771
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Organic solar cells: Materials and prospects of graphene for active and interfacial layers

ORCID Icon, ORCID Icon & ORCID Icon

References

  • S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007, Cambridge University Press, Cambridge (2007).
  • O. A. Abdulrazzaq, V. Saini, S. Bourdo, E. Dervishi, and A. S. Biris, Organic solar cells: a review of materials, limitations, and possibilities for improvement, Particul. Sci. Technol. 31(5), 427–442 (2013).
  • S. Rafique, S. M. Abdullah, K. Sulaiman, and M. Iwamoto, Fundamentals of bulk heterojunction organic solar cells: An overview of stability/degradation issues and strategies for improvement, Renew. Sustain. Energy Rev. 84, 43–53 (2018).
  • Z. Ahmad, M. A. Najeeb, R. Shakoor, S. A. Al-Muhtaseb, and F. Touati, Limits and possible solutions in quantum dot organic solar cells, Renew. Sustain. Energy Rev. 82, 1551–1564 (2017).
  • S. Sharma, B. Siwach, S. Ghoshal, and D. Mohan, Dye sensitized solar cells: From genesis to recent drifts, Renew. Sustain. Energy Rev. 70, 529–537 (2017).
  • C. H. Ng, H. N. Lim, S. Hayase, Z. Zainal, and N. M. Huang, Photovoltaic performances of mono- and mixed-halide structures for perovskite solar cell: A review, Renew. Sustain. Energy Rev. 90, 248–274 (2018).
  • C. W. Tang, and A. C. Albrecht, Photovoltaic effects of metal–chlorophyll‐a–metal sandwich cells, J. Chem. Phys. 62(6), 2139–2149 (1975).
  • H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x, J. Chem. Soc, Chem. Commun. (16), 578–580 (1977).
  • T. Kietzke, Recent advances in organic solar cells, Adv. Optoelectron. 40285(2007) (2007).
  • R. R. Søndergaard, M. Hösel, and F. C. Krebs, Roll‐to‐Roll fabrication of large area functional organic materials, J. Polym. Sci. B Polym. Phys. 51(1), 16–34 (2013).
  • C. J. Brabec, and J. R. Durrant, Solution-processed organic solar cells, MRS Bull. 33(7), 670–675 (2008).
  • F. C. Krebs, Fabrication and processing of polymer solar cells: a review of printing and coating techniques, Sol. Energ. Mater. Sol. C. 93(4), 394–412 (2009).
  • R. Søndergaard, M. Manceau, M. Jørgensen, and F. C. Krebs, New low‐bandgap materials with good stabilities and efficiencies comparable to P3HT in R2R‐coated solar cells, Adv. Energy Mater. 2(4), 415–418 (2012).
  • E. Bundgaard, O. Hagemann, M. Manceau, M. Jørgensen, and F. C. Krebs, Low band gap polymers for roll-to-roll coated polymer solar cells, Macromolecules. 43(19), 8115–8120 (2010).
  • C. M. Amb, M. R. Craig, U. Koldemir, J. Subbiah, K. R. Choudhury, S. A. Gevorgyan, M. Jørgensen, F. C. Krebs, F. So, and J. R. Reynolds, Aesthetically pleasing conjugated polymer: fullerene blends for blue-green solar cells via roll-to-roll processing, ACS Appl. Mater. Interfaces. 4(3), 1847–1853 (2012).
  • F. C. Krebs, T. Tromholt, and M. Jørgensen, Upscaling of polymer solar cell fabrication using full roll-to-roll processing, Nanoscale. 2 (6), 873–886 (2010).
  • M. Helgesen, J. E. Carlé, B. Andreasen, M. Hösel, K. Norrman, R. Søndergaard, and F. C. Krebs, Rapid flash annealing of thermally reactive copolymers in a roll-to-roll process for polymer solar cells, Polym. Chem. 3 (9), 2649–2655 (2012).
  • H. F. Dam, and F. C. Krebs, Simple roll coater with variable coating and temperature control for printed polymer solar cells, Sol. Energ. Mater. Sol. C. 97, 191–196 (2012).
  • P. Maisch, K. C. Tam, P. Schilinsky, H. J. Egelhaaf, and C. J. Brabec, Shy organic photovoltaics: Digitally printed organic solar modules with hidden interconnects, Sol. Rrl. 2 (7), 1800005 (2018).
  • L. Lu, M. A. Kelly, W. You, and L. Yu, Status and prospects for ternary organic photovoltaics, Nature Photon. 9(8), 491–500 (2015).
  • F. Zhao, S. Dai, Y. Wu, Q. Zhang, J. Wang, L. Jiang, Q. Ling, Z. Wei, W. Ma, and W. You, Single‐junction binary‐blend nonfullerene polymer solar cells with 12.1% efficiency, Adv. Mater. 29(18), 1700144 (2017).
  • S. Li, L. Ye, W. Zhao, S. Zhang, S. Mukherjee, H. Ade, and J. Hou, Energy‐level modulation of small‐molecule electron acceptors to achieve over 12% efficiency in polymer solar cells, Adv. Mater. 28(42), 9423–9429 (2016).
  • W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, and J. Hou, Molecular optimization enables over 13% efficiency in organic solar cells, J. Am. Chem. Soc. 139(21), 7148–7151 (2017).
  • X. Wan, G. Long, L. Huang, and Y. Chen, Graphene–a promising material for organic photovoltaic cells, Adv. Mater. 23 (45), 5342–5358 (2011).
  • M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Design rules for donors in bulk‐heterojunction solar cells—Towards 10% energy‐conversion efficiency, Adv. Mater. 18 (6), 789–794 (2006).
  • C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, Origin of the open circuit voltage of plastic solar cells, Adv. Funct. Mater. 11 (5), 374–380 (2001).
  • B. Qi, and J. Wang, Fill factor in organic solar cells, Phys. Chem. Chem. Phys. 15(23), 8972–8982 (2013).
  • M. Mandoc, F. Kooistra, J. Hummelen, B. De Boer, and P. Blom, Effect of traps on the performance of bulk heterojunction organic solar cells, Appl. Phys. Lett. 91(26), 263505 (2007).
  • M. Lenes, M. Morana, C. J. Brabec, and P. W. Blom, Recombination‐limited photocurrents in low bandgap polymer/fullerene solar cells, Adv. Funct. Mater. 19 (7), 1106–1111 (2009).
  • V. Mihailetchi, J. Wildeman, and P. Blom, Space-charge limited photocurrent, Phys. Rev. Lett. 94(12), 126602 (2005).
  • C. G. Shuttle, R. Hamilton, B. C. O'Regan, J. Nelson, and J. R. Durrant, Charge-density-based analysis of the current–voltage response of polythiophene/fullerene photovoltaic devices, Proc. Natl. Acad. Sci. 107(38), 16448–16452 (2010).
  • T.-H. Lai, S.-W. Tsang, J. R. Manders, S. Chen, and F. So, Properties of interlayer for organic photovoltaics, Mater. Today. 16(11), 424–432 (2013).
  • B. C. Thompson, and J. M. Fréchet, Polymer–fullerene composite solar cells, Angew. Chem. Int. Ed. 47(1), 58–77 (2008).
  • H. Lv, X. Zhao, W. Xu, H. Li, J. Chen, and X. Yang, Improving performance of polymer solar cells based on PSBTBT/PC 71 BM via controlled solvent vapor annealing, Org. Electron. 14(7), 1874–1881 (2013).
  • A. L. Ayzner, D. D. Wanger, C. J. Tassone, S. H. Tolbert, and B. J. Schwartz, Room to improve conjugated polymer-based solar cells: Understanding how thermal annealing affects the fullerene component of a bulk heterojunction photovoltaic device, J. Phys. Chem. C. 112(48), 18711–18716 (2008).
  • C.-W. Chu, H. Yang, W.-J. Hou, J. Huang, G. Li, and Y. Yang, Control of the nanoscale crystallinity and phase separation in polymer solar cells, Appl. Phys. Lett. 92(10), 86 (2008).
  • F. Zhang, K. G. Jespersen, C. Björström, M. Svensson, M. R. Andersson, V. Sundström, K. Magnusson, E. Moons, A. Yartsev, and O. Inganäs, Influence of solvent mixing on the morphology and performance of solar cells based on polyfluorene copolymer/fullerene blends, Adv. Funct. Mater. 16(5), 667–674 (2006).
  • S. O. Oseni, and G. T. Mola, The effect of uni-and binary solvent additives in PTB7: PC61BM based solar cells, Sol. Energy. 150, 66–72 (2017).
  • X. Yang, J. Loos, S. C. Veenstra, W. J. Verhees, M. M. Wienk, J. M. Kroon, M. A. Michels, and R. A. Janssen, Nanoscale morphology of high-performance polymer solar cells, Nano Lett. 5 (4), 579–583 (2005).
  • H. Hoppe, and N. S. Sariciftci, Morphology of polymer/fullerene bulk heterojunction solar cells, J. Mater. Chem. 16(1), 45–61 (2006).
  • T. L. Nguyen, H. Choi, S.-J. Ko, M. A. Uddin, B. Walker, S. Yum, J.-E. Jeong, M. H. Yun, T. J. Shin, S. Hwang, J. Y. Kim, and H. Y. Woo, Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a∼ 300 nm thick conventional single-cell device, Energ. Environ. Sci. 7(9), 3040–3051 (2014).
  • C. W. Tang, Two‐layer organic photovoltaic cell, Appl. Phys. Lett. 48 (2), 183–185 (1986).
  • J. J. Halls, K. Pichler, R. H. Friend, S. Moratti, and A. Holmes, Exciton diffusion and dissociation in a poly (p‐phenylenevinylene)/C60 heterojunction photovoltaic cell, Appl. Phys. Lett. 68(22), 3120–3122 (1996).
  • J. Halls, and R. Friend, The photovoltaic effect in a poly (p-phenylenevinylene)/perylene heterojunction, Synth. Met. 85(1-3), 1307–1308 (1997).
  • H. Kerp, H. Donker, R. Koehorst, T. Schaafsma, and E. Van Faassen, Exciton transport in organic dye layers for photovoltaic applications, Chem. Phys. Lett. 298(4–6), 302–308 (1998).
  • G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Polymer photovoltiac cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science. 270(5243), 1789 (1995).
  • N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science. 258(5087), 1474–1476 (1992).
  • N. Sariciftci, L. Smilowitz, A. Heeger, and F. Wudl, Semiconducting polymers (as donors) and buckminsterfullerene (as acceptor): photoinduced electron transfer and heterojunction devices, Synth. Met. 59(3), 333–352 (1993).
  • K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, and J. V. Manca , On the origin of the open-circuit voltage of polymer-fullerene solar cells, Nat. Mater. 8(11), 904–909 (2009).
  • B. Ma, C. H. Woo, Y. Miyamoto, and J. M. J. Fréchet, Solution processing of a small molecule, subnaphthalocyanine, for efficient organic photovoltaic cells, Chem. Mater. 21(8), 1413–1417 (2009).
  • J. Gilot, I. Barbu, M. M. Wienk, and R. A. Janssen, The use of ZnO as optical spacer in polymer solar cells: Theoretical and experimental study, Appl. Phys. Lett. 91(11), 113520 (2007).
  • K. M. O'Malley, C. Z. Li, H. L. Yip, and A. K. Y. Jen, Enhanced open‐circuit voltage in high performance polymer/fullerene bulk‐heterojunction solar cells by cathode modification with a C60 surfactant, Adv. Energy Mater. 2(1), 82–86 (2012).
  • G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Mater. 4(11), 864–868 (2005).
  • A. R. b. Mohd Yusoff, D. Kim, H. P. Kim, F. K. Shneider, W. J. da Silva, and J. Jang, A high efficiency solution processed polymer inverted triple-junction solar cell exhibiting a power conversion efficiency of 11.83%, Energy Environ. Sci. 8(1), 303–316 (2015).
  • W. Zhao, S. Li, S. Zhang, X. Liu, and J. Hou, Ternary polymer solar cells based on two acceptors and one donor for achieving 12.2% efficiency, Adv. Mater. 29(2), 1604059 (2017).
  • Z. Yu, A. Raman, and S. Fan, Fundamental limit of nanophotonic light trapping in solar cells, Proc. Natl. Acad. Sci. USA. 107(41), 17491–17496 (2010).
  • H. A. Atwater, and A. Polman, Plasmonics for improved photovoltaic devices, Nat. Mater. 9(3), 205–213 (2010).
  • S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles, Appl. Phys. Lett. 93(7), 305 (2008).
  • H. Choi, S.-J. Ko, Y. Choi, P. Joo, T. Kim, B. R. Lee, J.-W. Jung, H. J. Choi, M. Cha, J.-R. Jeong, I.-W. Hwang, M. H. Song, B.-S. Kim, and J. Y. Kim, Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices, Nature Photon. 7(9), 732 (2013).
  • L. Lu, Z. Luo, T. Xu, and L. Yu, Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells, Nano Lett. 13 (1), 59–64 (2013).
  • E. Stratakis, and E. Kymakis, Nanoparticle-based plasmonic organic photovoltaic devices, Mater. Today. 16(4), 133–146 (2013).
  • A. Roy, S. H. Park, S. Cowan, M. H. Tong, S. Cho, K. Lee, and A. J. Heeger, Titanium suboxide as an optical spacer in polymer solar cells, Appl Phys Lett. 95(1), 179 (2009).
  • F. Wang, Z. a Tan, and Y. Li, Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells, Energy Environ. Sci. 8(4), 1059–1091 (2015).
  • V. D. Mihailetchi, J. K. van Duren, P. W. Blom, J. C. Hummelen, R. A. Janssen, J. M. Kroon, M. T. Rispens, W. J. H. Verhees, and M. M. Wienk, Electron transport in a methanofullerene, Adv. Funct. Mater. 13(1), 43–46 (2003).
  • C. Liu, X. Hu, C. Zhong, M. Huang, K. Wang, Z. Zhang, X. Gong, Y. Cao, and A. J. Heeger, The influence of binary processing additives on the performance of polymer solar cells, Nanoscale. 6(23), 14297–14304 (2014).
  • S. Li, W. Liu, C. Z. Li, M. Shi, and H. Chen, Efficient organic solar cells with non‐fullerene acceptors, Small. 13(37), 1701120 (2017).
  • R. Kroon, M. Lenes, J. C. Hummelen, P. W. Blom, and B. De Boer, Small bandgap polymers for organic solar cells (polymer material development in the last 5 years), Polym. Rev. 48(3), 531–582 (2008).
  • J. Hou, and X. Guo, Active layer materials for organic solar cells. In Organic Solar Cells, W. C. H. Choy (ed.), Springer, London, 17–42 (2013).
  • R. Kiebooms, R. Menon, and K. Lee, Synthesis, electrical, and optical properties of conjugated polymers. In Handbook of Advanced Electronic and Photonic Materials and Devices, H. S. Nalwa (ed.), 8, 1–102 (2001).
  • D. De Leeuw, M. Simenon, A. Brown, and R. Einerhand, Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices, Synth. Met. 87(1), 53–59 (1997).
  • R. S. Kularatne, H. D. Magurudeniya, P. Sista, M. C. Biewer, and M. C. Stefan, Donor–acceptor semiconducting polymers for organic solar cells, J. Polym. Sci. A Polym. Chem. 51(4), 743–768 (2013).
  • D. Fichou, Handbook of Oligo-and Polythiophenes, University of Michigan, John Wiley & Sons, Michigan (2008).
  • Q. Ye, and C. Chi, Conjugated polymers for organic solar cells. In Solar Cells-New Aspects and Solutions, L. A. Kosyachenko (ed.), InTech, Singapore, 453–474 (2011).
  • M. T. Dang, L. Hirsch, and G. Wantz, P3HT: PCBM, best seller in polymer photovoltaic research, Adv. Mater. Weinheim. 23(31), 3597–3602 (2011).
  • C. Waldauf, P. Schilinsky, J. Hauch, and C. J. Brabec, Material and device concepts for organic photovoltaics: towards competitive efficiencies, Thin Solid Films. 451, 503–507 (2004).
  • H. Spanggaard, and F. C. Krebs, A brief history of the development of organic and polymeric photovoltaics, Sol. Energ. Mater. Sol. C. 83(2-3), 125–146 (2004).
  • J. Hou, T. L. Chen, S. Zhang, L. Huo, S. Sista, and Y. Yang, An easy and effective method to modulate molecular energy level of poly (3-alkylthiophene) for high-Voc polymer solar cells, Macromolecules. 42(23), 9217–9219 (2009).
  • J. Hou, M.-H. Park, S. Zhang, Y. Yao, L.-M. Chen, J.-H. Li, and Y. Yang, Bandgap and molecular energy level control of conjugated polymer photovoltaic materials based on benzo [1, 2-b: 4, 5-b′] dithiophene, Macromolecules. 41(16), 6012–6018 (2008).
  • Y. Liang, Y. Wu, D. Feng, S.-T. Tsai, H.-J. Son, G. Li, and L. Yu, Development of new semiconducting polymers for high performance solar cells, J. Am. Chem. Soc. 131(1), 56–57 (2009).
  • H. J. Jhuo, P. N. Yeh, S. H. Liao, Y. L. Li, Y. S. Cheng, and S. A. Chen, Review on the recent progress in low band gap conjugated polymers for bulk hetero‐junction polymer solar cells, Jnl. Chinese Chemical Soc. 61(1), 115–126 (2014).
  • H. Pan, Y. Li, Y. Wu, P. Liu, B. S. Ong, S. Zhu, and G. Xu, Low-temperature, solution-processed, high-mobility polymer semiconductors for thin-film transistors, J. Am. Chem. Soc. 129(14), 4112–4113 (2007).
  • Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%, Adv. Mater. 22(20), E135–E138 (2010).
  • J. D. Chen, C. Cui, Y. Q. Li, L. Zhou, Q. D. Ou, C. Li, Y. Li, and J. X. Tang, Single‐junction polymer solar cells exceeding 10% power conversion efficiency, Adv. Mater. 27(6), 1035–1041 (2015).
  • S. H. Liao, H. J. Jhuo, Y. S. Cheng, and S. A. Chen, Fullerene derivative‐doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low‐bandgap polymer (PTB7‐Th) for high performance, Adv. Mater. 25(34), 4766–4771 (2013).
  • J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols, Nature Mater. 6(7), 497–500 (2007).
  • N. Blouin, A. Michaud, and M. Leclerc, A low‐bandgap poly (2, 7‐carbazole) derivative for use in high‐performance solar cells, Adv. Mater. 19(17), 2295–2300 (2007).
  • N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletête, G. Durocher, Y. Tao, and M. Leclerc, Toward a rational design of poly (2, 7-carbazole) derivatives for solar cells, J. Am. Chem. Soc. 130(2), 732–742 (2008).
  • S. Alem, T.-Y. Chu, S. C. Tse, S. Wakim, J. Lu, R. Movileanu, Y. Tao, F. Bélanger, D. Désilets, S. Beaupré, M. Leclerc, S. Rodman, D. Waller, and R. Gaudiana, Effect of mixed solvents on PCDTBT: PC70BM based solar cells, Org. Electron. 12(11), 1788–1793 (2011).
  • S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Bulk heterojunction solar cells with internal quantum efficiency approaching 100%, Nature Photon. 3(5), 297–302 (2009).
  • J. S. Moon, J. Jo, and A. J. Heeger, Nanomorphology of PCDTBT: PC70BM bulk heterojunction solar cells, Adv. Energy Mater. 2(3), 304–308 (2012).
  • S. Albrecht, S. Janietz, W. Schindler, J. Frisch, J. Kurpiers, J. Kniepert, S. Inal, P. Pingel, K. Fostiropoulos, N. Koch, and D. Neher, Fluorinated copolymer PCPDTBT with enhanced open-circuit voltage and reduced recombination for highly efficient polymer solar cells, J. Am. Chem. Soc. 134(36), 14932–14944 (2012).
  • D. Mi, J.-H. Kim, H. U. Kim, F. Xu, and D.-H. Hwang, Fullerene derivatives as electron acceptors for organic photovoltaic cells, J. Nanosci. Nanotech. 14(2), 1064–1084 (2014).
  • Y.-C. Huang, C.-S. Tsao, C.-M. Chuang, C.-H. Lee, F.-H. Hsu, H.-C. Cha, C.-Y. Chen, T.-H. Lin, C.-J. Su, U.-S. Jeng, and W.-F. Su, Small-and wide-angle X-ray scattering characterization of bulk heterojunction polymer solar cells with different fullerene derivatives, J. Phys. Chem. C. 116(18), 10238–10244 (2012).
  • Y. Santo, I. Jeon, K. Sheng Yeo, T. Nakagawa, and Y. Matsuo, Mixture of [60] and [70] PCBM giving morphological stability in organic solar cells, Appl. Phys. Lett. 103(7), 157–151 (2013).
  • M. Lenes, S. W. Shelton, A. B. Sieval, D. F. Kronholm, J. C. K. Hummelen, and P. W. Blom, Electron trapping in higher adduct fullerene‐based solar cells, Adv. Funct. Mater. 19(18), 3002–3007 (2009).
  • M. Lenes, G. J. A. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, and P. W. Blom, Fullerene bisadducts for enhanced open‐circuit voltages and efficiencies in polymer solar cells, Adv. Mater. 20(11), 2116–2119 (2008).
  • J. H. Choi, K.-I. Son, T. Kim, K. Kim, K. Ohkubo, and S. Fukuzumi, Thienyl-substituted methanofullerene derivatives for organic photovoltaic cells, J. Mater. Chem. 20(3), 475–482 (2010).
  • Y. He, H.-Y. Chen, J. Hou, and Y. Li , Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells , J. Am. Chem. Soc. 132(4), 1377–1382 (2010).
  • G. Zhao, Y. He, and Y. Li, 6.5% Efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C(60) bisadduct by device optimization , Adv. Mater. Weinheim. 22(39), 4355–4358 (2010).
  • X. Guo, M. Zhang, C. Cui, J. Hou, and Y. Li, Efficient polymer solar cells based on poly (3-hexylthiophene) and indene–C60 bisadduct fabricated with non-halogenated solvents, ACS Appl. Mater. Interfaces. 6(11), 8190–8198 (2014).
  • Y. He, G. Zhao, B. Peng, and Y. Li, High‐yield synthesis and electrochemical and photovoltaic properties of indene‐C70 bisadduct, Adv. Funct. Mater. 20(19), 3383–3389 (2010).
  • Q. Wan, X. Guo, Z. Wang, W. Li, B. Guo, W. Ma, M. Zhang, and Y. Li, 10.8% Efficiency polymer solar cells based on PTB7‐Th and PC71BM via binary solvent additives treatment, Adv. Funct. Mater. 26(36), 6635–6640 (2016).
  • J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, and H. Yan, Efficient organic solar cells processed from hydrocarbon solvents, Nat. Energy. 1, 15027 (2016).
  • Y. Wu, H. Bai, Z. Wang, P. Cheng, S. Zhu, Y. Wang, W. Ma, and X. Zhan, A planar electron acceptor for efficient polymer solar cells, Energy Environ. Sci. 8(11), 3215–3221 (2015).
  • L. Ye, S. Zhang, W. Zhao, H. Yao, and J. Hou, Highly efficient 2D-conjugated benzodithiophene-based photovoltaic polymer with linear alkylthio side chain, Chem. Mater. 26(12), 3603–3605 (2014).
  • C. Cui, W.-Y. Wong, and Y. Li, Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution, Energ. Environ. Sci. 7(7), 2276–2284 (2014).
  • F. Liu, Z. Zhou, C. Zhang, T. Vergote, H. Fan, F. Liu, and X. Zhu, A thieno [3, 4-b] thiophene-based non-fullerene electron acceptor for high-performance bulk-heterojunction organic solar cells, J. Am. Chem. Soc. 138(48), 15523–15526 (2016).
  • Y. Lin, J. Wang, Z. G. Zhang, H. Bai, Y. Li, D. Zhu, and X. Zhan, An electron acceptor challenging fullerenes for efficient polymer solar cells, Adv. Mater. 27(7), 1170–1174 (2015).
  • L. Huo, J. Hou, S. Zhang, H. Y. Chen, and Y. Yang, A Polybenzo [1, 2‐b: 4, 5‐b′] dithiophene Derivative with Deep HOMO level and its application in high‐performance polymer solar cells, Angew. Chem. Int. Edit. 49(8), 1500–1503 (2010).
  • L. Huo, X. Guo, Y. Li, and J. Hou , Synthesis of a polythieno[3,4-b]thiophene derivative with a low-lying HOMO level and its application in polymer solar cells , Chem. Commun. (Camb.). 47(31), 8850–8852 (2011).
  • Z. Li, K. Jiang, G. Yang, J. Y. L. Lai, T. Ma, J. Zhao, W. Ma, and H. Yan, Donor polymer design enables efficient non-fullerene organic solar cells, Nat. Commun. 7, 13094 (2016).
  • T. Kim, J.-H. Kim, T. E. Kang, C. Lee, H. Kang, M. Shin, C. Wang, B. Ma, U. Jeong, and T.-S. Kim, Flexible, highly efficient all-polymer solar cells, Nat. Commun. 6, 8547 (2015).
  • W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganäs, F. Gao, and J. Hou , Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability, Adv. Mater. Weinheim. 28(23), 4734–4739 (2016).
  • S. Li, Z. Zhang, M. Shi, C.-Z. Li, and H. Chen, Molecular electron acceptors for efficient fullerene-free organic solar cells, Phys. Chem. Chem. Phys. 19(5), 3440–3458 (2017).
  • S. Holliday, R. S. Ashraf, A. Wadsworth, D. Baran, S. A. Yousaf, C. B. Nielsen, C.-H. Tan, S. D. Dimitrov, Z. Shang, N. Gasparini, M. Alamoudi, F. Laquai, C. J. Brabec, A. Salleo, J. R. Durrant, and I. McCulloch, High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor, Nat. Commun. 7, 11585 (2016).
  • K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, and J. V. Manca, Relating the open-circuit voltage to interface molecular properties of donor: acceptor bulk heterojunction solar cells, Phys. Rev. B. 81(12), 125204 (2010).
  • R. King, D. Bhusari, A. Boca, D. Larrabee, X. Q. Liu, W. Hong, C. Fetzer, D. Law, and N. Karam, Band gap‐voltage offset and energy production in next‐generation multijunction solar cells, Prog. Photovolt: Res. Appl. 19(7), 797–812 (2011).
  • Y. Zhong, M. T. Trinh, R. Chen, G. E. Purdum, P. P. Khlyabich, M. Sezen, S. Oh, H. Zhu, B. Fowler, and B. Zhang, Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells, Nat. Commun. 6, 8242 (2015).
  • H. Lin, S. Chen, Z. Li, J. Y. L. Lai, G. Yang, T. McAfee, K. Jiang, Y. Li, Y. Liu, H. Hu, J. Zhao, W. Ma, H. Ade, and H. Yan, High‐performance non‐fullerene polymer solar cells based on a pair of donor–acceptor materials with complementary absorption properties, Adv. Mater. 27(45), 7299–7304 (2015).
  • W. Li, H. Yao, H. Zhang, S. Li, and J. Hou, Potential of the high photovoltaic performance non‐fullerene small molecules, Chem. Asian J. 12, 2160–2171 (2017).
  • J. Liu, S. Chen, D. Qian, B. Gautam, G. Yang, J. Zhao, J. Bergqvist, F. Zhang, W. Ma, and H. Ade, Fast charge separation in a non-fullerene organic solar cell with a small driving force, Nat. Energy. 1, 16089 (2016).
  • D. Veldman, S. C. Meskers, and R. A. Janssen, The energy of charge‐transfer states in electron donor–acceptor blends: insight into the energy losses in organic solar cells, Adv. Funct. Mater. 19(12), 1939–1948 (2009).
  • Y. Li, X. Liu, F.-P. Wu, Y. Zhou, Z.-Q. Jiang, B. Song, Y. Xia, Z.-G. Zhang, F. Gao, O. Inganäs, Y. Li, and L.-S. Liao, Non-fullerene acceptor with low energy loss and high external quantum efficiency: towards high performance polymer solar cells, J. Mater. Chem. A. 4(16), 5890–5897 (2016).
  • D. Baran, T. Kirchartz, S. Wheeler, S. Dimitrov, M. Abdelsamie, J. Gorman, R. S. Ashraf, S. Holliday, A. Wadsworth, N. Gasparini, P. Kaienburg, H. Yan, A. Amassian, C. J. Brabec, J. R. Durrant, and I. McCulloch, Reduced voltage losses yield 10% efficient fullerene free organic solar cells with> 1 V open circuit voltages, Energy Environ. Sci. 9(12), 3783–3793 (2016).
  • H. Zhang, S. Li, B. Xu, H. Yao, B. Yang, and J. Hou, Fullerene-free polymer solar cell based on a polythiophene derivative with an unprecedented energy loss of less than 0.5 eV, J. Mater. Chem. A. 4(46), 18043–18049 (2016).
  • Y. Liu, L. Zuo, X. Shi, A. K.-Y. Jen, and D. S. Ginger, Unexpectedly slow yet efficient picosecond to nanosecond photoinduced hole-transfer occurs in a polymer/non-fullerene acceptor organic photovoltaic blend, ACS Energy Lett. 3(10), 2396–2403 (2018).
  • L. Gao, Z. G. Zhang, L. Xue, J. Min, J. Zhang, Z. Wei, and Y. Li, All‐polymer solar cells based on absorption‐complementary polymer donor and acceptor with high power conversion efficiency of 8.27%, Adv. Mater. 28(9), 1884–1890 (2016).
  • H. Kang, M. A. Uddin, C. Lee, K.-H. Kim, T. L. Nguyen, W. Lee, Y. Li, C. Wang, H. Y. Woo, and B. J. Kim, Determining the role of polymer molecular weight for high-performance all-polymer solar cells: its effect on polymer aggregation and phase separation, J. Am. Chem. Soc. 137(6), 2359–2365 (2015).
  • D. Mori, H. Benten, I. Okada, H. Ohkita, and S. Ito, Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7%, Energy Environ. Sci. 7(9), 2939–2943 (2014).
  • S. Li, H. Zhang, W. Zhao, L. Ye, H. Yao, B. Yang, S. Zhang, and J. Hou, Green‐solvent‐processed all‐polymer solar cells containing a perylene diimide‐based acceptor with an efficiency over 6.5%, Adv. Energy Mater. 6(5), 1501991 (2016).
  • L. Xue, Y. Yang, Z.-G. Zhang, X. Dong, L. Gao, H. Bin, J. Zhang, Y. Yang, and Y. Li, Indacenodithienothiophene–naphthalene diimide copolymer as an acceptor for all-polymer solar cells, J. Mater. Chem. A. 4(16), 5810–5816 (2016).
  • X. Long, Z. Ding, C. Dou, J. Zhang, J. Liu, and L. Wang, Polymer acceptor based on double B← N bridged bipyridine (bnbp) unit for high‐efficiency all‐polymer solar cells, Adv. Mater. 28(30), 6504–6508 (2016).
  • X. Long, N. Wang, Z. Ding, C. Dou, J. Liu, and L. Wang, Low-bandgap polymer electron acceptors based on double B← N bridged bipyridine (BNBP) and diketopyrrolopyrrole (DPP) units for all-polymer solar cells, J. Mater. Chem. C. 4(42), 9961–9967 (2016).
  • D. Chandran, and K.-S. Lee, Diketopyrrolopyrrole: A versatile building block for organic photovoltaic materials, Macromol. Res. 21(3), 272–283 (2013).
  • K. Gao, L. Li, T. Lai, L. Xiao, Y. Huang, F. Huang, J. Peng, Y. Cao, F. Liu, T. P. Russell, R. A. J. Janssen, and X. Peng, Deep absorbing porphyrin small molecule for high-performance organic solar cells with very low energy losses, J. Am. Chem. Soc. 137(23), 7282–7285 (2015).
  • S. Li, W. Liu, M. Shi, J. Mai, T.-K. Lau, J. Wan, X. Lu, C.-Z. Li, and H. Chen, A spirobifluorene and diketopyrrolopyrrole moieties based non-fullerene acceptor for efficient and thermally stable polymer solar cells with high open-circuit voltage, Energy Environ. Sci. 9(2), 604–610 (2016).
  • H. Patil, W. X. Zu, A. Gupta, V. Chellappan, A. Bilic, P. Sonar, A. Rananaware, S. V. Bhosale, and S. V. Bhosale, A non-fullerene electron acceptor based on fluorene and diketopyrrolopyrrole building blocks for solution-processable organic solar cells with an impressive open-circuit voltage, Phys. Chem. Chem. Phys. 16(43), 23837–23842 (2014).
  • A. M. Raynor, A. Gupta, H. Patil, D. Ma, A. Bilic, T. J. Rook, and S. V. Bhosale, A non-fullerene electron acceptor based on central carbazole and terminal diketopyrrolopyrrole functionalities for efficient, reproducible and solution-processable bulk-heterojunction devices, RSC Adv. 6(33), 28103–28109 (2016).
  • Y. Zhou, L. Ding, K. Shi, Y. Z. Dai, N. Ai, J. Wang, and J. Pei, A Non‐fullerene small molecule as efficient electron acceptor in organic bulk heterojunction solar cells, Adv. Mater. 24(7), 957–961 (2012).
  • Z. Mao, W. Senevirathna, J. Y. Liao, J. Gu, S. V. Kesava, C. Guo, E. D. Gomez, and G. Sauvé, Azadipyrromethene‐based Zn (II) complexes as nonplanar conjugated electron acceptors for organic photovoltaics, Adv. Mater. 26(36), 6290–6294 (2014).
  • X. Zhan, A. Facchetti, S. Barlow, T. J. Marks, M. A. Ratner, M. R. Wasielewski, and S. R. Marder, Rylene and related diimides for organic electronics, Adv. Mater. Weinheim. 23(2), 268–284 (2011).
  • C. Li, and H. Wonneberger, Perylene imides for organic photovoltaics: Yesterday, today, and tomorrow, Adv. Mater. 24(5), 613–636 (2012).
  • F. Fernández-Lázaro, N. Zink-Lorre, and Á. Sastre-Santos, Perylenediimides as non-fullerene acceptors in bulk-heterojunction solar cells (BHJSCs), J. Mater. Chem. A. 4(24), 9336–9346 (2016).
  • M. Li, L. Wang, J. Liu, K. Zhou, X. Yu, R. Xing, Y. Geng, and Y. Han, Cooperative effects of solvent and polymer acceptor co-additives in P3HT: PDI solar cells: simultaneous optimization in lateral and vertical phase separation, Phys. Chem. Chem. Phys. 16(10), 4528–4537 (2014).
  • Y. Cai, L. Huo, X. Sun, D. Wei, M. Tang, and Y. Sun, High performance organic solar cells based on a twisted bay‐substituted tetraphenyl functionalized perylenediimide electron acceptor, Adv. Energy Mater. 5(11), 1500032 (2015).
  • C. H. Wu, C. C. Chueh, Y. Y. Xi, H. L. Zhong, G. P. Gao, Z. H. Wang, L. D. Pozzo, T. C. Wen, and A. K. Y. Jen, Influence of molecular geometry of perylene diimide dimers and polymers on bulk heterojunction morphology toward high‐performance nonfullerene polymer solar cells, Adv. Funct. Mater. 25(33), 5326–5332 (2015).
  • N. Liang, K. Sun, Z. Zheng, H. Yao, G. Gao, X. Meng, Z. Wang, W. Ma, and J. Hou, Perylene diimide trimers based bulk heterojunction organic solar cells with efficiency over 7%, Adv. Energy Mater. 6(11), 1600060 (2016).
  • Y. Lin, and X. Zhan, Non-fullerene acceptors for organic photovoltaics: An emerging horizon, Mater. Horiz. 1(5), 470–488 (2014).
  • A. Zhang, C. Li, F. Yang, J. Zhang, Z. Wang, Z. Wei, and W. Li, An electron acceptor with porphyrin and perylene bisimides for efficient non‐fullerene solar cells, Angew. Chem. Int. Ed. 56(10), 2694–2698 (2017).
  • Q. Wu, D. Zhao, A. M. Schneider, W. Chen, and L. Yu, Covalently bound clusters of alpha-substituted PDI—rival electron acceptors to fullerene for organic solar cells, J. Am. Chem. Soc. 138(23), 7248–7251 (2016).
  • Y. Lin, Z.-G. Zhang, H. Bai, J. Wang, Y. Yao, Y. Li, D. Zhu, and X. Zhan, High-performance fullerene-free polymer solar cells with 6.31% efficiency, Energy Environ. Sci. 8(2), 610–616 (2015).
  • H. Bai, Y. Wu, Y. Wang, Y. Wu, R. Li, P. Cheng, M. Zhang, J. Wang, W. Ma, and X. Zhan, Nonfullerene acceptors based on extended fused rings flanked with benzothiadiazolylmethylenemalononitrile for polymer solar cells, J. Mater. Chem. A. 3(41), 20758–20766 (2015).
  • W. Chen, X. Yang, G. Long, X. Wan, Y. Chen, and Q. Zhang, A perylene diimide (PDI)-based small molecule with tetrahedral configuration as a non-fullerene acceptor for organic solar cells, J. Mater. Chem. C. 3(18), 4698–4705 (2015).
  • N. Gasparini, M. Salvador, T. Heumueller, M. Richter, A. Classen, S. Shrestha, G. J. Matt, S. Holliday, S. Strohm, and H. J. Egelhaaf, Polymer: Nonfullerene bulk heterojunction solar cells with exceptionally low recombination rates, Adv. Energy Mater. 7(22), 1701561 (2017).
  • P. Josse, C. Dalinot, Y. Jiang, S. Dabos-Seignon, J. Roncali, P. Blanchard, and C. Cabanetos, Phthalimide end-capped thienoisoindigo and diketopyrrolopyrrole as non-fullerene molecular acceptors for organic solar cells, J. Mater. Chem. A. 4(1), 250–256 (2016).
  • S. Li, J. Yan, C.-Z. Li, F. Liu, M. Shi, H. Chen, and T. P. Russell, A non-fullerene electron acceptor modified by thiophene-2-carbonitrile for solution-processed organic solar cells, J. Mater. Chem. A. 4(10), 3777–3783 (2016).
  • A. Rananaware, A. Gupta, J. Li, A. Bilic, L. Jones, S. Bhargava, and S. V. Bhosale, A four-directional non-fullerene acceptor based on tetraphenylethylene and diketopyrrolopyrrole functionalities for efficient photovoltaic devices with a high open-circuit voltage of 1.18 V, Chem. Commun. 52(55), 8522–8525 (2016).
  • D. Zhao, Q. Wu, Z. Cai, T. Zheng, W. Chen, J. Lu, and L. Yu, Electron acceptors based on α-substituted perylene diimide (PDI) for organic solar cells, Chem. Mater. 28(4), 1139–1146 (2016).
  • H. Sun, P. Sun, C. Zhang, Y. Yang, X. Gao, F. Chen, Z. Xu, Z. K. Chen, and W. Huang, High‐performance organic solar cells based on a non‐fullerene acceptor with a spiro core, Chem. Asian J. 12(7), 721–725 (2017).
  • H. Bin, L. Gao, Z.-G. Zhang, Y. Yang, Y. Zhang, C. Zhang, S. Chen, L. Xue, C. Yang, and M. Xiao, 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor, Nat. Commun. 7, 13651 (2016).
  • Y. Yang, Z.-G. Zhang, H. Bin, S. Chen, L. Gao, L. Xue, C. Yang, and Y. Li, Side-chain isomerization on an n-type organic semiconductor ITIC acceptor makes 11.77% high efficiency polymer solar cells, J. Am. Chem. Soc. 138(45), 15011–15018 (2016).
  • T. A. Amollo, G. T. Mola, and V. O. Nyamori, Polymer solar cells with reduced graphene oxide–germanium quantum dots nanocomposite in the hole transport layer, J. Mater. Sci: Mater. Electron. 29, 7820–7831 (2018).
  • W. Tress, K. Leo, and M. Riede, Influence of hole‐transport layers and donor materials on open‐circuit voltage and shape of I–V curves of organic solar cells, Adv. Funct. Mater. 21(11), 2140–2149 (2011).
  • J. Liu, Y. Xue, Y. Gao, D. Yu, M. Durstock, and L. Dai, Hole and electron extraction layers based on graphene oxide derivatives for high‐performance bulk heterojunction solar cells, Adv. Mater. 24(17), 2228–2233 (2012).
  • R. Steim, F. R. Kogler, and C. J. Brabec, Interface materials for organic solar cells, J. Mater. Chem. 20(13), 2499–2512 (2010).
  • C.-C. Chueh, C.-Z. Li, and A. K.-Y. Jen, Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells, Energy Environ. Sci. 8(4), 1160–1189 (2015).
  • S. van Reenen, S. Kouijzer, R. A. Janssen, M. M. Wienk, and M. Kemerink, Origin of work function modification by ionic and amine‐based interface layers, Adv. Mater. Interfaces. 1(8), 1400189 (2014).
  • S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, M.-K. Seo, H. Song, and J.-Y. Lee, Au@ Ag core–shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells, ACS Nano. 8(4), 3302–3312 (2014).
  • N. Li, T. Stubhan, D. Baran, J. Min, H. Wang, T. Ameri, and C. J. Brabec, Design of the solution‐processed intermediate layer by engineering for inverted organic multi junction solar cells, Adv. Energy Mater. 3(3), 301–307 (2013).
  • D. Bilby, B. Frieberg, S. Kramadhati, P. Green, and J. Kim, Design considerations for electrode buffer layer materials in polymer solar cells, ACS Appl. Mater. Interfaces . 6(17), 14964–14974 (2014).
  • Z. Yin, J. Wei, and Q. Zheng, Interfacial materials for organic solar cells: recent advances and perspectives, Adv. Sci. 3(8), 1500362 (2016).
  • K. X. Steirer, J. P. Chesin, N. E. Widjonarko, J. J. Berry, A. Miedaner, D. S. Ginley, and D. C. Olson, Solution deposited NiO thin-films as hole transport layers in organic photovoltaics, Org. Electron. 11(8), 1414–1418 (2010).
  • J. Y. Jeng, K. C. Chen, T. Y. Chiang, P. Y. Lin, T. D. Tsai, Y. C. Chang, T. F. Guo, P. Chen, T. C. Wen, and Y. J. Hsu, Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar‐heterojunction hybrid solar cells, Adv. Mater. 26(24), 4107–4113 (2014).
  • S. O. Oseni, and G. T. Mola, Properties of functional layers in inverted thin film organic solar cells, Sol. Energ. Mater. Sol. C. 160, 241–256 (2017).
  • K. Zilberberg, S. Trost, J. Meyer, A. Kahn, A. Behrendt, D. Lützenkirchen‐Hecht, R. Frahm, and T. Riedl, Inverted organic solar cells with sol–gel processed high work‐function vanadium oxide hole‐extraction layers, Adv. Funct. Mater. 21(24), 4776–4783 (2011).
  • V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, Transition metal oxides as the buffer layer for polymer photovoltaic cells, Appl. Phys. Lett. 88(7), 073508 (2006).
  • X. Jiang, H. Xu, L. Yang, M. Shi, M. Wang, and H. Chen, Effect of CsF interlayer on the performance of polymer bulk heterojunction solar cells, Sol. Energ. Mater. Sol. C. 93(5), 650–653 (2009).
  • I. Etxebarria, J. Ajuria, and R. Pacios, Solution-processable polymeric solar cells: a review on materials, strategies and cell architectures to overcome 10%, Org. Electron. 19, 34–60 (2015).
  • S. B. Dkhil, D. Duché, M. Gaceur, A. K. Thakur, F. B. Aboura, L. Escoubas, J. J. Simon, A. Guerrero, J. Bisquert, and G. Garcia‐Belmonte, Interplay of optical, morphological, and electronic effects of ZnO optical spacers in highly efficient polymer solar cells, Adv. Energy Mater. 4(18), 1400805 (2014).
  • X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Approaching ballistic transport in suspended graphene, Nature Nanotech. 3(8), 491–495 (2008).
  • T. A. Amollo, G. T. Mola, M. Kirui, and V. O. Nyamori, Graphene for thermoelectric applications: Prospects and challenges, Crit. Rev. Solid State Mater. Sci. 43(2), 133–157 (2018).
  • S. K. Tiwari, V. Kumar, A. Huczko, R. Oraon, A. D. Adhikari, and G. Nayak, Magical allotropes of carbon: prospects and applications, Crit. Rev. Solid State Mater. Sci. 41(4), 257–317 (2016).
  • Y. Sun, W. Zhang, H. Chi, Y. Liu, C. L. Hou, and D. Fang, Recent development of graphene materials applied in polymer solar cell, Renew. Sustain. Energy Rev. 43, 973–980 (2015).
  • F. W. Low, and C. W. Lai, Recent developments of graphene-TiO2 composite nanomaterials as efficient photoelectrodes in dye-sensitized solar cells: A review, Renew. Sustain. Energy Rev. 82, 103–125 (2018).
  • W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, Synthesis of graphene and its applications: a review, Crit. Rev. Solid State Mater. Sci. 35(1), 52–71 (2010).
  • S. S. Nanda, G. C. Papaefthymiou, and D. K. Yi, Functionalization of graphene oxide and its biomedical applications, Crit. Rev. Solid State Mater. Sci. 40(5), 291–315 (2015).
  • T. A. Amollo, G. T. Mola, and V. O. Nyamori, Reduced graphene oxide-germanium quantum dot nanocomposite: Electronic, optical and magnetic properties, Nanotechnology. 28(49), 495703 (2017).
  • F. Zheng, X.-Y. Yang, P.-Q. Bi, M.-S. Niu, C.-K. Lv, L. Feng, W. Qin, Y.-Z. Wang, X.-T. Hao, and K. P. Ghiggino, Poly (3-hexylthiophene) coated graphene oxide for improved performance of bulk heterojunction polymer solar cells, Org. Electron. 44, 149–158 (2017).
  • Y. Wang, S. Yang, H. Wang, L. Zhang, H. Cheng, B. He, W. Li, and B. Zou, Surfactant-treated graphene oxide in organic solvents and its application in photovoltaic cells, Curr. Appl. Phys. 17(3), 343–350 (2017).
  • Y. Jin, F. Yu, and V. K. Kuppa, Three-fold improvement in the performance of all-polymer photovoltaic devices with graphene, Mater. Lett. 156, 161–164 (2015).
  • F. Yu, and V. K. Kuppa, Enhancement in the performance of organic photovoltaic devices with pristine graphene, Mater. Lett. 99, 72–75 (2013).
  • J. Singh, N. Prasad, K. R. Peta, and P. Bhatnagar, The role of multilayer graphene in the improved electrical and optical characteristics of a P3HT-based photovoltaic device, Mater. Res. Express. 4(8), 085101 (2017).
  • G. H. Jun, S. H. Jin, B. Lee, B. H. Kim, W.-S. Chae, S. H. Hong, and S. Jeon, Enhanced conduction and charge-selectivity by N-doped graphene flakes in the active layer of bulk-heterojunction organic solar cells, Energy Environ. Sci. 6(10), 3000–3006 (2013).
  • S. Rafique, S. M. Abdullah, M. M. Shahid, M. O. Ansari, and K. Sulaiman, Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide/PEDOT: PSS double decked hole transport layer, Sci. Rep. 7, 39555 (2017).
  • B. Sun, D. Zhou, C. Wang, P. Liu, Y. Hao, D. Han, L. Feng, and Y. Zhou, Copper (II) chloride doped graphene oxides as efficient hole transport layer for high-performance polymer solar cells, Org. Electron. 44, 176–182 (2017).
  • Y. Park, K. Soon Choi, and S. Young Kim, Graphene oxide/PEDOT: PSS and reduced graphene oxide/PEDOT: PSS hole extraction layers in organic photovoltaic cells, Phys. Status Solidi A. 209(7), 1363–1368 (2012).
  • H. P. Kim, A. R. bin Mohd Yusoff, and J. Jang, Organic solar cells using a reduced graphene oxide anode buffer layer, Sol. Energ. Mater. Sol. C. 110, 87–93 (2013).
  • A. Iwan, F. Caballero-Briones, M. Filapek, B. Boharewicz, I. Tazbir, A. Hreniak, and J. Guerrero-Contreras, Electrochemical and photocurrent characterization of polymer solar cells with improved performance after GO addition to the PEDOT: PSS hole transporting layer, Sol. Energy. 146, 230–242 (2017).
  • S.-N. Kwon, C.-H. Jung, and S.-I. Na, Electron-beam-induced reduced graphene oxide as an alternative hole-transporting interfacial layer for high-performance and reliable polymer solar cells, Org. Electron. 34, 67–74 (2016).
  • Q. Zhu, X. Bao, J. Yu, R. Yang, and L. Dong, Simple synthesis of solution-processable oxygen-enriched graphene as anode buffer layer for efficient organic solar cells, Org. Electron. 27, 143–150 (2015).
  • T. Ji, L. Tan, X. Hu, Y. Dai, and Y. Chen, A comprehensive study of sulfonated carbon materials as conductive composites for polymer solar cells, Phys. Chem. Chem. Phys. 17(6), 4137–4145 (2015).
  • K. I. Jayawardena, R. Rhodes, K. K. Gandhi, M. R. Prabhath, G. D. M. Dabera, M. J. Beliatis, L. J. Rozanski, S. J. Henley, and S. R. P. Silva, Solution processed reduced graphene oxide/metal oxide hybrid electron transport layers for highly efficient polymer solar cells, J. Mater. Chem. A. 1(34), 9922–9927 (2013).
  • M. J. Beliatis, K. K. Gandhi, L. J. Rozanski, R. Rhodes, L. McCafferty, M. R. Alenezi, A. S. Alshammari, C. A. Mills, K. D. G. I. Jayawardena, S. J. Henley, and S. R. P. Silva, Hybrid Graphene‐metal oxide solution processed electron transport layers for large area high‐performance organic photovoltaics, Adv. Mater. 26(13), 2078–2083 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.