1,094
Views
29
CrossRef citations to date
0
Altmetric
Reviews

A review on high stiffness aluminum-based composites and bimetallics

&

References

  • W. S. Miller, L. Zhuang, J. Bottema, A. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge, Recent development in aluminium alloys for the automotive industry, Mater. Sci. Eng. A. 280(1), 7–49 (2000).
  • T. Dursun and C. Soutis, Recent developments in advanced aircraft aluminium alloys, Mater. Des. 56, 862–871 (2014).
  • D. J. Lloyd, Particle reinforced aluminium and magnesium matrix composites, Int. Mater. Rev. 39(1), 1–23 (1994).
  • J. G. Kaufman and E. L. Rooy, Aluminium alloy castings: properties, processes, US and applications, ASM International, US 2004.
  • F. Bonnet, V. Daeschler, and G. Petitgand, High modulus steels: new requirement of automotive market. How to take up challenge?, Can. Metall. Q. 53, 243–252 (2014).
  • V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminium Alloys, Elsevier, Oxford (2007).
  • P. K. Rohatgi, Metal matrix composites, Def. Sci. J. 43(4), 323–349 (2013).
  • A. Mortensen and J. Llorca, Metal matrix composites, Annu. Rev. Mater. Res. 40, 243–270 (2010).
  • S. R. Bakshi, D. Lahiri, and A. Agarwal, Carbon nanotube reinforced metal matrix composites-a review, Int. Mater. Rev. 55, 41–64 (2010).
  • K. L. Kendig and D. B. Miracle, Strengthening mechanisms of an Al-Mg-Sc-Zr alloy, Acta Mater. 50(16), 4165–4175 (2002).
  • K. Masuda-Jindo and K. Terakura, Electronic theory for solid-solution hardening and softening of dilute Al based alloys: elastic-moduli enhancement of Al-Li alloys, Phys. Rev. B. 39(11), 7509 (1989).
  • W. H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses, Prog. Mater. Sci. 57, 487–656 (2012).
  • M. Lucena, J. A. Benito, A. Roca, and J. Jorba, Changes of elastomechanic constants of pure aluminum cold deformed by tension test, Rev. Metal. Madrid. 34, 310–313 (1998).
  • A. Villuendas, J. Jorba, and A. Roca, The role of precipitates in the behavior of Young’s modulus in aluminium alloys, Metall. Mater. Trans. A. 45(9), 3857–3865 (2014).
  • I. Polmear, D. St John, J. F. Nie, and M. Qian, Light Alloys: Metallurgy of the Light Metals. Butterworth-Heinemann, Oxford, UK (2017).
  • D. Hull and T. Clyne, An Introduction to Composite Materials, Cambridge University Press, UK (1996).
  • A. Nieto, A. Bisht, D. Lahiri, and A. Agarwal, Graphene reinforced metal and ceramic matrix composites: a review, Int. Mater. Rev. 62, 241–302 (2017).
  • S. C. Tjong and Z. Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites, Mater. Sci. Eng. R. 29, 49–113 (2000).
  • I. Ibrahim, F. Mohamed, and E. Lavernia, Particulate reinforced metal matrix composites-a review, J. Mater. Sci. 26, 1137–1156 (1991).
  • R. Jamaati, S. Amirkhanlou, M. R. Toroghinejad, and B. Niroumand, CAR process: a technique for significant enhancement of as-cast MMC properties, Mater. Charac. 62, 1228–1234 (2011).
  • S. Amirkhanlou, R. Jamaati, M. R. Toroghinejad, and B. Niroumand, Manufacturing of high-performance Al356/SiCp composite by CAR process, Mater. Manuf. Process. 26, 902–907 (2011).
  • F. Lasagni and H. P. Degischer, Enhanced Young’s modulus of Al-Si alloys and reinforced matrices by co-continuous structures, J. Compos. Mater. 44, 739–755 (2010).
  • T. Clyne and J. Mason, The squeeze infiltration process for fabrication of metal-matrix composites, Metall. Trans. A. 18(8), 1519–1530 (1987).
  • M. Acilar and F. Gul, Effect of the applied load, sliding distance and oxidation on the dry sliding wear behaviour of Al–10Si/SiCp composites produced by vacuum infiltration technique. Mater. Des. 25(3), 209–217 (2004).
  • Y. Zhang, S. Ji, G. Scamans, and Z. Fan, Interfacial characterisation of overcasting a cast Al-Si-Mg (A356) alloy on a wrought Al-Mg-Si (AA6060) alloy, J. Mater. Process. Technol. 243, 197–204 (2017).
  • X. L. Xie, Y. W. Mai, and X. P. Zhou. Dispersion and alignment of carbon nanotubes in polymer matrix: a review, Mater. Sci. Eng. R. 49, 89–112 (2005).
  • H. Porwal, S. Grasso, and M. J. Reece, Review of graphene-ceramic matrix composites, Adv. Appl. Ceram. 112(8), 443–454 (2013).
  • X. Zhang, W. Chen, H. Luo, and T. Zhou, Formation of periodic layered structure between novel Fe-Cr-B cast steel and molten aluminium, Scripta Mate. 130, 288–291 (2017).
  • S. V. Nair, J. K. Tien, and R. C. Bates. Sic-reinforced aluminium metal matrix composites, Inter. Met. Rev. 30(1), 275–290 (1985).
  • T. Christman and S. Suresh, Microstructural development in an aluminium alloy-SiC whisker composite, Acta Metall. 36(7), 1691–1704 (1988).
  • P. K. Rohatgi, R. Asthana, and S. Das, Solidification, structures, and properties of cast metal-ceramic particle composites, Inter. Met. Rev. 31(1), 115–139 (1986).
  • F. Boland, C. Colin, C. Salmon, and F. Delannay, Tensile flow properties of Al-based matrix composites reinforced with a random planar network of continuous metallic fibres, Acta Mater. 46(18), 6311–6323 (1998).
  • L. Ryelandt, C. Salmon, and F. Delannay, Neutron diffraction analysis of the evolution of phase stresses during plastic straining of aluminium matrix composites reinforced with a continuous, random planar network of fibres, Mater. Sci. Forum. 347–349, 486–491 (2000).
  • Q. Tan, X. Tong, H. Lu, D. Zhang, and J. Hong, Mechanical behaviours of quasi-ordered entangled aluminium alloy wire material, Mater. Sci. Eng. A. 527(1-2), 38–44 (2009).
  • C. Salmon, F. Boland, C. Colin, and F. Delannay, Mechanical properties of aluminium/Inconel 601 composite wires formed by swaging, J. Mater. Sci. 33(23), 5509–5516 (1998).
  • Q. Tan and G. He, 3D entangled wire reinforced metallic composites, Mater. Sci. Eng. A. 546, 233–238 (2012).
  • V. Ganesh, C. Lee, and M. Gupta, Enhancing the tensile modulus and strength of an aluminium alloy using interconnected reinforcement methodology, Mater. Sci. Eng. A. 333(1), 193–198 (2002).
  • C. Salmon, D. Tiberghien, R. Molins, C. Colin, and F. Delannay, Influence of the oxidation conditions of the fibres on the mechanical properties of Al matrix composites reinforced with Ni-based fibres, Mater. Sci. Forum. 369–372, 435–442 (2001).
  • C. Salmon, C. Colin, R. Molins, and F. Delannay, Strengthening of Al/Ni-based composites by in situ growth of intermetallic particles, Mater. Sci. Eng. A. 334(1), 193–200 (2002).
  • M. Gupta, M. O. Lai, and C. Y. H. Lim, Development of a novel hybrid aluminium-based composite with enhanced properties, J. Mater. Process Technol. 176(1–3), 191–199 (2006).
  • F. Boland, C. Colin, and F. Delannay, Control of interfacial reactions during liquid phase processing of aluminium matrix composites reinforced with INCONEL 601 fibers, Metall. Mater. Trans. A. 29(6), 1727–1739 (1998).
  • K. Guler, A. Kisasoz, and A. Karaaslan, Investigation of Al/Steel bimetal composite fabrication by vacuum assisted solid mould investment casting, Acta Phys Polonica A. 126(6), 1327–1330 (2014).
  • J. Viala, M. Peronnet, F. Barbeau, F. Bosselet, and J. Bouix, Interface chemistry in aluminium alloy castings reinforced with iron base inserts, Compos. Part A. 33, 1417–1420 (2002).
  • V. Ganesh and M. Gupta, Effect of the extent of reinforcement interconnectivity on the properties of an aluminium alloy, Scripta Mater. 44(2), 305–310 (2001).
  • S. Manasijevic, R. Radiša, Z. Z. Brodarac, N. Dolić, and M. Djurdjevic, Al-Fin bond in aluminium piston alloy & austenitic cast iron insert, Int. J. Met. 9, 27–32 (2015).
  • F. Haddadi, Microstructure reaction control of dissimilar automotive aluminium to galvanized steel sheets ultrasonic spot welding, Mater. Sci. Eng. A. 678, 72–84 (2016).
  • O. Dezellus, B. Digonnet, M. Sacerdote-Peronnet, F. Bosselet, D. Rouby, and J. C. Viala, Mechanical testing of steel/aluminium-silicon interfaces by pushout, Int. J. Adhes. 27, 417–421 (2007).
  • A. Bouayad, C. Gerometta, A. Belkebir, and A. Ambari, Kinetic interactions between solid iron and molten aluminium, Mater. Sci. Eng. A. 363, 53–61 (2003).
  • S. Kobayashi and T. Yakou, Control of intermetallic compound layers at interface between steel and aluminium by diffusion-treatment, Mater. Sci. Eng. A. 338, 44–53 (2002).
  • K. Zhang, X. Bian, Y. Li, Y. Liu, and C. Yang, New evidence for the formation and growth mechanism of the intermetallic phase formed at the Al/Fe interface, J. Mater. Res. 95, 3279–3287 (2013).
  • M. R. Arghavani, M. Movahedi, and A. H. Kokabi, Role of zinc layer in resistance spot welding of aluminium to steel, Mater. Des. 102, 106–114 (2016).
  • Y. Liu, X. Bian, K. Zhang, C. Yang, L. Feng, H. S. Kim, and J. Guo, Interfacial microstructures and properties of aluminium alloys/galvanized low-carbon steel under high-pressure torsion, Mater. Des. 64, 287–293 (2014).
  • T. Liu, Q. Wang, Y. Sui, Yudong Sui, Qigui Wang and Wenjiang Ding, An investigation into aluminium–aluminium bimetal fabrication by squeeze casting, Mater. Des. 68, 8–17 (2015).
  • M. Schwankl, J. Wedler, and C. Körner, Wrought Al-Cast Al compound casting based on zincate treatment for aluminium wrought alloy inserts, J. Mater. Process. Technol. 238, 160–168 (2016).
  • S. L. Pramod, S. R. Bakshi, and B. S. Murty, Aluminum-based cast in situ composites: a review, J. Mater. Eng. Perform. 24, 2185–2207 (2015).
  • S. Amirkhanlou and B. Niroumand, Fabrication and characterization of Al356/SiCp semisolid composites by injecting SiCp containing composite powders, J. Mater. Process. Technol. 212, 841–847 (2012).
  • S. S. Sidhu, S. Kumar, and A. Batish. Metal matrix composites for thermal management: a review, Crit. Rev. Solid State Mater. Sci. 4, 132–157 (2016).
  • B. V. Ramnath, C. Elanchezhian, R. M. Annamalai, S. Aravind, T. S. A. Atreya, V. Vignesh, and C. Subramanian, Aluminium metal matrix composites – a review. Rev Adv Mater Sci. 2014;38:55–60.
  • K. Tian, Y. Zhao, L. Jiao, S. Zhang, Z. Zhang, and X. Wu, Effects of in situ generated ZrB2 nano-particles on microstructure and tensile properties of 2024 Al matrix composites, J. Alloys Comp. 594, 1–6 (2014).
  • R. Jamaati, S. Amirkhanlou, M. R. Toroghinejad, and B. Niroumand, Comparison of the microstructure and mechanical properties of as-cast A356/SiC MMC processed by ARB and CAR methods, J. Mater. Eng. Perform. 21(7), 1249–1253 (2012).
  • K. U. Kainer, Basics of Metal Matrix Composites in Book: Metal Matrix Composites: Custom-made Materials for Automotive and Aerospace Engineering 1–54 (2006).
  • K. K. Chawla, Metal Matrix Composites, Wiley Online Library (2006).
  • J. Zhang and Z. Fan, Microstructure and mechanical properties of in situ Al-Mg2Si composites. Mater. Sci. Technol. 16(7–8), 913–918 (2000).
  • K. U. Kainer, Metal Matrix Composites: Custom-made Materials for Automotive and Aerospace Engineering, John Wiley & Sons, US (2006).
  • J. Mathew, A. Mandal, and S. D. Kumar, Effect of semi-solid forging on microstructure and mechanical properties of in-situ cast Al-Cu-TiB2 composites, J. Alloys Comp. 712, 460–467 (2017).
  • Z. Fan, Y. Wang, Y. Zhang, T. Qin, X. R. Zhou, G. E. Thompson, T. Pennycook, and T. Hashimoto, Grain refining mechanism in the Al/Al-Ti-B system, Acta Mater. 84, 292–304 (2015).
  • M. K. Aghajanian, M. A. Rocazella, J. T. Burke, and S. D. Keck, The fabrication of metal matrix composites by a pressureless infiltration technique. J. Mater. Sci. 26(2), 447–454 (1991).
  • S. V. Prasad, and R. Asthana, Aluminium metal-matrix composites for automotive applications: tribological considerations, Tribol. Lett. 17(3), 445–453 (2004).
  • S. Amirkhanlou and B. Niroumand, Development of Al356/SiCp cast composites by injection of SiCp containing composite powders, Mater. Des. 32(4), 1895–1902 (2011).
  • S. Amirkhanlou and B. Niroumand, Effects of reinforcement distribution on low and high temperature tensile properties of Al356/SiCp cast composites produced by a novel reinforcement dispersion technique. Materi. Sci. Eng. A. 528(24), 7186–7195 (2011).
  • L. A. Jacobson and J. McKittrick, Rapid solidification processing, Mater. Sci. Eng. R. 11(8), 355–408 (1994).
  • M. Asta, C. Beckermann, and A. Karma, Solidification microstructures and solid-state parallels: recent developments, future directions. Acta Mater. 57(4), 941–971 (2009).
  • K. M. Sree Manu, S. Arun Kumar, T. P. D. Rajan, M. Riyas Mohammed, and B. C. Pai, Effect of alumina nanoparticle on strengthening of Al-Si alloy through dendrite refinement, interfacial bonding and dislocation bowing, J. Alloys Comp. 712, 394–405 (2017).
  • M. L. Ted Guo and C. Y. Tsao, Tribological behaviour of aluminium/SiC/nickel-coated graphite hybrid composites. Mater. Sci. Eng. A. 333, 134–145 (2002).
  • P. K. Rohatgi, K. Pasciak, C. S. Narendranath, A. Ray and Sachdev, Evolution of microstructure and local thermal conditions during directional solidification of A356-SiC particle composites. J. Mater. Sci. 29(20), 5357–5366 (1994).
  • D. Zhao, F. R. Tuler, and D. J. Lloyd, Fracture at elevated temperatures in a particle reinforced composite. Acta Metall. Mater. 42(7), 2525–2533 (1994).
  • Z. Asghar, G. Requena, and E. Boller, Three-dimensional rigid multiphase networks providing high-temperature strength to cast AlSi10Cu5Ni1-2 piston alloys, Acta Mater. 59(16), 6420–6432 (2011).
  • H. Springer, R. Aparicio Fernandez, M. J. Duarte, A. Kostka and D. Raabe. Microstructure refinement for high modulus in-situ metal matrix composite steels via controlled solidification of the system Fe-TiB2, Acta Mater. 96, 47–56 (2015).
  • H. Zhang, H. Springer, R. Aparicio-Fernandez, and D. Raabe, Improving the mechanical properties of Fe-TiB2 high modulus steels through controlled solidification processes, Acta Mater. 118, 187–195 (2016).
  • Q. Gao, Shusen Wu, Shulin Lü, Xinchen Xiong, Rui Du and Ping An, Improvement of particles distribution of in-situ 5 vol% TiB2 particulates reinforced Al-4.5 Cu alloy matrix composites with ultrasonic vibration treatment, J. Alloys Comp. 692, 1–9 (2017).
  • Q. Gao, Shusen Wu, Shulin LÜ, Xuecheng Duan, Ping An, Preparation of in-situ 5vol% TiB2 particulate reinforced Al-4.5 Cu alloy matrix composites assisted by improved mechanical stirring process, Mater. Des. 94, 79–86 (2016).
  • G. R. Liu. A step-by-step method of rule-of-mixture of fiber-and particle-reinforced composite materials, Compos. Struct. 40, 313–322 (1997).
  • J. C. Halpin and J. L. Kardos. The Halpin-Tsai equations: a review. Polymer Eng. Sci. 16, 344–352 (1976).
  • Z. Hashin and S. Shtrjkman, A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids. 11, 127–140 (1963).
  • L. Tuchinskii, Elastic constants of pseudoalloys with a skeletal structure, Powder Metall. Met. Ceram. 22, 588–595 (1983).
  • H. Peng, A review of consolidation effects on tensile properties of an elemental Al matrix composite. Mater. Sci. Eng. A. 396, 1–2 (2005).
  • H. B. Michael Rajan, S. Ramabalan, I. Dinaharan, and S. J. Vijay, Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminum alloy cast composites, Mater. Des. 44, 438–445 (2013).
  • Z. Liu, Qingyou Han, Jianguo Li and Weidong Huang, Effect of ultrasonic vibration on microstructural evolution of the reinforcements and degassing of in situ TiB2p/Al-12Si-4Cu composites, J. Mater. Process. Technol. 212(2), 365–371 (2012).
  • J. Geng, Tianran Hong, Yu Ma, Mingliang Wang, Dong Chen, Naiheng Ma and Haowei Wang, The solution treatment of in-situ sub-micron TiB2/2024 Al composite, Mater. Des. 98, 186–193 (2016).
  • T. Hong, Y. Shen, J. Geng, Dong Chen, Xianfeng Li and Cong Zhou. Effect of cryogenic pre-treatment on aging behavior of in-situ TiB2/Al–Cu–Mg composites, Mater. Charac. 119, 40–46 (2016).
  • K. Tee, L. Lu, and M. Lai, In situ stir cast Al-TiB2 composite: processing and mechanical properties, Mater. Sci. Technol. 17(2), 201–206 (2001).
  • K. L. Tee, L. Lu, and M. Lai, In situ processing of Al-TiB2 composite by the stir-casting technique, J. Mater. Process. Technol. 89, 513–519 (1999).
  • K. Tee, L. Lu, and M. Lai, Synthesis of in situ Al-TiB2 composites using stir cast route, Compos. Struct. 47(1), 589–593 (1999).
  • A. Changizi, A. Kalkanli, and N. Sevinc, Production of in situ aluminium–titanium diboride master alloy formed by slag–metal reaction, J. Alloys Comp. 509(2), 237–240 (2011).
  • L. Lü, M.O. Lai, Y. Su, H.L. Teo and C.F. Feng, In situ TiB2 reinforced Al alloy composites, Scripta Mater. 45(9), 1017–1023 (2001).
  • J. Mathew, Animesh Mandal, Jason Warnett, Mark A. Williams, Madhusudan Chakraborty and Prakash Srirangam, X-ray tomography studies on porosity and particle size distribution in cast in-situ Al-Cu-TiB2 semi-solid forged composites, Mater. Charact. 118, 57–64 (2016).
  • A. Mandal, M. Chakraborty, and B. Murty, Ageing behaviour of A356 alloy reinforced with in-situ formed TiB2 particles, Mater. Sci. Eng. A. 489(1), 220–226 (2008).
  • C. Feng and L. Froyen, Microstructures of in situ Al/TiB2 MMCs prepared by a casting route, J. Mater. Sci. 35(4), 837–850 (2000).
  • X. H. Chen and H. Yan, Solid–liquid interface dynamics during solidification of Al 7075-Al2O3np based metal matrix composites, Mater. Des. 94, 148–158 (2016).
  • Z. Chen, Tongmin Wang, Yuanping Zheng, Yufei Zhao, Huijun Kang and Lei Gao, Development of TiB2 reinforced aluminium foundry alloy based in situ composites – Part I: an improved halide salt route to fabricate Al-5wt% TiB2 master composite, Mater. Sci. Eng. A. 605, 301–309 (2014).
  • A. Mandal, B. Murty, and M. Chakraborty, Sliding wear behaviour of T6 treated A356-TiB2 in-situ composites, Wear. 266(7), 865–872 (2009).
  • S. Kumar, M. Chakraborty, V. Subramany Sarma and B. S. Murty. Tensile and wear behaviour of in situ Al-7Si/TiB2 particulate composites, Wear. 265(1), 134–142 (2008).
  • S. Amirkhanlou, S. Ji, Y. Zhang, Douglas Watson and Zhongyun Fan, High modulus Al-Si-Mg-Cu/Mg2Si-TiB2 hybrid nanocomposite: microstructural characteristics and micromechanics-based analysis, J. Alloy Compd. 694, 313–324 (2017).
  • S. Kumar, V. S. Sarma, and B. Murty, Effect of temperature on the wear behaviour of Al-7Si-TiB2 in-situ composites, Metall. Mater. Trans. A. 40(1), 223–231 (2009).
  • M. Wang, Dong Chen, Zhe Chen, Yi Wu, Feifei Wang, Naiheng Ma and Haowei Wang, Mechanical properties of in-situ TiB2/A356 composites, Mater. Sci. Eng. A. 590, 246–254 (2014).
  • A. Westwood, Materials for advanced studies and devices. Metall. Trans. A. 19(4), 749–758 (1988).
  • G. Li, M. Zheng, and G. Chen, Mechanism and kinetic model of in-situ TiB2/7055Al nanocomposites synthesized under high intensity ultrasonic field, J. Wuhan Uni. Technol. Mater. Sci. Ed. 26(5), 920–925 (2011).
  • G. Han, Weizheng Zhang, Guohua Zhang, Zengjian Feng andYanjun Wang. High-temperature mechanical properties and fracture mechanisms of Al-Si piston alloy reinforced with in situ TiB2 particles, Mater. Sci. Eng. A. 633, 161–168 (2015).
  • R. Chang and L. J. Graham, Low‐temperature elastic properties of ZrC and TiC, J. Applied Phys. 37(10), 3778–3783 (1966).
  • W. Jiang, G. H. Song, X. L. Han, C. L. He and H. C. Ru. Synthesis of TiC/Al composites in liquid aluminium, Mater. Lett. 32(2), 63–65 (1997).
  • K. J. Lijay, J. D. R. Selvam, I. Dinaharan, S.J. Vijay. Microstructure and mechanical properties characterization of AA6061/TiC aluminium matrix composites synthesized by in situ reaction of silicon carbide and potassium fluotitanate, Trans. Nonferrous Met. Soc. China. 26(7), 1791–1800 (2016).
  • J. J. Moses, I. Dinaharan, and S. J. Sekhar, Prediction of influence of process parameters on tensile strength of AA6061/TiC aluminum matrix composites produced using stir casting, Trans. Nonferrous Met. Soc. China. 26, 1498–1511 (2016).
  • Y. Liang, J. Zhou, and S. Dong, Microstructure and tensile properties of in situ TiCp/Al-4.5 wt.% Cu composites obtained by direct reaction synthesis, Mater. Sci. Eng. A. 527(29), 7955–7960 (2010).
  • Z. Liu, Xiaoming Wang, Qingyou Han and Jianguo Li, Synthesis of submicrometer-sized TiC particles in aluminium melt at low melting temperature, J. Mater. Res. 29(7), 896–901 (2014).
  • P. Li, E. Kandalova, and V. Nikitin, In situ synthesis of Al-TiC in aluminium melt, Mater. Lett. 59(19), 2545–2548 (2005).
  • B. Yang, G. Chen, and J. Zhang, Effect of Ti/C additions on the formation of Al3Ti of in situ TiC/Al composites, Mater. Des. 22(8), 645–650 (2001).
  • R. Tyagi, Synthesis and tribological characterization of in situ cast Al-TiC composites, Wear. 259(1), 569–576 (2005).
  • N. Samer, Jérôme Andrieux, Bruno Gardiola, Nikhil Karnatak, Olivier Martin, Hiroki Kurita, Laurent Chaffron, Sophie Gourdet, Sabine Lay and Olivier Dezellus. Microstructure and mechanical properties of an Al-TiC metal matrix composite obtained by reactive synthesis, Compos. Part A. 72, 50–57 (2015).
  • S. Mohapatra, Anil K. Chaubey, Dilip K. Mishra and Saroj K. Singh. Fabrication of Al-TiC composites by hot consolidation technique: its microstructure and mechanical properties, J. Mater. Res. Technol. 5(2), 117–122 (2016).
  • A. Kumar, P. Jha, and M. Mahapatra, Abrasive wear behaviour of in Situ TiC reinforced with Al-4.5% Cu matrix, J. Mater. Eng. Perform. 23(3), 743–752 (2014).
  • A. P. Amosov, A. Luts, and A. Ermoshkin, Nanostructured aluminium matrix composites of Al-10% TiC obtained in situ by the SHS method in the melt, Key Eng. Mater. 684, 281–286 (2016).
  • Z. Hashin and S. Shtrikman, A variational approach to the elastic behaviour of multiphase materials, J. Mech. Phys. Solid. 11, 127–140 (1962).
  • X. Tong and H. Fang, Al-TiC composites in situ-processed by ingot metallurgy and rapid solidification technology: Part II. Mechanical behaviour, Metall. Mater. Trans. A. 29(3), 893–902 (1998).
  • S. Amirkhanlou and B. Niroumand, Synthesis and characterization of 356-SiCp composites by stir casting and compocasting methods, Trans. Nonferrous Met. Soc. China. 20, s788–s793 (2010).
  • S. Amirkhanlou, R. Jamaati, B. Niroumand, and M. R. Toroghinejad, Using ARB process as a solution for dilemma of Si and SiCp distribution in cast Al–Si/SiCp composites, J. Mater. Process. Technol. 211, 1159–1165 (2011).
  • J. C. Lee, J. Y. Byun, S. B. Park, and H. I. Leea. Prediction of Si contents to suppress the formation of Al4C3 in the SiCp/Al composite, Acta Mater. 46(5), 1771–1780 (1998).
  • S. Amirkhanlou and B. Niroumand, Microstructure and mechanical properties of Al356/SiCp cast composites fabricated by a novel technique, J. Mater. Eng. Perform. 22(1), 85–93 (2012).
  • Z. Peng and L. Fuguo, Effects of particle clustering on the flow behaviour of SiC particle reinforced Al metal matrix composites, Rare Met. Mater. Eng. 39(9), 1525–1531 (2010).
  • S. Balasivanandha Prabhu, L. Karunamoorthy, S. Kathiresan, and B. Mohan, Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite, Mater. Process. Technol. 171, 268–273 (2006).
  • S. Tzamtzis, N. S. Barekar, N. Hari Babu, J. Patel, B. K. Dhindaw and Z. Fan, Processing of advanced Al/SiC particulate metal matrix composites under intensive shearing-A novel Rheo-process, Compos. Part A. 40, 144–151 (2009).
  • A. H. Properties, Selection: Nonferrous Alloys and Special-purpose Materials, vol. 2, ASM International, Materials, Park, OH (1990).
  • B. A. Kumar and N. Murugan, Metallurgical and mechanical characterization of stir cast AA6061-T6–AlNp composite, Mater. Des. 40, 52–58 (2012).
  • P. Yu, M. Balog, M. Yan, G.B. Schaffer, and M. Qian, In situ fabrication and mechanical properties of Al-AlN composite by hot extrusion of partially nitrided AA6061 powder, J. Mater. Res. 26(14), 1719–1725 (2011).
  • C. Yang, Bin Zhang, Dongchen Zhao, Hebin Lü, Tongguang Zhai and Feng Liu, Microstructure and mechanical properties of AlN particles in situ reinforced Mg matrix composites, Mater. Sci. Eng. A. 674, 158–163 (2016).
  • Q. Hou, R. Mutharasan, and M. Koczak, Feasibility of aluminium nitride formation in aluminium alloys, Mater. Sci. Eng. A. 195, 121–129 (1995).
  • Q. Zheng and R. Reddy, Mechanism of in situ formation of AlN in Al melt using nitrogen gas, J. Mater. Sci. 39(1), 141–149 (2004).
  • S. S. Kumari, U. Pillai, and B. Pai, Synthesis and characterization of in situ Al-AlN composite by nitrogen gas bubbling method, J. Alloy Compd. 509(5), 2503–2509 (2011).
  • Q. Zheng and R. G. Reddy, Kinetics of in-situ formation of AlN in Al alloy melts by bubbling ammonia gas, Metall. Mater. Trans. B. 34(6), 793–804 (2003).
  • M. Chedru, J. L. Chermant, and J. Vicens, Thermal properties and Young’s modulus of Al-AlN composites, J. Mater. Sci. Lett. 20, 893–895 (2001).
  • M. Balog, P. Krizik, M. Yan, F. Simancik, G. B. Schaffer and M. Qian, SAP-like ultrafine-grained Al composites dispersion strengthened with nanometric AlN, Mater. Sci. Eng. A. 588, 181–187 (2013).
  • I. Dinaharan, N. Murugan, and S. Parameswaran, Influence of in situ formed ZrB2 particles on microstructure and mechanical properties of AA6061 metal matrix composites, Mater. Sci. Eng. A. 528(18), 5733–5740 (2011).
  • S. L. Zhang, Y. T. Zhao, G. Chen, X. N. Cheng and X. Y. Huo, Fabrication and dry sliding wear behaviour of in situ Al-K2ZrF6-KBF4 composites reinforced by Al3Zr and ZrB2 particles, J. Alloy Compd. 450(1), 185–192 (2008).
  • S. Zhang, Y. Zhao, G. Chen, and X. Cheng, Microstructures and dry sliding wear properties of in situ (Al3Zr + ZrB2)/Al composites, J. Mater. Process. Technol. 184, 201–208 (2007).
  • Y. Zhao, S. Zhang, G. Chen and X. Cheng, Effects of molten temperature on the morphologies of in situ Al3Zr and ZrB2 particles and wear properties of (Al3Zr + ZrB2)/Al composites, Mater. Sci. Eng. A. 457(1), 156–161 (2007).
  • D. Zhao, X. Liu, Y. Liu and X. Bian. In-situ preparation of Al matrix composites reinforced by TiB2 particles and sub-micron ZrB2, J. Mater. Sci. 40(16), 4365–4368 (2005).
  • N. Rengasamy, M. Rajkumar, and S. S. Kumaran, An analysis of mechanical properties and optimization of EDM process parameters of Al 4032 alloy reinforced with ZrB2 and TiB2 in-situ composites, J. Alloy Compd. 662, 325–338 (2016).
  • A. Mahamani, A. Karthik, S. Karthikeyan, P. Kathiravan and Y. P. Kumar, Synthesis, quantitative elemental analysis, microstructure characteristics and micro hardness analysis of AA2219 aluminium alloy matrix composite reinforced by in-situ TiB2 and sub-micron ZrB2 particles, Frontiers Auto Mech. Eng. 25, 50–53 (2010).
  • I. Dinaharan and N. Murugan, Dry sliding wear behaviour of AA6061/ZrB2 in-situ composite, Trans. Nonferrous Met. Soci. China. 22(4), 810–818 (2012).
  • G. N. Kumar, R. Narayanasamy, S. Natarajan, S. P. Kumaresh Babu, K. Sivaprasad and S. Sivasankaran, Dry sliding wear behaviour of AA 6351-ZrB2 in situ composite at room temperature, Mater. Des. 31(3), 1526–1532 (2010).
  • J. D. R. Selvam and I. Dinaharan, In situ formation of ZrB2 particulates and their influence on microstructure and tensile behaviour of AA7075 aluminium matrix composites, Eng. Sci. Technol. Inter. J. 20(1), 187–196 (2017).
  • G. Gautam, N. Kumar, S. Mohan and R. K. C. Gautam. High temperature tensile and tribological behaviour of hybrid (ZrB2 + Al3Zr)/AA5052 in situ composite, Metall. Mater. Trans. A. 47(9), 4709–4720 (2016).
  • G. Gautam and A. Mohan, Effect of ZrB2 particles on the microstructure and mechanical properties of hybrid (ZrB2 + Al3Zr)/AA5052 in situ composites, J. Alloy Compd. 649, 174–183 (2015).
  • K. Wang, C. Cui, Q. Wang, Y. Qi and C. Wang, Fabrication of in situ AlN-TiN/Al inoculant and its refining efficiency and reinforcing effect on pure aluminium, J. Alloy Compd. 547, 5–10 (2013).
  • Y. Zhang, N. Ma, and H. Wang, Improvement of yield strength of LM24 alloy, Mater. Des. 54, 14–17 (2014).
  • S. Amirkhanlou, M. R. Rezaei, B. Niroumand, and M. R. Toroghinejad, High-strength and highly-uniform composites produced by compocasting and cold rolling processes, Mater. Des. 32, 2085–2090 (2011).
  • P. D. Lee and J. D. Hunt, Hydrogen porosity in directional solidified aluminium-copper alloys: in situ observation, Acta Mater. 45(10), 4155–4169 (1997).
  • M. K. Aghajanian, J. Burke, D. R. White, A new infiltration process for the fabrication of metal matrix composites, SAMPE Quarterly. 20, 43–46 (1989).
  • J. Chen, C. Hao, and J. Zhang, Fabrication of 3D-SiC network reinforced aluminium-matrix composites by pressureless infiltration, Mater. Lett. 60, 2489–2492 (2006).
  • G. S. Daehn, B. Starck, and L. Xu, Elastic and plastic behaviour of a co-continuous alumina/aluminium composite, Acta Mater. 44, 249–261 (1996).
  • B. Basu and K. Balani. Advanced Structural Ceramics. John Wiley & Sons, US (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.