4,707
Views
63
CrossRef citations to date
0
Altmetric
Reviews

Recent Progress in Lithium Lanthanum Titanate Electrolyte towards All Solid-State Lithium Ion Secondary Battery

, ORCID Icon, , , &
Pages 265-282 | Received 02 Jan 2018, Accepted 04 Jun 2018, Published online: 19 Sep 2018

References

  • K. T. Nam, D. W. Kim, P. J. Yoo, C.Y. Chiang, N. Meethong, P. T. Hammond, Y. M. Chiang, and A. M. Belcher, Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes, Science 312, 885 (2006).
  • P. L. Taberna, S. Mitra, P. Poizot, P. Simon, and J.-M. Tarascon, High rate capabilities Fe 3 O 4 -based Cu nano-architectured electrodes for lithium-ion battery applications, Nat. Mater. 5(7), 567 (2006). doi:10.1038/nmat1672
  • X. W. Lou, D. Deng, J. Y. Lee, J. Feng, and L. A. Archer, Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes, Adv. Mater. 20, 258 (2008).
  • Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W. D. Nix, and Y. Cui, Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life, Nano Lett. 11, 2949 (2011).
  • H. Wu, G. Zheng, N. Liu, T. J. Carney, Y. Yang, and Y. Cui, Engineering empty space between Si nanoparticles for lithium-ion battery anodes, Nano Lett. 12, 904 (2012).
  • R. Ruffo, S. S. Hong, C. K. Chan, R. A. Huggins, and Y. Cui, Impedance analysis of silicon nanowire lithium ion battery anodes. J. Phys. Chem. C 113, 11390 (2009).
  • Y. Sun, K. Liu, and Y. Zhu, Recent progress in synthesis and application of low-dimensional silicon based anode material for lithium ion battery. J. Nanomater. 2017, 1 (2017).
  • T. Wan, L. Zhang, H. Du, X. Lin, B. Qu, H. Xu, S. Li, and D. Chu, Recent developments in oxide-based ionic conductors: bulk materials, nanoionics, and their memory applications, Crit. Rev. Solid State Mater. Sci. 43, 1 (2016). doi:10.1080/10408436.2016.1244657
  • J. W. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries, J. Power Sources. 195, 4554 (2010).
  • S. Abu-Sharkh, and D. Doerffel, Rapid test and non-linear model characterisation of solid-state lithium-ion batteries, J. Power Sources. 130, 266 (2004).
  • W. H. Meyer, Polymer electrolytes for lithium-ion batteries, Adv. Mater. 10, 439 (1998).
  • S. Ohta, S. Komagata, J. Seki, T. Saeki, S. Morishita, and T. Asaoka, Short communication All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing, J. Power Sources. 238, 53 (2013).
  • J. M. Tarascon, and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature. 414, 359 (2001).
  • S. S. Zhang, A review on the separators of liquid electrolyte Li-ion batteries, J. Power Sources. 164, 351 (2007).
  • M. Ishikawa, T. Sugimoto, M. Kikuta, E. Ishiko, M., and Kono, Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries, J. Power Sources 162, 658 (2006).
  • H. P. Zhang, P. Zhang, Z. H. Li, M. Sun, Y. P. Wu, and H. Q. Wu, A novel sandwiched membrane as polymer electrolyte for lithium ion battery, Electrochem. Commun. 9, 1700 (2007).
  • N. J. Dudney, J. B. Bates, R. A. Zuhr, C. F. Luck, and J. D. Robertson, Sputtering of lithium compounds for preparation of electrolyte thin films, Solid State Ionics 53–56, 655 (1992).
  • J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, and J. D. Robertson, Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries, J. Power Sources 43, 103 (1993).
  • J. B. Bates, N. J. Dudney, D. C. Lubben, G. R. Gruzalski, B. S. Kwak, X. Yu, and R. A. Zuhr, Thin-film rechargeable lithium batteries, J. Power Sources 54, 58 (1995).
  • J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, and J. D. Robertson, Electrical properties of amorphous lithium electrolyte thin films, Solid State Ionics 53–56,647 (1992). doi:10.1016/0167-2738(92)90442-R
  • K. Murata, S. Izuchi, and Y. Yoshihisa, An overview of the research and development of solid polymer electrolyte batteries, Electrochim. Acta. 45, 1501 (2000).
  • F. Croce, G. B. Appetecchi, L. Persi, and B. Scrosati, Nanocomposite polymer electrolytes for lithium batteries, Nature. 394, 456 (1998).
  • E. Quartarone, and P. Mustarelli, Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives, Chem. Soc. Rev. 40, 2525 (2011).
  • G.-A. Nazri, and G. Pistoia, Lithium Batteries: Science and Technology, Springer, Berlin (2009).
  • D. Aurbach, Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89, 206 (2000).
  • H. Saruwatari, T. Kuboki, T. Kishi, S. Mikoshiba, and N. Takami, Imidazolium ionic liquids containing LiBOB electrolyte for lithium battery. J. Power Sources. 195, 1495 (2010).
  • B. Scrosati, F. Croce, and L. Persi, Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. J. Electrochem. Soc. 147, 1718 (2000).
  • X. Yu, J. B. Bates, G. E. Jellison, and F. X. Hart, A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride, J. Electrochem. Soc. 144, 524 (1997).
  • Y. Harada, T. Ishigaki, H. Kawai, and J. Kuwano, Lithium ion conductivity of polycrystalline perovskite La0.672xLi3xTiO3 with ordered and disordered arrangements of the A-site ions, Solid State Ionics 108, 407 (1998).
  • C. Bernuy-Lopez, W. Manalastas, J. M. Lopez del Amo, A. Aguadero, F. Aguesse, and J. A. Kilner, Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics, Chem. Mater. 26, 3610 (2014).
  • N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, and A. Mitsui, A lithium superionic conductor, Nat. Mater. 10, 682 (2011).
  • Y. Inaguma, L. Chen, M. Itoh, and T. Nakamura, Candidate compounds with perovskite structure for high lithium ionic conductivity, Solid State Ionics 70–71, 196 (1994).
  • Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, and M. Wakihara, High ionic conductivity in lithium lanthanum titanate, Solid State Commun. 86, 689 (1993).
  • S. Stramare, V. Thangadurai, and W. Weppner, Lithium lanthanum titanates: A review. Chem. Mater. 15, 3974 (2003).
  • P. Knauth, Inorganic solid Li ion conductors: an overview. Solid State Ionics 180, 911 (2009).
  • Y. Inaguma, and M. Nakashima, A rechargeable lithium-air battery using a lithium ion-conducting lanthanum lithium titanate ceramics as an electrolyte separator. J. Power Sources 228, 250 (2013).
  • Z. Zheng, H.-Z. Fang, Z.-K. Liu, and Y. Wang, A fundamental stability study for amorphous LiLaTiO3 solid electrolyte, J. Electrochem Soc. 162, A244 (2014).
  • C. Cao, Z.-B. Li, X.-L. Wang, X.-B. Zhao, and W.-Q. Han, Recent advances in inorganic solid electrolytes for lithium batteries. Front. Energy Res. 2, 25 (2014).
  • A. Mei, X.-L. Wang, J.-L. Lan, Y.-C. Feng, H.-X. Geng, Y.-H. Lin, and C.-W. Nan, Role of amorphous boundary layer in enhancing ionic conductivity of lithium-lanthanum-titanate electrolyte, Electrochim. Acta. 55, 2958 (2010).
  • J. Ahn, and S. Yoon, Characteristics of perovskite (Li0.5La0.5)TiO3 solid electrolyte thin films grown by pulsed laser deposition for rechargeable lithium microbattery, Electrochim. Acta. 50, 371 (2004).
  • O. Bohnke, The fast lithium-ion conducting oxides Li3xLa2/3-xTiO3 from fundamentals to application, Solid State Ionics 179, 9 (2008).
  • K. Takada, Progress and prospective of solid-state lithium batteries, Acta Mater. 61, 759 (2013).
  • V. V. Kharton, F. M. B. Marques, and A. Atkinson, Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ionics 174, 135 (2004).
  • C. H. Chen, and K. Amine, Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate. Solid State Ionics 144, 51 (2001).
  • Y. Inaguma, Y. Matsui, Y. J. Shan, M. Itoh, and T. Nakamura, Lithium ion conductivity in the perovskite-type LiTaO3-SrTiO3 solid solution, Solid State Ionics 79, 91 (1995).
  • C. W. Ban, and G. M. Choi, The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates, Solid State Ionics 140, 285 (2001).
  • Y. Inaguma, T. Katsumata, M. Itoh, and Y. Morii, Crystal structure of a lithium ion-conducting perovskite La2/3-xLi3xTiO3 (x = 0.05), J. Solid State Chem. 166, 67 (2002).
  • J. A. Alonso, J. Sanz, J. Santamaría, C. León, A. Várez, and M. T. Fernández‐Díaz, On the location of Li(+) cations in the fast Li-cation conductor La(0.5)Li(0.5)TiO(3) perovskite, Angew Chem. Int. Ed. 39, 619 (2000).
  • J. Ibarra, A. Váreza, C. León, J. Santamarı́a, L. M. Torres-Martı́nez, and J. Sanz, Influence of composition on the structure and conductivity of the fast ionic conductors La2/3-xLi3xTiO3 (0.03 ≤ x ≤ 0.167), Solid State Ionics 134, 219 (2000).
  • Y. Harada, Y. Hirakoso, H. Kawai, and J. Kuwano, Order-disorder of the A-site ions and lithium ion conductivity in the perovskite solid solution La0.67-xLi3xTiO3 (x = 0.11), Solid State Ionics 121, 245 (1999).
  • O. Bohnke, H. Duroy, J. L. Fourquet, S. Ronchetti, and D. Mazza, In search of the cubic phase of the Li+ion-conducting perovskite La2/3-xLi3xTiO3: Structure and properties of quenched and in situ heated samples, Solid State Ionics 149, 217 (2002).
  • D. Mazza, S. Ronchetti, O. Bohnké, H. Duroy, and J. L. Fourquet, Modeling Li-ion conductivity in fast ionic conductor La2/3-xLi3xTiO3, Solid State Ionics 149, 81 (2002).
  • A. Belous, O. Yanchevskiy, O. V’yunov, O. Bohnke, C. Bohnke, F. L. Berre, and J. L. Fourquet, Peculiarities of Li0.5La0.5TiO3 formation during the synthesis by solid-state reaction or precipitation from solutions, Chem. Mater. 16, 407 (2004). doi:10.1021/CM034820X
  • A. G. Belous, Lithium ion conductors based on the perovskite La2/3-xLi3xTiO3, J. Eur. Ceram. Soc. 21, 1797 (2001).
  • H. Kawai, and J. Kuwano, Lithium ion conductivity of A-site deficient perovskite solid solution La0.67 − xLi3xTiO3. J. Electrochem. Soc. 141, L78 (1994).
  • Y. Inaguma, J. Yu, Y. Shan, M. Itoh, and T. Nakamuraa, The effect of the hydrostatic pressure on the ionic conductivity in a perovskite lanthanum lithium titanate, J. Electrochem. Soc. 142, L8 (1995).
  • Y. J. Shan, L. Chen, Y. Inaguma, M. Itoh, and T. Nakamura, Oxide cathode with perovskite structure for rechargeable lithium batteries. J. Power Sources 54, 397 (1995).
  • R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A 32, 751 (1976).
  • C. León, J. Santamaría, M. A. París, J. Sanz, J. Ibarra, and L. M. Torres, Non-Arrhenius conductivity in the fast ionic conductor Li0.5La0.5TiO3: reconciling spin-lattice and electrical-conductivity relaxations, Phys. Rev. B. 56, 5302 (1997).
  • M. A. París, J. Sanz, C. León, J. Santamaría, J. Ibarra, and A. Várez, Li mobility in the orthorhombic Li 0.18 La 0.61 TiO 3 perovskite studied by NMR and impedance spectroscopies. Chem. Mater. 12, 1694 (2000).
  • T. Šalkus, E. Kazakevičius, A. Kežionis, A. F. Orliukas, J. C. Badotc, and O. Bohnke, Determination of the non-Arrhenius behaviour of the bulk conductivity of fast ionic conductors LLTO at high temperature, Solid State Ionics 188, 69 (2011).
  • J. Emery, J. Buzare, O. Bohnke, and J. Fourquet, Lithium-7 NMR and ionic conductivity studies of lanthanum lithium titanate electrolytes, Solid State Ionics 99, 41 (1997).
  • O. Bohnke, J. Emery, and J. L. Fourquet, Anomalies in Li+ion dynamics observed by impedance spectroscopy and 7Li NMR in the perovskite fast ion conductor (Li3xLa2/3-x□1/3-2x)TiO3, Solid State Ionics 158, 119 (2003).
  • A. Boulant, J. Emery, A. Jouanneaux, J.-Y. Buzaré, and J.-F. Bardeau, From micro- to nanostructured fast ionic conductor Li0.30La0.56◻0.13TiO3: size effects on NMR properties, J. Phys. Chem. C. 115, 15575 (2011).
  • Y. Harada, H. Watanabe, J. Kuwano, and Y. Saito. Lithium ion conductivity of A-site deficient perovskite solid solutions. J. Power Sources 81–82, 777 (1999).
  • H. Watanabe, and J. Kuwano, Formation of perovskite solid solutions and lithium-ion conductivity in the compositions, Li2xSr1-xM(III)0.5-xTa0.5 + xO3(M = Cr, Fe, Co, Al, Ga, In, Y), J. Power Sources 68, 421 (1997).
  • M. Catti, Ab initio study of Li + diffusion paths in the monoclinic Li 0.5 CoO 2 intercalate, Phys. Rev. B. 61, 1795 (2000).
  • Y. Q. Cheng, Z. H. Bi, A. Huq, M. Feygenson, C. A. Bridges, M. P. Paranthaman, and B. G. Sumpter, An integrated approach for structural characterization of complex solid state electrolytes: the case of lithium lanthanum titanate, J. Mater. Chem. A. 2, 2418 (2014).
  • M. Catti, First-principles modeling of lithium ordering in the LLTO (LixLa2/3-x/3TiO3) superionic conductor, Chem. Mater. 19(16), 3963 (2007). doi:10.1021/CM0709469
  • M. Catti, Ion mobility pathways of the Li+conductor Li0.125La0.625TiO3 by ab initio simulations, J. Phys. Chem. C 112, 11068 (2008).
  • M. Catti, Short-range order and Li+ion diffusion mechanisms in Li5La92(TiO3)16 (LLTO). Solid State Ionics 183, 1 (2011).
  • M. Yashima, M. Itoh, Y. Inaguma, and Y. Morii, Crystal structure and diffusion path in the fast lithium-ion conductor La(0.62)Li(0.16)TiO3, J. Am. Chem. Soc. 127, 3491 (2005).
  • H. Tanaka, H. Tabata, K. Ota, and T. Kawai, Molecular-dynamics prediction of structural anomalies in ferroelectric and dielectric BaTiO3-SrTiO3-CaTiO3 solid solutions, Phys. Rev. B. 53, 14112 (1996).
  • S. Ono, Y. Seki, S. Kashida, and M. Kobayashi, Electronic band structure and Li diffusion paths in (LaLi)TiO3, Solid State Ionics 177, 1145 (2006).
  • Y. Maruyama, H. Ogawa, M. Kamimura, and M. Kobayashi, MD calculation studies of residence site and diffusion path of Li ions in perovskite-type (LaLi)TiO3, J. Phys. Soc. Jpn. 75, 64602 (2006).
  • T. Katsumata, Y. Inaguma, M. Itoh, and K. Kawamura, Influence of covalent character on high Li ion conductivity in a perovskite-type Li ion conductor: Prediction from a molecular dynamics simulation of La0.6Li0.2TiO3. Chem. Mater. 14(9), 3930 (2002). doi:10.1021/CM0203969
  • C. Ma, Y. Cheng, K. Chen, J. Li, B. G. Sumpter, C.‐W. Nan, K. L. More, N. J. Dudney, and M. Chi, Mesoscopic framework enables facile ionic transport in solid electrolytes for Li batteries, Adv. Energy Mater. 6, 1600053 (2016).
  • E. E. Jay, M. J. D. Rushton, A. Chroneos, R. W. Grimes, and J. A. Kilner, Genetics of superionic conductivity in lithium lanthanum titanates, Phys. Chem. Chem Phys. 17, 178 (2015).
  • H. Moriwake, X. Gao, A. Kuwabara, C. A. J. Fisher, T. Kimura, Y. H. Ikuhara, K. Kohama, T. Tojigamori, and Y. Ikuhara, Domain boundaries and their influence on Li migration in solid-state electrolyte (La,Li)TiO3, J. Power Sources 276, 203 (2015).
  • Y. Ren, K. Chen, R. Chen, T. Liu, Y. Zhang, and C.‐W. Nan, Oxide electrolytes for lithium batteries, J. Am. Ceram. Soc. 98, 3603 (2015).
  • Y. Maruyama, H. Ogawa, M. Kamimura, S. Ono, and M. Kobayashi, Dynamical properties and electronic structure of (LaLi)TiO3 conductors, Ionics (Kiel). 14, 357 (2008).
  • A. Ruiz, M. L. Lopez, M. L. Veiga, and C. Pico, Electrical properties of La1.33−xLi3xTi2O6 (0.1 < x < 0.3), Solid State Ionics 112, 291 (1998).
  • C. Chen, and J. Du, Lithium ion diffusion mechanism in lithium lanthanum titanate solid-state electrolytes from atomistic simulations, J. Am. Ceram. Soc. 98, 534 (2015).
  • C. Hua, X. Fang, Z. Wang, and L. Chen, Lithium storage in perovskite lithium lanthanum titanate, Electrochem. Commun. 32, 5 (2013).
  • J. Z. Lee, Z. Wang, H. L. Xin, T. A. Wynn, and Y. S. Meng, Amorphous lithium lanthanum titanate for solid-state microbatteries, J. Electrochem. Soc. 164, A6268 (2017).
  • Y. Xiong, H. Tao, J. Zhao, H. Cheng, and X. Zhao, Effects of annealing temperature on structure and opt-electric properties of ion-conducting LLTO thin films prepared by RF magnetron sputtering, J. Alloys Compd. 509, 1910 (2011).
  • Z. Zheng, S. Song, and Y. Wang, Sol-gel-processed amorphous lithium ion electrolyte thin films: structural evolution, theoretical considerations, and ion transport processes, Solid State Ionics 287, 60 (2016).
  • J.-K. Ahn, and S.-G. Yoon, Characteristics of amorphous lithium lanthanum titanate electrolyte thin films grown by PLD for use in rechargeable lithium microbatteries, Electrochem. Solid-State Lett. 8, A75 (2005).
  • C. L. Li, B. Zhang, and Z. W. Fu, Physical and electrochemical characterization of amorphous lithium lanthanum titanate solid electrolyte thin-film fabricated by e-beam evaporation, Thin Solid Films. 515, 1886 (2006).
  • Z. Zheng, H. Fang, F. Yang, Z.-K. Liu, and Y. Wang, Amorphous LiLaTiO3 as solid electrolyte material, J. Electrochem. Soc. 161, A473 (2014).
  • Z. Zheng, and Y. Wang, 3D structure of electrode with inorganic solid electrolyte, J. Electrochem. Soc. 159, A1278 (2012).
  • S. I. Furusawa, H. Tabuchi, T. Sugiyama, S. Tao, and J. T. S. Irvine, Ionic conductivity of amorphous lithium lanthanum titanate thin film, Solid State Ionics 176, 553 (2005).
  • M. Itoh, Y. Inaguma, W. H. Jung, L. Chen, and T. Nakamura, High lithium ion conductivity in the perovskite-type compounds Ln1 2Li1 2TiO3(Ln = La,Pr,Nd,Sm), Solid State Ionics 70–71, 203 (1994).
  • J. M. S. Skakle, G. C. Mather, M. Morales, R. I. Smith, and A. R. West, Crystal structure of the Li+ion-conducting phases, Li0.5-3xRe0.5 + xTiO3: RE = Pr, Nd; x = 0.05, J. Mater. Chem. 5, 1807 (1995).
  • M. Morales, and A. R. West, Phase diagram, crystal chemistry and lithium ion conductivity in the perovskite-type system Pr0.5 + xLi0.5 − 3xTiO3, Solid State Ionics 91, 33 (1996).
  • J. S. Lee, K. Yoo, T. Kim, and H. Jung, Evaluation of the AC response of Li-electrolytic perovskites Li 0.5 (LnxLa0.5-x)TiO3 (Ln = Nd, Gd) in conjunction with their crystallographic and microstructural characteristics, Solid State Ionics 98, 15 (1997).
  • J. C. Bachman, S. Muy, A. Grimaud, H. H. Chang, N. Pour, S. F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, and Y. Shao-Horn, Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction, Chem. Rev. 116, 140 (2016).
  • T. Teranishi, M. Yamamoto, H. Hayashi, and A. Kishimoto, Lithium ion conductivity of Nd-doped (Li, La)TiO3 ceramics, Solid State Ionics 243, 18 (2013).
  • R. Jimenez, A. Varez, and J. Sanz, Influence of octahedral tilting and composition on electrical properties of the Li0.2-xNaxLa0.6TiO3 (0 ≤ x ≤ 0.2) series, Solid State Ionics 179, 495 (2008).
  • T. Yang, Z. D. Gordon, and C. K. Chan, Synthesis of hyperbranched perovskite nanostructures, Cryst. Growth Des. 13, 3901 (2013).
  • K. P. Abhilash, P. C. Selvin, B. Nalini, P. Nithyadharseni, and B. C. Pillai, Investigations on pure and Ag doped lithium lanthanum titanate (LLTO) nanocrystalline ceramic electrolytes for rechargeable lithium-ion batteries, Ceram. Int. 39, 947 (2013).
  • O. Bohnke, C. Bohnke, J. Ould Sid'Ahmed, M. P. Crosnier-Lopez, H. Duroy, F. Le Berre, and J. L. Fourquet, Lithium ion conductivity in new perovskite oxides [AgyLi1-y]3xLa2/3-x1/3-2xTiO3 (x = 0.09 and 0 ≤ y ≤ 1). Chem. Mater. 13(5) 1593 (2001). doi:10.1021/CM001207U
  • A. Morata-Orrantia, S. García-Martín, and M. Á. Alario-Franco, Optimization of lithium conductivity in La/Li titanates. Chem. Mater. 15(21), 3991 (2003). doi:10.1021/CM0300563
  • G. X. Wang, P. Yao, D. H. Bradhurst, S. X. Dou, and H. K. Liu, Structure characteristics and lithium ionic conductivity of La(0.57−2x/3)SrxLi0.3TiO3 perovskites, J. Mater. Sci. 35, 4289 (2000).
  • T. Katsumata, Y. Matsui, Y. Inaguma, and M. Itoh, Influence of site percolation and local distortion on lithium ion conductivity in perovskite-type oxides La0.55Li0.35-xKxTiO3 and La0.55Li0.35TiO3-KMO3 (M = Nb and Ta), Solid State Ionics 86–88, 165 (1996).
  • N. S. P. Bhuvanesh, and J. Gopalakrishnan, Solid-state chemistry of early transition-metal oxides containing d0 and d1 cations, J. Mater. Chem. 7, 2297 (1997).
  • H.-T. Chung, J.-G. Kim, and H.-G. Kim, Dependence of the lithium ionic conductivity on the B-site ion substitution in (Li0.5La0.5)Ti1 − xMxO3 (M = Sn, Zr, Mn, Ge), Solid State Ionics 107, 153 (1998).
  • L. X. He, and H. I. Yoo, Effects of B-site ion (M) substitution on the ionic conductivity of (Li3xLa2/3-x)1 + y/2(MyTi1-y)O3 (M = Al, Cr), Electrochim. Acta. 48, 1357 (2003).
  • J. Ravez, Relations between curie temperature and chemical bond in octahedral monodimensional ferroelectrics, Phase Trans. 33, 53 (1991).
  • Barsoum, M. W. Fundamentals of Ceramics, Taylor & Francis Group, London.
  • V. Thangadurai, and W. Weppner, Effect of B-site substitution of (Li,La)TiO3 perovskites by di-, tri-, tetra- and hexavalent metal ions on the lithium ion conductivity. Ionics (Kiel) 6, 70 (2000).
  • Y. Zou, N. Inoue, K. Ohara, V. Thangaduri, and W. Weppner, Structure and lithium ionic conduction of B-site Al-ion substitution in La4/3-yLi3yTi2O6, Ionics (Kiel) 10, 463 (2004).
  • H. T. T. Le, R. S. Kalubarme, D. T. Ngo, S.-Y. Jang, K.-N. Jung, K.-H. Shin, and C.-J. Park, Citrate gel synthesis of aluminum-doped lithium lanthanum titanate solid electrolyte for application in organic-type lithium-oxygen batteries, J. Power Sources 274, 1188 (2015).
  • H. T. Le, D. T. Ngo, R. S. Kalubarme, G. Cao, C. N. Park, and C. J. Park, Composite gel polymer electrolyte based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) with modified aluminum-doped lithium lanthanum titanate (A-LLTO) for high-performance lithium rechargeable batteries, ACS Appl. Mater. Interfaces 8, 20710 (2016).
  • Y. Zhang, and Y. Chen, Al,F-doped new perovskite lithium fast ion conductor Li3x La2/3 − x1/3 − 2x Ti1 − y Al y O3 − y F y (x = 0.11), Ionics (Kiel) 12, 63 (2006).
  • T. Okumura, K. Yokoo, T. Fukutsuka, Y. Uchimoto, M. Saito, and K. Amezawa, Improvement of Li-ion conductivity in A-site disordering lithium-lanthanum-titanate perovskite oxides by adding LiF in synthesis, J. Power Sources 189, 536 (2009).
  • T. Okumura, T. Ina, Y. Orikasa, H. Arai, Y. Uchimotoa, and Z. Ogumi, Improvement of lithium ion conductivity for A-site disordered lithium lanthanum titanate perovskite oxides by fluoride ion substitution, J. Mater. Chem. 21, 10061 (2011).
  • C. Ma, K. Chen, C. Liang, C.-W. Nan, R. Ishikawa, K. Morea, and M. Chi, Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes, Energy Environ. Sci. 7, 1638 (2014).
  • A. Mei, X.-L. Wang, Y.-C. Feng, S.-J. Zhao, G.-J. Li, H.-X. Geng, Y.-H. Lin, C.-W. Nan, Enhanced ionic transport in lithium lanthanum titanium oxide solid state electrolyte by introducing silica, Solid State Ionics 179, 2255 (2008).
  • Y. Deng, S.-J. Shang, A. Mei, Y.-H. Lin, L.-Y. Liu, C.-W. Nan, The preparation and conductivity properties of Li0.5La0.5TiO3/inactive second phase composites, J. Alloys Compd. 472, 456 (2009).
  • K. Chen, M. Huang, Y. Shen, Y. Lin, and C. W. Nan, Enhancing ionic conductivity of Li 0.35La 0.55TiO 3 ceramics by introducing Li 7La 3Zr 2O 12, Electrochim. Acta 80, 133 (2012).
  • K. Chen, M. Huang, Y. Shen, Y. Lin, and C. W. Nan, Improving ionic conductivity of Li0.35La0.55TiO 3 ceramics by introducing Li7La3Zr 2O12 sol into the precursor powder, Solid State Ionics 235, 8 (2013).
  • K. Vidal, L. Ortega-San-Martín, A. Larrañaga, R. I. Merino, A. Orera, and M. I. Arriortua, Effects of synthesis conditions on the structural, stability and ion conducting properties of Li0.30(La0.50Ln0.50)0.567TiO3 (Ln = La, Pr, Nd) solid electrolytes for rechargeable lithium batteries, Ceram. Int. 40, 8761 (2014).
  • H. Geng, A. Mei, Y. Lin, and C. Nan, Effect of sintering atmosphere on ionic conduction and structure of Li0.5La0.5TiO3 solid electrolytes, Mater. Sci. Eng. B 164, 91 (2009).
  • F. Aguesse, J. M. López del Amo, V. Roddatis, A. Aguadero, and J. A. Kilner, Enhancement of the grain boundary conductivity in ceramic Li 0.34 La 0.55 TiO 3 electrolytes in a moisture-free processing environment, Adv. Mater. Interfaces 1, 1300143 (2014).
  • T. Teranishi, Y. Ishii, H. Hayashi, and A. Kishimoto, Lithium ion conductivity of oriented Li0.33La0.56TiO3 solid electrolyte films prepared by a sol-gel process, Solid State Ionics 284, 1 (2016).
  • J. Wei, D. Ogawa, T. Fukumura, Y. Hirose, and T. Hasegawa, Epitaxial strain-controlled ionic conductivity in li-ion solid electrolyte Li0.33La0.56TiO3 thin films, Cryst. Growth Des. 15, 2187 (2015).
  • A. C. Sutorik, M. D. Green, C. Cooper, J. Wolfenstine, and G. Gilde, The comparative influences of structural ordering, grain size, Li-content, and bulk density on the Li+-conductivity of Li0.29La0.57TiO3, J. Mater. Sci. 47, 6992 (2012).
  • M. Morcrette, A. Gutiérrez-Llorente, A. Laurent, J. Perrière, P. Barboux, J. P. Boilot, O. Raymond, and T. Brousse, Growth by laser ablation of Ti-based oxide films with different valency states, Appl. Phys. A. 67, 425 (1998).
  • O. Maqueda, F. Sauvage, L. Laffont, M. L. Martínez-Sarrión, L. Mestres, and E. Baudrin, Structural, microstructural and transport properties study of lanthanum lithium titanium perovskite thin films grown by pulsed laser deposition, Thin Solid Films 516, 1651 (2008).
  • K. K. Bharathi, H. Tan, S. Takeuchi, L. Meshi, H. Shen, J. Shin, I. Takeuchib, and L. A. Bendersky, Effect of oxygen pressure on structure and ionic conductivity of epitaxial Li 0.33 La 0.55 TiO 3 solid electrolyte thin films produced by pulsed laser deposition, RSC Adv. 6, 61974 (2016). doi:10.1039/c6ra12879c
  • Y. Yamada, K. Tabata, and T. Yashima, The character of WO3 film prepared with RF sputtering, Sol. Energy Mater. Sol. Cells 91, 29 (2007).
  • M. Morales, P. Laffez, D. Chateigner, and I. Vickridge, Characterisation of lanthanum lithium titanate thin films deposited by radio frequency sputtering on [100]-oriented MgO substrates, Thin Solid Films 418, 119 (2002).
  • Z. Hu, K. Xie, D. Wei, and N. Ullah, Influence of sputtering pressure on the structure and ionic conductivity of thin film amorphous electrolyte, J. Mater. Sci. 46, 7588 (2011).
  • W.-Y. Liu, Z.-W. Fu, C.-L. Li, and Q.-Z. Qin, Lithium phosphorus oxynitride thin film fabricated by a nitrogen plasma-assisted deposition of E-beam reaction evaporation, Electrochem. Solid-State Lett. 7, J36 (2004).
  • R. L. Puurunen, Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process, J. Appl. Phys. 97, 121301 (2005).
  • M. Putkonen, T. Aaltonen, M. Alnes, T. Sajavaara, O. Nilsenc, and H. Fjellvåg, Atomic layer deposition of lithium containing thin films, J. Mater. Chem. 19, 8767 (2009).
  • T. Aaltonen, M. Alnes, O. Nilsen, L. Costelle, and H. Fjellvåg, Lanthanum titanate and lithium lanthanum titanate thin films grown by atomic layer deposition, J. Mater. Chem. 20, 2877 (2010).
  • K. Kitaoka, H. Kozuka, T. Hashimoto, and T. Yoko, Preparation of La0.5Li0.5TiO3 perovskite thin films by the sol–gel method, J. Mater. Sci. 32, 2063 (1997).
  • M. Vijayakumar, Y. Inaguma, W. Mashiko, M. P. Crosnier-Lopez, and C. Bohnke, Synthesis of fine powders of Li3xLa2/3-xTiO 3 perovskite by a polymerizable precursor method, Chem. Mater. 16, 2719 (2004).
  • I. Carazeanu Popovici, E. Chirila, V. Popescu, V. Ciupina, and G. Prodan, Sol–gel preparation and characterization of perovskite lanthanum lithium titanate, J. Mater. Sci. 42, 3373 (2007).
  • E. J. van den Ham, N. Peys, C. De Dobbelaere, J. D’Haen, F. Mattelaer, C. Detavernier, P. H. L. Notten, A. Hardy, and M. K. Van Bael, Amorphous and perovskite Li3xLa(2/3)−xTiO3 (thin) films via chemical solution deposition: solid electrolytes for all-solid-state Li-ion batteries, J. Sol. Gel. Sci. Technol. 73, 536 (2015).
  • X. Lin, H. Wang, H. Du, X. Xiong, B. Qu, Z. Guo, and D. Chu, Growth of lithium lanthanum titanate nanosheets and their application in lithium-ion batteries, ACS Appl. Mater. Interfaces. 8, 1486 (2016).
  • K. Byrappa, and M. Yoshimura, Handbook of Hydrothermal Technology, William Andrew, Elsevier, New York (2013).
  • K. Byrappa, and T. Adschiri, Hydrothermal technology for nanotechnology, Prog. Cryst. Growth Character Mater. 53, 117 (2007).
  • Y. V. Kolen’ko, K. A. Kovnir, A. I. Gavrilov, A. V. Garshev, J. Frantti, O. I. Lebedev, B. R. Churagulov, G. Van Tendeloo, and M. Yoshimura, Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide, J. Phys. Chem. B. 110, 4030 (2006).
  • K. Kanamura, N. Akutagawa, and K. Dokko, Three dimensionally ordered composite solid materials for all solid-state rechargeable lithium batteries, J. Power Sources. 146, 86 (2005).
  • M. Hara, H. Nakano, K. Dokko, S. Okuda, A. Kaeriyama, and K. Kanamura, Fabrication of all solid-state lithium-ion batteries with three-dimensionally ordered composite electrode consisting of Li0.35La0.55TiO3 and LiMn2O4, J. Power Sources 189, 485 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.