials by friction stir processing in aluminium alloys, J. Mater. Process. Technol. 213(9), 1609–1615 (2013).
  • A. Kurt, I. Uygur, and E. Cete, Surface modification of aluminium by friction stir processing, J. Mater. Process. Technol. 211(3), 313–317. (2011).
  • R. Vatankhah Barenji, M. Vahid Khojastehnezhad, H. Pourasl, and A. Rabiezadeh, Wear properties of Al–Al2O3/TiB2 surface hybrid composite layer prepared by friction stir process, J. Compos. Mater. 50(11), 1457–1466 (2015).
  • S. Sahraeinejad, H. Izadi, M. Haghshenas, and A. P. Gerlich, Fabrication of metal matrix composites by friction stir processing with different Particles and processing parameters, Mater. Sci. Eng.: A 626(0), 505–513 (2015).
  • S. R. Anvari, F. Karimzadeh, and M. H. Enayati, A novel route for development of Al–Cr–O surface nano-composite by friction stir processing, J. Alloys Cmpnd. 562(0), 48–55 (2013).
  • Y. Mazaheri, F. Karimzadeh, and M. H. Enayati, A novel technique for development of A356/Al2O3 surface nanocomposite by friction stir processing, J. Mater. Process. Technol. 211(10), 1614–1619 (2011).
  • K. J. Hodder, H. Izadi, A. G. McDonald, and A. P. Gerlich, Fabrication of aluminum–alumina metal matrix composites via cold gas dynamic spraying at low pressure followed by friction stir processing, Mater. Sci. Eng.: A 556(0), 114–121 (2012).
  • M. Yang, C. Xu, C. Wu, K. C. Lin, Y. Chao, and L. An, Fabrication of AA6061/Al2O3 nano ceramic particle reinforced composite coating by using friction stir processing, J. Mater. Sci. 45(16), 4431–4438 (2010).
  • Y. Huang, T. Wang, W. Guo, L. Wan, and S. Lv, Microstructure and surface mechanical property of AZ31 Mg/SiCp surface composite fabricated by direct friction stir processing, Mater. Des. 59(0), 274–278 (2014).
  • D. K. Lim, T. Shibayanagi, and A. P. Gerlich, Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing, Mater. Sci. Eng.: A 507(1–2), 194–199 (2009).
  • M. N. Avettand-Fènoël, A. Simar, R. Shabadi, R. Taillard, and B. de Meester, Characterization of oxide dispersion strengthened copper based materials developed by friction stir processing, Mater. Des. 60, 343–357 (2014).
  • D.-H. Choi, Y.-H. Kim, B.-W. Ahn, Y.-Il Kim, and S.-B. Jung, Microstructure and mechanical property of A356 based composite by friction stir processing, Trans. Nonferr. Met. Soc. China 23(2), 335–340 (2013).
  • E. R. I. Mahmoud, M. Takahashi, T. Shibayanagi, and K. Ikeuchi, Wear characteristics of surface-hybrid-MMCs layer fabricated on aluminum plate by friction stir processing, Wear 268(9–10), 1111–1121 (2010).
  • V. Sharma, Y. Gupta, B. V. M. Kumar, and U. Prakash, Friction stir processing strategies for uniform distribution of reinforcement in a surface composite, Mater. Manuf. Process. 31(10), 1384–1392 (2016).
  • H. R. Akramifard, M. Shamanian, M. Sabbaghian, and M. Esmailzadeh, Microstructure and mechanical properties of Cu/SiC metal matrix composite fabricated via friction stir processing, Mater. Des. 54(0), 838–844 (2014).
  • S. Rathee, S. Maheshwari, and A. N. Siddiquee, Distribution of reinforcement particles in surface composite fabrication via friction stir processing: suitable strategy, Mater. Manuf. Process. 1–23 (2017). DOI:10.1080/10426914.2017.1303162
  • M. Rosso Ceramic and metal matrix composites: routes and properties, J. Mater. Process. Technol. 175(1–3), 364–375 (2006).
  • S. C. Tjong and Z. Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites, Mater. Sci. Eng. R: Rep. 29(3–4), 49–113 (2000).
  • Q. Zhang, B. L. Xiao, D. Wang, and Z. Y. Ma, Formation mechanism of in situ Al3Ti in Al matrix during hot pressing and subsequent friction stir processing, Mater. Chem. Phys. 130(3), 1109–1117 (2011).
  • C. J. Hsu, C. Y. Chang, P. W. Kao, N. J. Ho, and C. P. Chang, Al–Al3Ti nanocomposites produced in situ by friction stir processing, Acta Materialia 54(19), 5241–5249 (2006).
  • Y. Chen and D. D. L. Chung, In situ Al-TiB composite obtained by stir casting, J. Mater. Sci. 31(2), 311–315 (1996).
  • X. C. Tong and H. S. Fang, Al-TiC composites In Situ-processed by ingot metallurgy and rapid solidification technology: Part I. Microstructural evolution, Metallurg. Mater. Trans. A 29(3), 875–891 (1998).
  • Y. Birol, In situ synthesis of Al–TiCp composites by reacting K2TiF6 and particulate graphite in molten aluminium, J. Alloy Compnd. 454(1–2), 110–117 (2008).
  • C. F. Feng and L. Froyen, Microstructures of in situ Al/TiB2 MMCs prepared by a casting route, J. Mater. Sci. 35(4), 837–850 (2000).
  • K. L. Tee, L. Lu, and M. O. Lai, Synthesis of in situ Al–TiB2 composites using stir cast route, Compos. Struct. 47(1–4), 589–593 (1999).
  • I. G. Watson, M. F. Forster, P. D. Lee, R. J. Dashwood, R. W. Hamilton, and A. Chirazi, Investigation of the clustering behaviour of titanium diboride particles in aluminium, Compos. Part A: Appl. Sci. Manuf. 36(9), 1177–1187 (2005).
  • A. M. Herbert, C. Sarkar, R. Mitra, and M. Chakraborty, Microstructural evolution, hardness, and alligatoring in the mushy state rolled cast Al-4.5Cu alloy and in-situ Al4.5Cu-5TiB2 composite, Metallurg. Mater. Trans. A 38(9), 2110–2126 (2007).
  • Q. Zhang, B. L. Xiao, Q. Z. Wang, and Z. Y. Ma, In situ Al3Ti and Al2O3 nanoparticles reinforced Al composites produced by friction stir processing in an Al-TiO2 system, Mater. Lett. 65(13), 2070–2072 (2011).
  • I. S. Lee, I. S., P. W. Kao, and N. J. Ho, Microstructure and mechanical properties of Al–Fe in situ nanocomposite produced by friction stir processing, Intermetallics 16(9), 1104–1108 (2008).
  • G. L. You, N. J. Ho, and P. W. Kao, In-situ formation of Al2O3 nanoparticles during friction stir processing of AlSiO2 composite, Mater. Charact. 80(0), 1–8 (2013).
  • M. Barmouz and M. K. B. Givi, Fabrication of in situ Cu/SiC composites using multi-pass friction stir processing: Evaluation of microstructural, porosity, mechanical and electrical behavior, Compos. Part A: Appl. Sci. Manuf. 42(10), 1445–1453 (2011).
  • I. S. Lee, P. W. Kao, C. P. Chang, and N. J. Ho, Formation of Al–Mo intermetallic particle-strengthened aluminum alloys by friction stir processing, Intermetallics 35, 9–14 (2013).
  • R. S. Mishra and Z. Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R: Rep. 50(1–2), 1–78 (2005).
  • A. Shafiei-Zarghani, S. F. Kashani-Bozorg, and A. Zarei-Hanzaki, Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing, Mater. Sci. Eng.: A 500(1–2), 84–91 (2009).
  • Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31, Mater. Sci. Eng.: A 433(1–2), 50–54 (2006).
  • E. A. El-Danaf, M. M. El-Rayes, and M. S. Soliman, Friction stir processing: An effective technique to refine grain structure and enhance ductility, Mater. Des. 31(3), 1231–1236 (2010).
  • L. Karthikeyan, V. S. Senthilkumar, and K. A. Padmanabhan, On the role of process variables in the friction stir processing of cast aluminum A319 alloy, Mater. Des. 31(2), 761–771 (2010).
  • H. Izadi, A. Nolting, C. Munro, and A. P. Gerlich. “Effect of friction stir processing parameters on microstructure and mechanical properties of Al 5059.” Presented at Proceedings of the 9th International Conference on Trends in Welding Research, ASM International of Materials Park, Ohio, Hilton Chicago, IL, USA, 2012.
  • O. El-Kady and A. Fathy, Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites, Mater. Des. 54, 348–353 (2014).
  • S. A. Hosseini, K. Ranjbar, R. Dehmolaei, and A. R. Amirani, Fabrication of Al5083 surface composites reinforced by CNTs and cerium oxide nano particles via friction stir processing, J. Alloy Comp. 622, 725–733 (2015).
  • M. Sharifitabar, A. Sarani, S. Khorshahian, and M. Shafiee Afarani, Fabrication of 5052Al/Al2O3 nanoceramic particle reinforced composite via friction stir processing route, Mater. Des. 32(8–9), 4164–4172 (2011).
  • M. Azizieh, A. H. Kokabi, and P. Abachi, Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing, Mater. Des. 32(4), 2034–2041 (2011).
  • C. J. Lee, J. C. Huang, and P. J. Hsieh, Mg based nano-composites fabricated by friction stir processing, Scripta Materialia 54(7), 1415–1420 (2006).
  • S. B. Ratna, G. P. K. Reddy, H. Patle, and R. Dumpala, Nano-hydroxyapatite reinforced AZ31 magnesium alloy by friction stir processing: a solid state processing for biodegradable metal matrix composites, J. Mater. Sci. Mater. Med. 25(4), 975–988 (2013).
  • G. Hussain, R. Hashemi, H. Hashemi, and K. A. Al-Ghamdi, An experimental study on multi-pass friction stir processing of Al/TiN composite: some microstructural, mechanical, and wear characteristics, Int. J. Adv. Manuf. Technol. 84(1), 533–546 (2015).
  • T. Prakash, S. Sivasankaran, and P. Sasikumar, Mechanical and tribological behaviour of friction-stir-processed Al 6061 aluminium sheet metal reinforced with Al2O3/0.5 Gr hybrid surface nanocomposite, Arab. J. Sci. Eng. 40(2), 559–569 (2015).
  • A. Shafiei-Zarghani, S. F. Kashani-Bozorg, and A. Z. Hanzaki, Wear assessment of Al/Al2O3 nano-composite surface layer produced using friction stir processing, Wear 270(5–6), 403–412 (2011).
  • P. Asadi, G. Faraji, and M. K. Besharati, Producing of AZ91/SiC composite by friction stir processing (FSP), Int. J. Adv. Manuf. Technol. 51(1), 247–260 (2010).
  • A. Dolatkhah, P. Golbabaei, M. K. Besharati Givi, and F. Molaiekiya, Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing, Mater. Des. 37(0), 458–464 (2012).
  • Y. Morisada, H. Fujii, T. Nagaoka, K. Nogi, and M. Fukusumi, Fullerene/A5083 composites fabricated by material flow during friction stir processing. Compos. Part A: Appl. Sci. Manuf., (2007) 38(10), 2097–2101 (2007).
  • R. Hashem and G. Hussain, Wear performance of Al/TiN dispersion strengthened surface composite produced through friction stir process: A comparison of tool geometries and number of passes, Wear 324–325, 45–54 (2015).
  • S. Rathee, S. Maheshwari, A. N. Siddiquee, M. Srivastava, and S. K. Sharma, Process parameters optimization for enhanced microhardness of AA 6061/ SiC surface composites fabricated via Friction Stir Processing (FSP), Mater. Today: Proc. 3(10, Part B), 4151–4156 (2016).
  • M. Salehi, M. Saadatmand, and J. Aghazadeh Mohandesi, Optimization of process parameters for producing AA6061/SiC nanocomposites by friction stir processing, Trans. Nonferr. Met. Soc. China 22(5), 1055–1063 (2012).
  • S. Rathee, S. Maheshwari, A. N. Siddiquee, and M. Srivastava, Analysis of microstructural changes in enhancement of surface properties in sheet forming of al alloys via friction stir processing, Mater. Today: Proc. 4(2, Part A), 452–458 (2017).
  • K. P. Mehta and V. J. Badheka, Effects of tilt angle on the properties of dissimilar friction stir welding copper to aluminum, Mater. Manuf. Process. 31(3), 255–263 (2016).
  • W. Wang, Q-yu Shi, P. Liu, H.-K. Li, and T. Li, A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing, J. Mater. Process. Technol. 209(4), 2099–2103 (2009).
  • X. G. Chen, M. da Silva, P. Gougeon, and L. St-Georges, Microstructure and mechanical properties of friction stir welded AA6063–B4C metal matrix composites, Mater. Sci. Eng.: A 518(1–2), 174–184 (2009).
  • A. N. Siddiquee and S. Pandey, Experimental investigation on deformation and wear of WC tool during friction stir welding (FSW) of stainless steel, Int. J. Adv. Manuf. Technol. 73(1), 479–486 (2014).
  • A. Ghasemi-Kahrizsangi and S. F. Kashani-Bozorg, Microstructure and mechanical properties of steel/TiC nano-composite surface layer produced by friction stir processing, Surf. Coat. Technol. 209(0), 15–22 (2012).
  • R. Rai, A. De, H. K. D. H. Bhadeshia, and T. DebRoy, Review: friction stir welding tools. Sci. Technol. Weld. Join. 16(4), 325–342 (2011).
  • G. Çam, Friction stir welded structural materials: beyond Al-alloys. Int. Mater. Rev. 56(1), 1–48 (2011).
  • M. Najafi, A. M. Nasiri, and A. H. Kokabi, Microstructure and hardness of friction stir processed AZ31 with SiCP, Int. J. Mod. Phys. B 22(18n19), 2879–2885 (2008).
  • N. Yuvaraj, S. Aravindan, and Vipin, Wear Characteristics of Al5083 surface hybrid nano-composites by friction stir processing, Trans. Ind. Instit. Met. 70(4), 1111–1129 (2017).
  • C. M. Rejil, I. Dinaharan, S. J. Vijay, and N. Murugan, Microstructure and sliding wear behavior of AA6360/(TiC + B4C) hybrid surface composite layer synthesized by friction stir processing on aluminum substrate, Mater. Sci. Eng.: A 552, 336–344 (2012).
  • R. Sathiskumar, N. Murugan, I. Dinaharan, and S. J. Vijay, Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing, Mater. Charact. 84(0), 16–27 (2013).
  • Z. Du, M. J. Tan, J. F. Guo, G. Bi, and J. Wei, Fabrication of a new Al-Al2O3-CNTs composite using friction stir processing (FSP), Mater. Sci. Eng.: A 667, 125–131 (2016).
  • D. Aruri, K. Adepu, K. Adepu, and K. Bazavada, Wear and mechanical properties of 6061-T6 aluminum alloy surface hybrid composites [(SiC + Gr) and (SiC + Al2O3)] fabricated by friction stir processing, J. Mater. Res. Technol. 2(4), 362–369 (2013).
  • A. Devaraju, A. Kumar, and B. Kotiveerachari, Influence of addition of Grp/Al2O3p with SiCp on wear properties of aluminum alloy 6061-T6 hybrid composites via friction stir processing, Trans. Nonferr. Met. Soc. China 23(5), 1275–1280 (2013).
  • A. Devaraju, A. Kumar, and B. Kotiveerachari, Influence of rotational speed and reinforcements on wear and mechanical properties of aluminum hybrid composites via friction stir processing, Mater. Des. 45(0), 576–585 (2013).
  • A. Devaraju et al., Influence of reinforcements (SiC and Al2O3) and rotational speed on wear and mechanical properties of aluminum alloy 6061-T6 based surface hybrid composites produced via friction stir processing, Mater. Des. 51(0), 331–341 (2013).
  • A. Mostafapour Asl and S. T. Khandani, Role of hybrid ratio in microstructural, mechanical and sliding wear properties of the Al5083/Graphitep/Al2O3p a surface hybrid nanocomposite fabricated via friction stir processing method, Mater. Sci. Eng.: A 559, 549–557 (2013).
  • M. Narimani, B. Lotfi, and Z. Sadeghian, Evaluation of the microstructure and wear behaviour of AA6063-B4C/TiB2 mono and hybrid composite layers produced by friction stir processing, Surf. Coat. Technol. 285, 1–10 (2016).
  • S. Basavarajappa, G. Chandramohan, A. Mahadevan, M. Thangavelu, R. Subramanian, and P. Gopalakrishnan, Influence of sliding speed on the dry sliding wear behaviour and the subsurface deformation on hybrid metal matrix composite, Wear 262(7–8), 1007–1012 (2007).
  • S. Suresha and B. K. Sridhara, Effect of silicon carbide particulates on wear resistance of graphitic aluminium matrix composites, Mater. Des. 31(9), 4470–4477 (2010).
  • J. W. Kaczmar, K. Pietrzak, and W. Włosiński, The production and application of metal matrix composite materials. J. Mater. Process. Technol. 106(1–3), 58–67 (2000).
  • D. B. Miracle, Metal matrix composites – From science to technological significance, Compos. Sci. Technol. 65(15–16), 2526–2540 (2005).
  • A. P. Sannino and H. J. Rack, Dry sliding wear of discontinuously reinforced aluminum composites: review and discussion, Wear 189(1), 1–19 (1995).
  • E. R. I. Mahmoud, K. Ikeuchi, and M. Takahashi, Fabrication of SiC particle reinforced composite on aluminium surface by friction stir processing. Sci. Technol. Weld. Join. 13(7), 607–618 (2008).
  • H. Eftekharinia, A. A. Amadeh, A. Khodabandeh, and M. Paidar, Microstructure and wear behavior of AA6061/SiC surface composite fabricated via friction stir processing with different pins and passes, Rare Met. 1–7 (2016). doi.org/10.1007/s12598-016-0691-x
  • T. Y. Kosolapova, Carbides: Properties, Production, and Applications, Springer US, New York (2012).
  • I. Sudhakar, V. Madhu, G. M. Reddy, and K. S. Rao, Enhancement of wear and ballistic resistance of armour grade AA7075 aluminium alloy using friction stir processing, Defen. Technol. 11(1), 10–17 (2015).
  • K. M. Shorowordi, T. Laoui, A. S. M. A Haseeb, J . P. Celis, and L. Froyen, Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study, J. Mater. Process. Technol. 142(3), 738–743 (2003).
  • K. Kalaiselvan, N. Murugan, and S. Parameswaran, Production and characterization of AA6061–B4C stir cast composite, Mater. Des. 32(7), 4004–4009 (2011).
  • J. Abenojar, F. Velasco, and M. A. Martínez, Optimization of processing parameters for the Al + 10% B4C system obtained by mechanical alloying, J. Mater. Process. Technol. 184(1–3), 441–446 (2007).
  • Y. Zhao, X. Huang, Q. Li, J. Huang, and K. Yan, Effect of friction stir processing with B4C particles on the microstructure and mechanical properties of 6061 aluminum alloy, Int. J. Adv. Manuf. Technol. 78(9–12), 1437–1443 (2015).
  • N. Yuvaraj, S. Aravindan, and Vipin, Fabrication of Al5083/B4C surface composite by friction stir processing and its tribological characterization, J. Mater. Res. Technol. 4(4), 398–410 (2015).
  • R. G. Munro, Material properties of titanium diboride, J. Res. Nat. Instit. Stand. Technol. 105(5), 709–720 (2000).
  • Q. Gao, S. Wu, S. Lü, X. Duan, and P. An, Preparation of in–situ 5 vol% TiB2 particulate reinforced Al–4.5Cu alloy matrix composites assisted by improved mechanical stirring process, Mater. Des. 94, 79–86 (2016).
  • C. S. Ramesh, S. Pramod, and R. Keshavamurthy, A study on microstructure and mechanical properties of Al 6061–TiB2 in-situ composites, Mater. Sci. Eng.: A 528(12), 4125–4132 (2011).
  • H. Eskandari, R. Taheri, and F. Khodabakhshi, Friction-stir processing of an AA8026-TiB2-Al2O3 hybrid nanocomposite: Microstructural developments and mechanical properties, Mater. Sci. Eng.: A 660, 84–96 (2016).
  • M. Narimani, B. Lotfi, and Z. Sadeghian, Investigating the microstructure and mechanical properties of Al-TiB2 composite fabricated by Friction Stir Processing (FSP), Mater. Sci. Eng.: A 673, 436–442 (2016).
  • Harris, P. J. F., Carbon nanotube composites. Int. Mater. Rev., 2004. 49(1), 31–43 (2004).
  • S. R. Bakshi, D. Lahiri, and A. Agarwal, Carbon nanotube reinforced metal matrix composites — a review, Int. Mater. Rev. 55(1), 41–64 (2010).
  • Y. B. Li, B. Q. Wei, J. Liang, Q. Yu, and D. H. Wu, Transformation of carbon nanotubes to nanoparticles by ball milling process, Carbon 37(3), 493–497 (1999).
  • J. H. Ahn, H. S. Shin, Y. J. Kim, and H. Chung, Structural modification of carbon nanotubes by various ball milling, J. Alloy Compnd. 434–435, 428–432 (2007).
  • S. R. Bakshi, V. Musaramthota, D. A. Virzi, A. K. Keshri, D. Lahiri, V. Singh, S. Seal, and A. Agarwal, Spark plasma sintered tantalum carbide–carbon nanotube composite: Effect of pressure, carbon nanotube length and dispersion technique on microstructure and mechanical properties, Mater. Sci. Eng.: A 528(6), 2538–2547 (2011).
  • D. Lahiri, V. Singh, A. K. Keshri, S. Seal, and A. Agarwal, Carbon nanotube toughened hydroxyapatite by spark plasma sintering: Microstructural evolution and multiscale tribological properties, Carbon 48(11), 3103–3120 (2010).
  • P. Quang, Y. G. Jeong, S. C. Yoon, S. H. Hong, and H. S. Kim, Consolidation of 1 vol.% carbon nanotube reinforced metal matrix nanocomposites via equal channel angular pressing, J. Mater. Process. Technol. 187–188, 318–320 (2007).
  • S. Salimi, H. Izadi, and A. P. Gerlich, Fabrication of an aluminum–carbon nanotube metal matrix composite by accumulative roll-bonding, J. Mater. Sci. 46(2), 409–415 (2011).
  • Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, MWCNTs/AZ31 surface composites fabricated by friction stir processing, Mater. Sci. Eng.: A 419(1–2), 344–348 (2006).
  • Z. Y. Liu, B. L. Xiao, W. G. Wang, and Z. Y. Ma, Developing high-performance aluminum matrix composites with directionally aligned carbon nanotubes by combining friction stir processing and subsequent rolling, Carbon 62(0), 35–42 (2013).
  • H. Izadi and A. P. Gerlich, Distribution and stability of carbon nanotubes during multi-pass friction stir processing of carbon nanotube/aluminum composites, Carbon 50(12), 4744–4749 (2012).
  • Q. Liu, L. Ke, F. Liu, C. Huang, and Li Xing, Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing, Mater. Des. 45, 343–348 (2013).
  • T. Laha, A. Agarwal, T. McKechnie, and S. Seal, Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite, Mater. Sci. Eng.: A 381(1–2), 249–258 (2004).
  • W. M. Daoush, B. K. Lim, C. B. Mo, D. H. Nam, and S. H. Hong, Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process, Mater. Sci. Eng.: A 513–514, 247–253 (2009).
  • H. Uozumi, K. Kobayashi, K. Nakanishi, T. Matsunaga, K. Shinozaki, H. Sakamoto, T. Tsukada, C. Masuda, and M. Yoshida, Fabrication process of carbon nanotube/light metal matrix composites by squeeze casting, Mater. Sci. Eng.: A 495(1–2), 282–287 (2008).
  • M. Raaft, T. S. Mahmoud, H. M. Zakaria, and T. A. Khalifa, Microstructural, mechanical and wear behavior of A390/graphite and A390/Al2O3 surface composites fabricated using FSP, Mater. Sci. Eng.: A 528(18), 5741–5746 (2011).
  • R. Bauri, D. Yadav, and G. Suhas, Effect of friction stir processing (FSP) on microstructure and properties of Al–TiC in situ composite, Mater. Sci. Eng.: A 528(13–14), 4732–4739 (2011).
  • A. Thangarasu, N. Murugan, I. Dinaharan, and S. J. Vijay, Synthesis and characterization of titanium carbide particulate reinforced AA6082 aluminium alloy composites via friction stir processing, Arch Civil Mech. Eng. 15(2), 324–334 (2015).
  • W. Xue, X. Wu, X. Li, and H. Tian, Anti-corrosion film on 2024/SiC aluminum matrix composite fabricated by microarc oxidation in silicate electrolyte, J. Alloy Compnd. 425(1–2), 302–306 (2006).
  • I. Aziz, Z. Qi, and X. Min, Corrosion inhibition of SiCp/5A06 aluminum metal matrix composite by cerium conversion treatment, Chin. J. Aeronaut. 22(6), 670–676 (2009).
  • P. M. Ashraf and S. M. A. Shibli, Development of cerium oxide and nickel oxide-incorporated aluminium matrix for marine applications, J. Alloy Compnd. 484(1–2), 477–482 (2009).
  • P. M. Ashraf and S. M. A. Shibli, Reinforcing aluminium with cerium oxide: A new and effective technique to prevent corrosion in marine environments, Electrochem. Commun. 9(3), 443–448 (2007).
  • M. Amra, K. Ranjbar, and R. Dehmolaei, Mechanical properties and corrosion behavior of CeO2 and SiC incorporated Al5083 alloy surface composites, J. Mater. Eng. Perform. 24(8), 3169–3179 (2015).
  • A. Devaraju, A. Kumar, and B. Kotiveerachari, Influence of rotational speed and reinforcements on wear and mechanical properties of aluminum hybrid composites via friction stir processing, Mater. Des. 45, 576–585 (2013).
  • R. Palanivel, I. Dinaharan, R. F. Laubscher, and J. P. Davim, Influence of boron nitride nanoparticles on microstructure and wear behavior of AA6082/TiB2 hybrid aluminum composites synthesized by friction stir processing, Mater. Des. 106, 195–204 (2016).
  • M. Bahrami, M. K. Besharati Givi, K. Dehghani, and N. Parvin, On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique, Mater. Des. 53(0), 519–527 (2014).
  • B. Zahmatkesh and M. H. Enayati, A novel approach for development of surface nanocomposite by friction stir processing, Mater. Sci. Eng.: A 527(24–25), 6734–6740 (2010).
  • M. Puviyarasan and V. S. S. Kumar, Optimization of friction stir process parameters in fabricating AA6061/SiCp composites, Procedia Eng. 38(0), 1094–1103 (2012).
  • J. Qu, H. Xu, Z. Feng, D. A. Frederick, L. An, and H. Heinrich, Improving the tribological characteristics of aluminum 6061 alloy by surface compositing with sub-micro-size ceramic particles via friction stir processing, Wear 271(9–10), 1940–1945 (2011).
  • J. F. Guo, J. Liu, C. N. Sun, S. Maleksaeedi, G. Bi, M. J. Tan, and J. Wei, Effects of nano-Al2O3 particle addition on grain structure evolution and mechanical behaviour of friction-stir-processed Al, Mater. Sci. Eng.: A 602(0), 143–149 (2014).
  • S. Shahraki, S. Khorasani, R. Abdi Behnagh, Y. Fotouhi, and H. Bisadi, Producing of AA5083/ZrO2 nanocomposite by Friction Stir Processing (FSP), Metallurg. Mater. Trans. B 44(6), 1546–1553 (2013).
  • S. Soleymani, A. Abdollah-zadeh, and S. A. Alidokht, Microstructural and tribological properties of Al5083 based surface hybrid composite produced by friction stir processing, Wear 278–279(0), 41–47 (2012).
  • M. Zohoor, M. K. Besharati Givi, and P. Salami, Effect of processing parameters on fabrication of Al–Mg/Cu composites via friction stir processing, Mater. Des. 39(0), 358–365 (2012).
  • C. J. Hsu, P. W. Kao, and N. J. Ho, Ultrafine-grained Al–Al2Cu composite produced in situ by friction stir processing, Scripta Materialia 53(3), 341–345 (2005).
  • C. H. Chuang, J. C. Huang, and P. J. Hsieh, Using friction stir processing to fabricate MgAlZn intermetallic alloys, Scripta Materialia 53(12), 1455–1460 (2005).
  • C. J. Hsu, P. W. Kao, and N. J. Ho, Intermetallic-reinforced aluminum matrix composites produced in situ by friction stir processing, Mater. Lett. 61(6), 1315–1318 (2007).
  • S. A. Alidokht, A. Abdollah-zadeh, S. Soleymani, and H. Assadi, Microstructure and tribological performance of an aluminium alloy based hybrid composite produced by friction stir processing, Mater. Des. 32(5), 2727–2733 (2011).
  • Y. Mazaheri, F. Karimzadeh, and M. H. Enayati, Tribological behavior of A356/Al2O3 surface nanocomposite prepared by friction stir processing, Metallurg. Mater. Trans. A 45(4), 2250–2259 (2014).
  • K. Choi, J. Seo, D. Bae, and H. Choi, Mechanical properties of aluminum-based nanocomposite reinforced with fullerenes, Trans. Nonferr. Met. Soc. China 24, Supplement 1(0), s47–s52 (2014).
  • B. M. Darras, M. K. Khraisheh, F. K. Abu-Farha, and M. A. Omar, Friction stir processing of commercial AZ31 magnesium alloy, J. Mater. Process. Technol. 191(1–3), 77–81 (2007).
  • B. L. Mordike and T. Ebert, Magnesium: Properties — applications — potential, Mater. Sci. Eng.: A 302(1), 37–45 (2001).
  • S. F. Hassan and M. Gupta, Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg, J. Alloy Compnd. 419(1–2), 84–90 (2006).
  • K. Hono, C. L. Mendis, T. T. Sasaki, and K. Oh-ishi, Towards the development of heat-treatable high-strength wrought Mg alloys, Scripta Materialia 63(7), 710–715 (2010).
  • S. R. Agnew and J. F. Nie, Preface to the viewpoint set on: The current state of magnesium alloy science and technology, Scripta Materialia 63(7), 671–673 (2010).
  • R. W. Hertzberg, R. P. Vinci, and J. L. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials. 5th ed. Wiley, New York (2012).
  • C. I. Chang, Y. N. Wang, H. R. Pei, C. J. Lee, X. H. Du, and J. C. Huang, Microstructure and mechanical properties of nano-ZrO2 and nano-SiO2 particulate reinforced AZ31-Mg based composites fabricated by friction stir processing, Key Eng. Mater. (351), 114–119 (2007).
  • M. Navazani and K. Dehghani, Fabrication of Mg-ZrO2 surface layer composites by friction stir processing, J. Mater. Process. Technol. 229, 439–449 (2016).
  • H. S. Arora, H. Singh, and B. K. Dhindaw, Wear behaviour of a Mg alloy subjected to friction stir processing, Wear 303(1–2), 65–77 (2013).
  • D. Lu, Y. Jiang, and R. Zhou, Wear performance of nano-Al2O3 particles and CNTs reinforced magnesium matrix composites by friction stir processing, Wear 305(1–2), 286–290 (2013).
  • B. Ratna Sunil, G. P. Kumar Reddy, H. Patle, and R. Dumpala, Magnesium based surface metal matrix composites by friction stir processing, J. Magnes. Alloys 4(1), 52–61 (2016).
  • B. Ratna Sunil, T. S. Sampath Kumar, U. Chakkingal, V. Nandakumar, and M. Doble, Friction stir processing of magnesium–nanohydroxyapatite composites with controlled in vitro degradation behavior, Mater Sci. Eng.: C 39, 315–324 (2014).
  • G. Faraji, O. Dastani, and S. A. A. A. Mousavi, Effect of process parameters on microstructure and micro-hardness of AZ91/Al2O3 surface composite produced by FSP. J. Mater. Eng. Perform. 20(9), 1583–1590 (2011).
  • G. Madhusudhan Reddy, A. Sambasiva Rao, and K. Srinivasa Rao, Friction stir processing for enhancement of wear resistance of ZM21 magnesium alloy, Trans. Ind. Instit. Met. 66(1), 13–24 (2013).
  • J. Zhu, L. Liu, H. Zhao, B. Shen, and W. Hu, Microstructure and performance of electroformed Cu/nano-SiC composite, Mater. Des. 28(6), 1958–1962 (2007).
  • C. S. Ramesh, R. Noor Ahmed, M. A. Mujeebu, and M. Z. Abdullah, Development and performance analysis of novel cast copper–SiC–Gr hybrid composites, Mater. Des. (2009) 30(6), 1957–1965 (2009).
  • S. F. Moustafa, S. A. El-Badry, A. M. Sanad, and B. Kieback, Friction and wear of copper–graphite composites made with Cu-coated and uncoated graphite powders, Wear 2002. 253(7–8), 699–710 (2002).
  • M. Kestursatya, J. K. Kim, and P. K. Rohatgi, Wear performance of copper–graphite composite and a leaded copper alloy, Mater. Sci. Eng.: A 339(1–2), 150–158 (2003).
  • H. Sarmadi, H., A. H. Kokabi, and S. M. Seyed Reihani, Friction and wear performance of copper–graphite surface composites fabricated by friction stir processing (FSP), Wear 304(1–2), 1–12 (2013).
  • M. Barmouz, M. K. Besharati Givi, and J. Seyfi, On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: Investigating microstructure, microhardness, wear and tensile behavior, Mater. Charact. 62(1), 108–117 (2011).
  • M. Gupta, M. O. Lai, and C. Y. Soo, Effect of type of processing on the microstructural features and mechanical properties of Al-Cu/SiC metal matrix composites, Mater. Sci. Eng.: A 210(1), 114–122 (1996).
  • S. Nanobashvili, J. Matějiček, F. Žáček, J. Stöckel, P. Chráska, and V. Brožek, Plasma sprayed coatings for RF wave absorption, J. Nucl. Mater. 307–311, Part 2, 1334–1338 (2002).
  • R. Sathiskumar, N. Murugan, I. Dinaharan, and S. J. Vijay, Prediction of mechanical and wear properties of copper surface composites fabricated using friction stir processing, Mater. Des. 55(0), 224–234 (2014).
  • I. Dinaharan, R. Sathiskumar, and N. Murugan, Effect of ceramic particulate type on microstructure and properties of copper matrix composites synthesized by friction stir processing, J. Mater. Res. Technol. 5(4), 302–316 (2016).
  • J. Jafari, M. K. B. Givi, and M. Barmouz, Mechanical and microstructural characterization of Cu/CNT nanocomposite layers fabricated via friction stir processing, Int. J. Adv. Manuf. Technol. 78(1), 199–209 (2015).
  • T. Thankachan and K. S. Prakash, Microstructural, mechanical and tribological behavior of aluminum nitride reinforced copper surface composites fabricated through friction stir processing route, Mater. Sci. Eng.: A 688, 301–308 (2017).
  • H. S. Arora, H. Singh, B. K. Dhindaw, and H. S. Grewal, Some investigations on friction stir processed zone of AZ91 alloy, Trans. Ind. Instit. Met. 65(6), 735–739 (2012).
  • P. Asadi, G. Faraji, A. Masoumi, and M. K. Besharati Givi, Experimental investigation of magnesium-base nanocomposite produced by friction stir processing: effects of particle types and number of friction stir processing passes, Metallurg. Mater. Trans. A 42(9), 2820–2832 (2011).
  • G. Faraji and P. Asadi, Characterization of AZ91/alumina nanocomposite produced by FSP, Mater. Sci. Eng.: A 528(6), 2431–2440 (2011).
  • P. Asadi, G. Faraji, and M. Besharati, Producing of AZ91/SiC composite by friction stir processing (FSP), Int. J. Adv. Manuf. Technol. 51(1–4), 247–260 (2010).
  • J. Khosravi, M. K. Beshrati Givi, M. Barmouz, and A. Rahi, Microstructural, mechanical, and thermophysical characterization of Cu/WC composite layers fabricated via friction stir processing, Int. J. Adv. Manuf. Technol. 1–10 (2014).
  • M. Barmouz, P. Asadi, M. K. Besharati Givi, and M. Taherishargh, Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: Effect of SiC particles' size and volume fraction, Mater. Sci. Eng.: A 528(3), 1740–1749 (2011).
  • S. Cartigueyen and K. Mahadevan, Wear characteristics of copper-based surface-level microcomposites and nanocomposites prepared by friction stir processing, Friction 4(1), 39–49 (2016).
  • D. Williams, Titanium and titanium alloys. Biocompat. Clin. Implant Mater. 1, 9–44 (1981).
  • Leyens, C. and M. Peters, Titanium and titanium alloys. 2003: Wiley Online Library.
  • P. Jiang, X. L. He, X. X. Li, L. G. Yu, and H. M. Wang, Wear resistance of a laser surface alloyed Ti–6Al–4V alloy, Surf. Coat. Technol. 130(1), 24–28 (2000).
  • S. E. Romankov, B. N. Mukashev, E. L. Ermakov, and D. N. Muhamedshina, Structural formation of aluminide phases on titanium substrate, Surf. Coat. Technol. 180–181, 280–285 (2004).
  • S. Mironov, Y. Zhang, Y. S. Sato, and H. Kokawa, Development of grain structure in β-phase field during friction stir welding of Ti–6Al–4V alloy, Scripta Materialia 59(1), 27–30 (2008).
  • H. J. Liu, L. Zhou, and Q. W. Liu, Microstructural evolution mechanism of hydrogenated Ti–6Al–4V in the friction stir welding and post-weld dehydrogenation process, Scripta Materialia 61(11), 1008–1011 (2009).
  • G. B. Gleason, Hard Coating Titanium, General Electric Corporation, Pittsfield (1957).
  • G. M. Reddy, A. S. Rao, and K. S. Rao, Friction stir surfacing route: effective strategy for the enhancement of wear resistance of titanium alloy, Trans. Ind. Instit. Met. 66(3), 231–238 (2013).
  • A. Shafiei-Zarghani, S. F. Kashani-Bozorg, and A. P. Gerlich, Texture analyses of Ti/Al2O3 nanocomposite produced using friction stir processing, Metallurg. Mater. Trans. A 47(11), 5618–5629 (2016).
  • Ali Shamsipur, S. F. Kashani-Bozorg, and A. Zareie-Hanzakil, Fabrication of Ti/Sic surface nano-composite layer by friction stir processing. 2nd International Conference on Ultrafine Grained & Nanostructured Materials (UFGNSM). World Scientific Publishing Company (2012).
  • A. K. Misra, Reaction of Ti and Ti-Al alloys with alumina, Metallurg. Trans. A 22(3), 715–721 (1991).
  • A. Shafiei-Zarghani, S. F. Kashani-Bozorg, and A. P. Gerlich, Strengthening analyses and mechanical assessment of Ti/Al2O3 nano-composites produced by friction stir processing, Mater. Sci. Eng.: A 631, 75–85 (2015).
  • M. J. Mas-Guindal, E. Benko, and M. A. Rodríguez, Nanostructured metastable cermets of Ti–Al2O3 through activated SHS reaction, J. Alloy Compnd. 454(1–2), 352–358 (2008).
  • A. Shamsipur, S. F. Kashani-Bozorg, and A. Zarei-Hanzaki, The effects of friction-stir process parameters on the fabrication of Ti/SiC nano-composite surface layer, Surf. Coat. Technol. 206(6), 1372–1381 (2011).
  • B. Li, Y. Shen, L. Luo, and W. Hu, Fabrication of TiCp/Ti–6Al–4V surface composite via friction stir processing (FSP): Process optimization, particle dispersion-refinement behavior and hardening mechanism, Mater. Sci. Eng.: A 574(0), 75–85 (2013).
  • A. R. Khademi and A. Afsari, Fabrications of surface nanocomposite by friction stir processing to improve mechanical and microstructural properties of low carbon steel, Trans. Ind. Instit. Met. 2016, 1–6 (2016).
  • A. Ghasemi-Kahrizsangi, S. F. Kashani-Bozorg, M. Moshref-Javadi, and M. Sharififar, Friction stir processing of mild steel/Al2O3 nanocomposite: modeling and experimental studies, Metallogr. Microstruct. Anal. 4(2), 122–130 (2015).
  • D. C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications, Springer, New York (2008).
  • F. T. Calkins and J. H. Mabe, Shape memory alloy based morphing aerostructures, J. Mech. Des. 132(11), 111012–111012 (2010).
  • J. Dong, C. S. Cai, and A. M. Okeil, Overview of potential and existing applications of shape memory alloys in bridges, J. Bridge Eng.. 16(2), 305–315 (2011).
  • G. Song, N. Ma, and H. N. Li, Applications of shape memory alloys in civil structures, Eng. Struct. 28(9), 1266–1274 (2006).
  • O. Corbi, Shape memory alloys and their application in structural oscillations attenuation, Simul. Model. Pract. Theor. 11(5–6), 387–402 (2003).
  • G. Song, D. Patil, C. Kocurek, and J. Bartos, “Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments 2010.” Presented at the 12th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments and Fourth NASA/ARO/ASCE Workshop on Granular Materials in Lunar and Martian Exploration, Honolulu, HI, USA, March 2010.
  • G. B. Kauffman and I. Mayo, The story of nitinol: the serendipitous discovery of the memory metal and its applications, Chem. Educator 2(2), 1–21 (1997).
  • D. M. Pitt, J. P. Dunne, and E. V. White. SAMPSON Smart Inlet Design Overview and Wind Tunnel Test: I. Design Overview. (2002).
  • G. S. Bushnell, D. Arbogast, and R. Ruggeri. “Shape Control of a Morphing Structure (Rotor Blade) Using a Shape Memory Alloy Actuator System.” Presented at SPIE Smart Structure and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA 2008.
  • Z. G. Wei, C. Y. Tang, and W. B. Lee, Design and fabrication of intelligent composites based on shape memory alloys, J. Mater. Process. Technol. 69(1), 68–74 (1997).
  • F. Casciati, L. Faravelli, and C. Fuggini, Cable vibration mitigation by added SMA wires, Acta Mechanica 195(1), 141–155 (2008).
  • Y. Bellouard, Shape memory alloys for microsystems: A review from a material research perspective, Mater. Sci. Eng.: A 481–482, 582–589 (2008).
  • N. B. Morgan, Medical shape memory alloy applications—the market and its products, Mater. Sci. Eng.: A 378(1–2), 16–23 (2004).
  • T. Duerig, A. Pelton, and D. Stöckel, An overview of nitinol medical applications, Mater. Sci. Eng.: A 273–275, 149–160 (1999).
  • M. F. Ashby and Y. J. M. Bréchet, Designing hybrid materials, Acta Materialia 51(19), 5801–5821 (2003).
  • G. S. Firstov, J. Van Humbeeck, and Y. N. Koval, High temperature shape memory alloys problems and prospects, J. Intell. Mater. Syst. Struct. 17(12), 1041–1047 (2006).
  • G. S. Firstov, J. Van Humbeeck, and Y. N. Koval, High-temperature shape memory alloys: Some recent developments, Mater. Sci. Eng.: A 378(1–2), 2–10 (2004).
  • C. A. Rogers and H. H. Robertshaw. Development of a novel smart material. Winter Annual Meeting of the American Society of Mechanical Engineers (1988).
  • G. A. Porter, P. K. Liaw, T. N. Tiegs, and K. H. Wu, Ni-Ti SMA-reinforced Al composites, JOM 52(10), 52–56 (2000).
  • D. R. Ni and Z. Y. Ma, Shape memory alloy-reinforced metal-matrix composites: a review. Acta Metallurgica Sinica (Engl. Lett.) 27(5), 739–761 (2014).
  • J. H. Lee, K. Hamada, K. Miziuuchi, M. Taya, and K. Inoue, Microstructures and mechanical properties of 6061 Al matrix smart composite containing TiNi shape memory fiber. Materials Research Society Symposium – Proceedings. (1997).
  • K. Mizuuchi, The fabrication and thermomechanical behavior of Al and Ti SMA composites, JOM 52(10), 26–31 (200).
  • M. Dixit, J. W. Newkirk, and R. S. Mishra, Properties of friction stir-processed Al 1100–NiTi composite, Scripta Materialia 56(6), 541–544 (2007).
  • D. R. Ni, J. J. Wang, Z. N. Zhou, and Z. Y. Ma, Fabrication and mechanical properties of bulk NiTip/Al composites prepared by friction stir processing. J. Alloy Compnd. 586, 368–374 (2014).
  • D. R. Ni, J. J. Wang, and Z. Y. Ma, Shape memory effect, thermal expansion and damping property of friction stir processed NiTip/Al composite, J. Mater. Sci.Technol. 32(2), 162–166 (2016).
  • D. J. Lloyd, Particle reinforced aluminium and magnesium matrix composites, Int. Mater. Rev. 39(1), 1–23 (1994).
  • C.-S. Kim, Il Sohn, M. Nezafati, J. B. Ferguson, B. F. Schultz, Z. Bajestani-Gohari, P. K. Rohatgi, and K. Cho, Prediction models for the yield strength of particle-reinforced unimodal pure magnesium (Mg) metal matrix nanocomposites (MMNCs), J. Mater. Sci. 48(12), 4191–4204 (2013).
  • Z. Zhang and D. L. Chen, Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites, Mater. Sci. Eng.: A 483–484(0), 148–152 (2008).
  • D. Hull and T. W. Clyne, Strength of composites. In An Introduction to Composite Materials, Cambridge University Press, Cambridge. (1996) pp. 158–207.
  • A. Sanaty-Zadeh, Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect, Mater. Sci. Eng.: A 531, 112–118 (2012).
  • B. T. Balakrishna, V. S. A. Strengthening mechanisms in alloys, Proc. Indian Acad. Sci. (Eng. Sci.) 3(4), 275–296 (1980).
  • I. A. Ibrahim, F. A. Mohamed, and E. J. Lavernia, Particulate reinforced metal matrix composites — a review, J. Mater. Sci. 26(5), 1137–1156 (1991).
  • T. R. McNelley, S. Swaminathan, and J. Q. Su, Recrystallization mechanisms during friction stir welding/processing of aluminum alloys, Scripta Materialia 58(5), 349–354 (2008).
  • R. S. Hossein Izadi and A. P. Gerlich, Grain growth behavior and hall–petch strengthening in friction stir processed Al 5059, Metallurg. Mater. Trans. A 45(12), 5635–5644 (2014).
  • S. Rathee, S. Maheshwari, A. N. Siddiquee, and M. Srivastava, Investigating effects of groove dimensions on microstructure and mechanical properties of AA6063/SiC surface composites produced by friction stir processing, Trans. Ind. Instit. Met. 70(3), 809–816 (2017).
  • A. S. Luyt, J. A. Molefi, and H. Krump, Thermal, mechanical and electrical properties of copper powder filled low-density and linear low-density polyethylene composites, Polym. Degrad. Stabil. 91(7), 1629–1636 (2006).
  • S. Kanagaraj, F. R. Varanda, T. V. Zhil'tsova, M. S. A. Oliveira, and J. A. O. Simões, Mechanical properties of high density polyethylene/carbon nanotube composites, Compos. Sci. Technol. 67(15–16), 3071–3077 (2007).
  • T. Villmow, S. Pegel, P. Pötschke, and U. Wagenknecht, Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes. Compos. Sci. Technol. 68(3–4), 777–789 (2008).
  • V. N. Zhitomirsky, I. Grimberg, M. C. Joseph, R. L. Boxman, A. Matthews, and B. Z. Weiss, Vacuum arc deposition of conductive wear resistant coatings on polymer substrates, Surf. Coat. Technol. 120–121, 373–377 (1999).
  • V. N. Zhitomirsky, I. Grimberg, M. C. Joseph, R. L. Boxman, B. Z. Weiss, A. Matthews, and S. Goldsmith, Vacuum arc deposition of metal/ceramic coatings on polymer substrates, Surf. Coat. Technol. 108–109, 160–165 (1998).
  • M. Cho, H. Choi, M. Aslam, J. Shin, and D. Bae, Electrical conductive epoxy composites containing cilia-like powders fabricated by mechanical milling, Met. Mater. Int. 16(1), 67–70 (2010).
  • Y. J. V. Ruban, S. G. Mon, and D. V. Roy, Ball milling: An effective technique for the preparation of exfoliated clay filled unsaturated polyester toughened epoxy nanocomposite, Polymer Science Series A 56(6), 884–895 (2014).
  • A. Gungor, Mechanical properties of iron powder filled high density polyethylene composites, Mater. Des. 28(3), 1027–1030 (2007).
  • M. V. Deepthi, M. Sharma, R. R. N. Sailaja, P. Anantha, P. Sampathkumaran, and S. Seetharamu, Mechanical and thermal characteristics of high density polyethylene–fly ash Cenospheres composites, Mater. Des. 31(4), 2051–2060 (2010).
  • M. Barmouz, J. Seyfi, M. K. Besharati Givi, I. Hejazi, and S. M. Davachi, A novel approach for producing polymer nanocomposites by in-situ dispersion of clay particles via friction stir processing, Mater. Sci. Eng.: A 528(6), 3003–3006 (2011).
  • E. Azarsa and A. Mostafapour, On the feasibility of producing polymer–metal composites via novel variant of friction stir processing, J. Manufact. Process. 15(4), 682–688 (2013).
  • R. Farshbaf Zinati, M. R. Razfar, and H. Nazockdast, Numerical and experimental investigation of FSP of PA 6/MWCNT composite, J. Mater. Process. Technol. 214(11), 2300–2315 (2014).
  • A. M. a. E. Azarsa, A study on the role of processing parameters in joining polyethylene sheets via heat assisted friction stir welding: Investigating microstructure, tensile and flexural properties, Int. J. Phys. Sci. 7(4), 647–654 (2012).
  • M. J. Troughton, Handbook of Plastics Joining: A Practical Guide. William Andrew, Norwich, NY, USA (2008).
  • A. Bagheri, T. Azdast, and A. Doniavi, An experimental study on mechanical properties of friction stir welded ABS sheets, Mater. Des. 43, 402–409 (2013).
  • Z. Kiss and T. Czigány, Effect of welding parameters on the heat affected zone and the mechanical properties of friction stir welded poly(ethylene-terephthalate-glycol), J. Appl. Polym. Sci. 125(3), 2231–2238 (2012).
  • S. Eslami, T. Ramos, P. J. Tavares, and P. M. G. P. Moreira, Shoulder design developments for FSW lap joints of dissimilar polymers, J. Manuf. Process. 20(Part 1), 15–23 (2015).
  • W. J. Arbegast, A flow-partitioned deformation zone model for defect formation during friction stir welding, Scripta Materialia 58(5), 372–376 (2008).
  • N. Z. Khan, A. N. Siddiquee, Z. A. Khan, and S. K. Shihab, Investigations on tunneling and kissing bond defects in FSW joints for dissimilar aluminum alloys, J. Alloy Compnd. 648, 360–367 (2015).
  • P. Kah, R. Rajan, J. Martikainen, and R. Suoranta, Investigation of weld defects in friction-stir welding and fusion welding of aluminium alloys, Int. J. Mech. Mater. Eng. 10(1), 26 (2015).
  • K. P. Mehta and V. J. Badheka, A review on dissimilar friction stir welding of copper to aluminum: process, properties, and variants. Mater. Manuf. Process. 31(3), 233–254 (2016).
  • S. Tutunchilar, M. Haghpanahi, M. K. Besharati Givi, P. Asadi, and P. Bahemmat, Simulation of material flow in friction stir processing of a cast Al–Si alloy, Mater. Des. 40(0), 415–426 (2012).
  • H.-B. Chen, K. Yan, T. Lin, S.-B. Chen, C.-Y. Jiang, and Y. Zhao, The investigation of typical welding defects for 5456 aluminum alloy friction stir welds, Mater. Sci. Eng.: A 433(1–2), 64–69 (2006).
  • Y. G. Kim, H. Fujii, T. Tsumura,T. Komazaki, and K. Nakata, Three defect types in friction stir welding of aluminum die casting alloy, Mater. Sci. Eng.: A 415(1–2), 250–254 (2006).
  • R. Crawford, G. E. Cook, A. M. Strauss, D. A. Hartman, and M. A. Stremler, Experimental defect analysis and force prediction simulation of high weld pitch friction stir welding, Sci. Technol. Weld. Join. 11(6), 657–665 (2006).
  • K. Dehghani and M. Mazinani, Forming nanocrystalline surface layers in copper using friction stir processing, Mater. Manuf. Process. 26(7), 922–925 (2011).
  • K. P. Mehta and V. J. Badheka, Effects of tool pin design on formation of defects in dissimilar friction stir welding, Procedia Technol. 23, 513–518 (2016).
  • L. Trueba Jr, G. Heredia, D. Rybicki, and L. B. Johannes, Effect of tool shoulder features on defects and tensile properties of friction stir welded aluminum 6061-T6, J. Mater. Process. Technol. (2015) 219, 271–277.
  • D. K. Jha, T. Kant, and R. K. Singh, A critical review of recent research on functionally graded plates, Compos. Struct. 96, 833–849 (2013).
  • M. Koizumi, FGM activities in Japan, Compos. Part B: Eng. 28(1), 1–4 (1997).
  • S. S. Wang, Fracture mechanics for delamination problems in composite materials, J. Compos. Mater. 17(3), 210–223 (1983).
  • P. Shanmugavel, G. B. Bhaskar, M. Chandrasekaran, P. S. Mani, and S. P. Srinivasan, An overview of fracture analysis in Functionally Graded Materials, Eur. J. Sci. Res. 68(3), 412–439 (2012).
  • X. W. Gao, Ch Zhang, J. Sladek, and V. Sladek, Fracture analysis of functionally graded materials by a BEM, Compos. Sci. Technol. 68(5), 1209–1215 (2008).
  • G. Udupa, S. S. Rao, and K. V. Gangadharan, Functionally graded composite materials: an overview, Procedia Mater. Sci. 5, 1291–1299 (2014).
  • J. F. Groves and H. N. G. Wadley, Functionally graded materials synthesis via low vacuum directed vapor deposition, Compos. Part B: Eng. 28(1), 57–69 (1997).
  • A. Gupta and M. Talha, Recent development in modeling and analysis of functionally graded materials and structures, Progr. Aerospace Sci. 79, 1–14 (2015).
  • M. M. Rasheedat, T. A. E. M. Shukla, and S. Pityana. “Functionally Graded Material: An Overview.” Presented at the World Congress on Engineering, London, UK, July 2012.
  • Y. Watanabe, I. S. Kim, and Y. Fukui, Microstructures of functionally graded materials fabricated by centrifugal solid-particle andin-situ methods, Met. Mater. Int. 11(5), 391–399 (2005).
  • K. Zhang, W. P. Shen, and C. C. Ge, Properties of W/Cu FGMs containing 1%TiC or 1%La2O3 prepared using GSUHP, Acta Metallurgica Sinica (Engl Lett.) (2007) 20(1), 59–64 (2007).
  • Z.-J. Zhou, J. Du, S.-X. Song, Z.-H. Zhong, and C.-C. Ge, Microstructural characterization of W/Cu functionally graded materials produced by a one-step resistance sintering method, J. Alloy Compnd. 428(1–2), 146–150 (2007).
  • J. Moon, A. C. Caballero, L. Hozer, Y.-M. Chiang, and M. J. Cima, Fabrication of functionally graded reaction infiltrated SiC–Si composite by three-dimensional printing (3DP™) process, Mater. Sci. Eng.: A 298(1–2), 110–119 (2001).
  • B. Kieback, A. Neubrand, and H. Riedel, Processing techniques for functionally graded materials, Mater. Sci. Eng.: A 362(1–2), 81–106 (2003).
  • T. P. D. Rajan and B. C. Pai, Developments in processing of functionally gradient metals and metal–ceramic composites: a review, Acta Metallurgica Sinica (Engl. Lett.) 27(5), 825–838 (2014).
  • J. J. Sobczak and L. Drenchev, Metallic functionally graded materials: A specific class of advanced composites, J. Mater. Sci. Technol. 29(4), 297–316 (2013).
  • M. Salehi, H. Farnoush, A. Heydarian, and J. A. Mohandesi, Improvement of mechanical properties in the functionally graded aluminum matrix nanocomposites fabricated via a novel multistep friction stir processing, Metallurg. Mater. Trans. B 46(1), 20–29 (2014).
  • M. Saadatmand and J. A. Mohandesi, Modeling tensile strength of Al–SiC functionally graded composite produced using friction stir processing (FSP), Trans. Ind. Instit. Met. 1–7 (2014).
  • M. Saadatmand, and J. Aghazadeh Mohandesi, Optimization of mechanical and wear properties of functionally graded Al6061/SiC nanocomposites produced by friction stir processing (FSP), Acta Metallurgica Sinica (Engl. Lett.) 28(5), 584–590 (2015).
  • J. Gandra, P. Vigarinho, D. Pereira, R. M. Miranda, A. Velhinho, and P. Vilaça, Wear characterization of functionally graded Al–SiC composite coatings produced by friction surfacing, Mater. Des. 52, 373–383 (2013).
  • M. Salehi, H. Farnoush, and J. A. Mohandesi, Fabrication and characterization of functionally graded Al–SiC nanocomposite by using a novel multistep friction stir processing, Mater. Des. 63(0), 419–426 (2014).
  • J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Progr. Mater. Sci. 46(6), 559–632 (2001).
  • L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties (Cambridge Solid State Science Series), Cambridge University Press, Cambridge, UK (1997).
  • A. F. Giamei, Metal foams. Symposium on Metal Foams. Stanton, USA: Bremen: MIT Press–Verlag (1997).
  • Y. Zhou, Y. Li, and J. Yuan, The stability of aluminum foams at accumulation and condensation stages in gas injection foaming process, Colloids Surf. A: Physicochem. Eng. Asp. 482, 468–476 (2015).
  • H. Sang, L. D. Kenny, and I. Jin, Process for producing shaped slabs of particle stabilized foamed metal, US 5334236 A, filing date-Jun 29, 1992, Publication date- Aug 2, 1994; US Patent 5, 236, Editor, US.
  • G.-Q. Lu, H. Hao, F.-Y. Wang, X.-G. Zhang, Preparation of closed-cell Mg foams using SiO2-coated CaCO3 as blowing agent in atmosphere. Trans. Nonferr. Met. Soc. China 23(6), 1832–1837 (2013).
  • S. F. William, Method of Making Metal Foam Bodies. Google Patents (1965).
  • P. G. William and H. P. Wilson, Method of Producing a Lightweight Foamed Metal, Google Patents (1967).
  • J. Baumeister and H. Schrader, Methods for Manufacturing Foamable Metal Bodies, Google Patents (1992).
  • Y. Yamada, K. Shimojima, Y. Sakaguchi, M. Mabuchi, M. Nakamura, T. Asahina, T. Mukai, H. Kanahashi, and K. Higashi, Processing of cellular magnesium materials, Adv. Eng. Mater. 2(4), 184–187 (2000).
  • E. J. Lavernia and N. J. Grant, Spray deposition of metals: A review, Mater. Sci. Eng. 98, 381–394 (1988).
  • A. Viscusi, P. Ammendola, A. Astarita, F. Raganati, F. Scherillo, A. Squillace, R. Chirone, and L. Carrino, Aluminum foam made via a new method based on cold gas dynamic sprayed powders mixed through sound assisted fluidization technique, J. Mater. Process. Technol. 231, 265–276 (2016).
  • M. H. Shahzeydi, A. M. Parvanian, and M. Panjepour, The distribution and mechanism of pore formation in copper foams fabricated by Lost Carbonate Sintering method, Mater. Character. 111, 21–30 (2016).
  • H. Nassar, M. Albakri, H. Pan, and M. Khraisheh, On the gas pressure forming of aluminium foam sandwich panels: Experiments and numerical simulations, CIRP Ann. Manufact. Technol. 61(1), 243–246 (2012).
  • C. A. Vogiatzis and S. M. Skolianos, On the sintering mechanisms and microstructure of aluminium–ceramic cenospheres syntactic foams produced by powder metallurgy route, Compos. Part A: Appl. Sci. Manuf. 82, 8–19 (2016).
  • I. Duarte and J. Banhart, A study of aluminium foam formation—kinetics and microstructure, Acta Materialia 8(9), 2349–2362 (2000).
  • L. P. Lefebvre, J. Banhart, and D. C. Dunand, Porous metals and metallic foams: current status and recent developments, Adv. Eng. Mater. 10(9), 775–787 (2008).
  • Z. Xiao, J. Fang, G. Sun, and Q. Li, Crashworthiness design for functionally graded foam-filled bumper beam, Adv. Eng. Softw. 85, 81–95 (2015).
  • A. Pollien, Y. Conde, L. Pambaguian, and A. Mortensen, Graded open-cell aluminium foam core sandwich beams, Mater. Sci. Eng.: A 404(1–2), 9–18 (2005).
  • A. H. Brothers and D. C. Dunand, Density-graded cellular aluminum, Adv. Eng. Mater. 8(9), 805–809 (2006).
  • A. H. Brothers and D. C. Dunand, Mechanical properties of a density-graded replicated aluminum foam, Mater. Sci. Eng.: A 489(1–2), 439–443 (2008).
  • Y. Hangai and T. Utsunomiya, Fabrication of porous aluminum by friction stir processing, Metallurg. Mater. Trans. A 40(2), 275–277 (2009).
  • Y. O. Yoshihiko Hangai and T. Utsunomiya, Foaming conditions of porous aluminum in fabrication of ADC12 aluminum alloy die castings by friction stir processing, Mater. Trans. 50(9), 2154–2159 (2009).
  • A. R. Kennedy, and S. Asavavisithchai, Effect of ceramic particle additions on foam expansion and stability in compacted Al-TiH2 powder precursors, Adv. Eng. Mater. 6(6), 400–402 (2004).
  • M. Haesche, J. Weise, F. Garcia-Moreno, and J. Banhart, Influence of particle additions on the foaming behaviour of AlSi11/TiH2 composites made by semi-solid processing, Mater. Sci. Eng.: A 480(1–2), 283–288 (2008).
  • Y. Hangai, H. Kato, T. Utsunomiya, and S. Kitahara, Effect of the amount of gases on the foaming efficiency of porous aluminum using die castings fabricated by friction stir processing, Metallurg. Mater. Trans. A 41(8), 1883–1886 (2010).
  • Y. Hangai, Y. Oba, S. Koyama, and T. Utsunomiya, Fabrication of A1050–A6061 functionally graded aluminum foam by friction stir processing route, Metallurg. Mater. Trans. A 2011. 42(12), 3585–3589 (2011).
  • J. Rodelas and J. Lippold, Characterization of engineered nickel-base alloy surface layers produced by additive friction stir processing, Metallogr. Microstruct. Anal. 2(1), 1–12 (2013).
  • S. Palanivel, P. Nelaturu, B. Glass, and R. S. Mishra, Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy, Materials & Design (1980–2015), 65, 934–952 (2015).
  • M. Yuqing, K. Liming, H. Chunping, L. Fencheng, and L. Qiang, Formation characteristic, microstructure, and mechanical performances of aluminum-based components by friction stir additive manufacturing, Int. J. Adv. Manuf. Technol. 83(9), 1637–1647 (2016).
  • S. M. Mousavizade et al., Dynamic recrystallization phenomena during laser-assisted friction stir processing of a precipitation hardened nickel base superalloy, J. Alloy Compnd. 685, 806–811 (2016).
  • H. K. Sharma, K. Bhatt, K. Shah, and U. Joshi, Experimental analysis of friction stir welding of dissimilar alloys AA6061 and Mg AZ31 using circular butt joint geometry, Procedia Technol. 23, 566–572 (2016).
  • S. Palanivel, H. Sidhar, and R. S. Mishra, Friction stir additive manufacturing: route to high structural performance, JOM 67(3), 616–621 (2015).
  • H. M. Jamalian, H. Ramezani, H. Ghobadi, M. Ansari, S. Yari, and M. K. Besharati Givi, Processing–structure–property correlation in nano-SiC-reinforced friction stir welded aluminum joints, J. Manuf. Process. 21, 180–189 (2016).
  • M. Sharifitabar, M. Kashefi, and S. Khorshahian, Effect of friction stir processing pass sequence on properties of Mg–ZrSiO4–Al2O3 surface hybrid micro/nano-composites, Mater. Des. 108, 1–7 (2016).
  • M. Sarkari Khorrami, M. Kazeminezhad, and A. H. Kokabi, The effect of SiC nanoparticles on the friction stir processing of severely deformed aluminum, Mater. Sci. Eng.: A 602(0), 110–118 (2014).
  • M. S. Rathee Sandeep, A. N. Siddiquee, and M. Srivastava, Fabrication of AA 6063/SiC surface composites via friction stir processing. India International Science Festival- Young Scientists' Meet Department of Science and Technology, Government of India, New Delhi (2015).
  • A. Heydarian, K. Dehghani, and T. Slamkish, Optimizing powder distribution in production of surface nano-composite via friction stir processing, Metallur. Mater. Trans. B 45(3), 821–826 (2014).
  • M. Bahrami, M. Farahmand Nikoo, and M. K. Besharati Givi, Microstructural and mechanical behaviors of nano-SiC-reinforced AA7075-O FSW joints prepared through two passes, Mater. Sci. Eng.: A 626(0), 220–228 (2015).
  • S. Rathee, S. Maheshwari, A. N. Siddiquee, and M. Srivastava, Effect of tool plunge depth on reinforcement particles distribution in surface composite fabrication via friction stir processing, Defen. Technol. 13(2), 86–91 (2017).
  • P. Vijayavel, V. Balasubramanian, and S. Sundaram, Effect of shoulder diameter to pin diameter (D/d) ratio on tensile strength and ductility of friction stir processed LM25AA-5% SiCp metal matrix composites, Mater. Des. 57(0), 1–9 (2014).
  • S. Das, N. Y. Martinez, S. Das, R. S. Mishra, G. J. Grant, S. Jana, and E. Polikarpov, Magnetic properties of friction stir processed composite, JOM 1–7 (2016).
  • R. Farshbaf Zinati, Experimental evaluation of ultrasonic-assisted friction stir process effect on in situ dispersion of multi-walled carbon nanotubes throughout polyamide 6, Int. J. Adv. Manuf. Technol. 81(9), 2087–2098 (2015).
  • M. Ahmadnia, A. Seidanloo, R. Teimouri, Y. Rostamiyan, K. G. Titrashi, Determining influence of ultrasonic-assisted friction stir welding parameters on mechanical and tribological properties of AA6061 joints, Int. J. Adv. Manuf. Technol. 78(9), 2009–2024 (2015).
  • K. Sun, Q. Y. Shi, Y. J. Sun, and G. Q. Chen, Microstructure and mechanical property of nano-SiCp reinforced high strength Mg bulk composites produced by friction stir processing, Mater. Sci. Eng. 547(0), 32–37 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.