1,703
Views
40
CrossRef citations to date
0
Altmetric
Reviews

A Review of the Graphene Synthesis Routes and its Applications in Electrochemical Energy Storage

ORCID Icon, , , ORCID Icon, ORCID Icon &

References

  • A. K. Geim, Graphene prehistory. in Physica Scripta T. 2012, (T146), 014003. Publisher:IOP Publishing (UK).
  • A. K. Geim, Graphene: Status and prospects. Science. 324 (5934), 1530–1534 (2009). doi: 10.1126/science.1158877
  • H. K. Chae, D. Y. Siberio-Pérez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O'Keeffe, and O. M. Yaghi, A route to high surface area, porosity and inclusion of large molecules in crystals. Nature. 427 (6974), 523–527 (2004). doi: 10.1038/nature02311
  • K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in grapheme. Nature. 438 (7065), 197–200 (2005). doi: 10.1038/nature04233
  • A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer grapheme. Nano Lett. 8 (3), 902–907 (2008) doi: 10.1021/nl0731872.
  • M. Freitag, M. Steiner, Y. Martin, V. Perebeinos, Z. Chen, J. C. Tsang, and P. Avouris, Energy dissipation in graphene field-effect transistors. Nano Lett. 9 (5), 1883–1888 (2009) doi: 10.1021/nl803883h.
  • J. Taha-Tijerina, L. Peña-Paras, T. N. Narayanan, L. Garza, C. Lapray, J. Gonzalez, E. Palacios, D. Molina, A. García, D. Maldonado, and P. M. Ajayan, Multifunctional nanofluids with 2D nanosheets for thermal and tribological management. Wear. 302 (1-2), 1241–1248 doi: 10.1016/j.wear.2012.12.010 (2013).
  • C.N.R.Rao,K. S. Subrahmanyam, H. S. S. R. Matte, B. Abdulhakeem, A. Govindaraj, B. Das, P. Kumar, A. Ghosh, and D. J. Late , Sci. Technol. Adv. Mater. 11(5), 054502 (2010).K.S.Subrahmanyam,H.S.S.R.Matte,B.Abdulhakeem,A.Govindaraj,B.Das,P.Kumar,A.Ghosh,andD.J.Late,Astudyofthesyntheticmethodsandpropertiesofgraphenes.Sci.Technol.Adv.Mater.11(5),054502(2010)
  • C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer grapheme. Science. 321 (5887), 385–388 (2008).
  • M. Dragoman, and D. Dragoman, Graphene-based quantum electronics. Prog. Quant. Electron. 33 (6), 165–214 (2009).
  • X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Approaching ballistic transport in suspended grapheme. Nat. Nanotech. 3 (8), 491–495 (2008).
  • K. S. Novoselov, V. I. Fal′Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, A roadmap for grapheme. Nature. 490 (7419), 192–200 (2012).
  • S. Niyogi, E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hamon, and R. C. Haddon, Solution properties of graphite and grapheme. J. Am. Chem. Soc. 128 (24), 7720–7721 (2006).
  • X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science. 319 (5867), 1229–1232 (2008).
  • S. Kataria, S. Wagner, J. Ruhkopf, A. Gahoi, H. Pandey, R. Bornemann, S. Vaziri, A. D. Smith, M. Ostling, and M. C. Lemme, Chemical vapor deposited graphene: From synthesis to applications. Phys. Status Solidi A. 211 (11), 2439–2449 (2014).
  • T. Wu, Y. Jiang, and X. Zhang, The synthesis of CVD single crystal graphene growth on copper substrate. Gongneng Cailiao/J. Funct. Mater. 46, 16037–16043 and 11651 (2015).
  • A. Reina, and J. Kong, Graphene growth by CVD methods, in Graphene Nanoelectronics: From Materials to Circuits, Murali R., Ed., Springer., USA, Vol. 9781461405481 167–203 (2012).
  • Z.-S. Wu, W. Ren, L. Gao, B. Liu, C. Jiang, and H.-M. Cheng, Synthesis of high-quality graphene with a pre-determined number of layers. Carbon. 47 (2), 493–499 (2009).
  • Z.-Y. Juang, C.-Y. Wu, C.-W. Lo, W.-Y. Chen, C.-F. Huang, J.-C. Hwang, F.-R. Chen, K.-C. Leou, and C.-H. Tsai, Synthesis of graphene on silicon carbide substrates at low temperature. Carbon. 47 (8), 2026–2031 (2009).
  • A. G. Cano-Márquez, F. J. Rodríguez-Macías, J. Campos-Delgado, C. G. Espinosa-González, F. Tristán-López, D. Ramírez-González, D. A. Cullen, D. J. Smith, M. Terrones, and Y. I. Vega-Cantú, Ex-MWNTs: Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 9 (4), 1527–1533 (2009).
  • S. Horiuchi, T. Gotou, M. Fujiwara, T. Asaka, T. Yokosawa, and Y. Matsui, Single graphene sheet detected in a carbon nanofilm. Appl. Phys. Lett. 84 (13), 2403–2405 (2004).
  • N. I. Zaaba,K. L. Foo, U. Hashim, S. J. Tan, W. W. Liu, and C. H. Voon, Synthesis of graphene oxide using modified hummers method: Solvent influence. Procedia Eng. 184, 469–477 (2017).
  • M. V. Antisari, D. M. Gattia, L. Brandão, R. Marazzi, and A. Montone, Carbon nanostructures produced by an AC Arc discharge. Mater. Sci. Forum. 638–642, 1766–1771 (2010).
  • Z. Yang, and J. Hao, Progress in pulsed laser deposited two-dimensional layered materials for device applications. J. Mater. Chem. C. 4 (38), 8859–8878 (2016).
  • A. K. Geim, and K. S. Novoselov, The rise of grapheme. Nat Mater. 6 (3), 183–191 (2007).
  • H. Gao, H. Liu, C. Song, and G. Hu, Infusion of graphene in natural rubber matrix to prepare conductive rubber by ultrasound-assisted supercritical CO2 method. Chem. Eng. J. 368, 1013–1021 (2019).
  • A. Kumar, K. Sharma, and A. R. Dixit, A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J. Mater. Sci. 54 (8), 5992–6026 (2019).
  • R. S. Ruoff, and D. C. Lorents, Mechanical and thermal properties of carbon nanotubes. Carbon. 33 (7), 925–930 (1995).
  • G. Eda, H. Emrah Unalan, N. Rupesinghe, G. A. J. Amaratunga, and M. Chhowalla, Field emission from graphene based composite thin films. Appl. Phys. Lett.. 93 (23), 233502 (2008).
  • J. Hone,B. Batlogg, Z. Benes, M. C. Llaguno, N. M. Nemes, A. T. Johnson, and J. E. Fischer, Thermal properties of single-walled carbon nanotubes. Mater. Res. Soc. Sympos. – Proc. 633, A1711–A17112 (2001).
  • C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu, Direct electrochemistry of glucose oxidase and biosensing for glucose based on grapheme. Anal. Chem. 81 (6), 2378–2382 (2009).
  • J. M. Moon,S. C. Lim, Y. H. Jeong, Y. H. Lee, D. J. Bae, E. K. Suh, Y. S. Park, K. S. Kim, K. H. An, and S. H. Park, Transport phenomena in an anisotropically aligned single-wall carbon nanotube film. Phys Rev B – Condensed Matter. Mater. Phys. 64 (23), 2334011-2334014 (2001).
  • A. B. Kaiser, Electronic transport properties of conducting polymers and carbon nanotubes. Rep. Prog. Phys. 64 (1), 1–49 (2001).
  • S. Das, P. Sudhagar, Y. S. Kang, and W. Choi, Graphene synthesis and application for solar cells. J. Mater. Res. 29 (3), 299–319 (2014).
  • P. A. Haddad, D. Flandre, and J. P. Raskin, Intrinsic rectification in common-gated graphene field-effect transistors. Nano Energy. 43, 37–46 (2018).
  • I.-J. Park, T. I. Kim, I.-T. Cho, C.-W. Song, J.-W. Yang, H. Park, W.-S. Cheong, S. G. Im, J.-H. Lee, and S.-Y. Choi, Graphene electrode with tunable charge transport in thin-film transistors. Nano Res. 11 (1), 274–286 (2018).
  • Y. Sun, Q. Wu, and G. Shi, Graphene based new energy materials. Energy Environ. Sci. 4 (4), 1113–1132 (2011).
  • B. G. Choi, H. Park, M. H. Yang, Y. M. Jung, S. Y. Lee, W. H. Hong, and T. J. Park, Microwave-assisted synthesis of highly water-soluble graphene towards electrical DNA sensor. Nanoscale. 2 (12), 2692–2697 (2010).
  • K. Toda, R. Furue, and S. Hayami, Recent progress in applications of graphene oxide for gas sensing: A review. Anal. Chim. Acta. 878, 43–53 (2015).
  • S. Ge, M. Yan, J. Lu, M. Zhang, F. Yu, J. Yu, X. Song, and S. Yu, Electrochemical biosensor based on graphene oxide-Au nanoclusters composites for l-cysteine analysis, Biosensors and Bioelectronics. 31 (1), 49–54 (2012).
  • J. Lu, L. T. Drzal, R. M. Worden, and I. Lee, Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets nafion membrane. Chem. Mater. 19 (25), 6240–6246 (2007).
  • O. D. Iakobson,O. L. Gribkova, A. R. Tameev, A. A. Nekrasov, D. S. Saranin, and A. Di Carlo, Graphene nanosheet/polyaniline composite for transparent hole transporting layer. J. Ind. Eng. Chem. 65 (25), 309-317(2018) doi: 10.1016/j.jiec.2018.04.042.
  • J. G. Seo, C. K. Lee, D. Lee, and S. H. Song, High-performance tires based on graphene coated with Zn-free coupling agents. J. Ind. Eng. Chem. 66(25), 78-85 (2018) doi: 10.1016/j.jiec.2018.04.015.
  • A. Pendashteh, M. F. Mousavi, and M. S. Rahmanifar, Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor. Electrochim. Acta . 88, 347–357 (2013).
  • B. H. Nguyen, and V. H. Nguyen, Promising applications of graphene and graphene-based nanostructures. Adv. Nat. Sci: Nanosci. Nanotechnol. 7, 023002 (2016).
  • S. Das, M. Kim, J. W. Lee, and W. Choi, Synthesis, properties, and applications of 2-D materials: A comprehensive review. Crit. Rev. Solid State Mater. Sci. 39 (4), 231–252 (2014).
  • A. Dato, Graphene synthesized in atmospheric plasmas – A review. J. Mater. Res. 34 (1), 214–230 (2019).
  • A. Jilani,M. H. D. Othman, M. O. Ansari, S. Z. Hussain, A. F. Ismail, I. U. Khan, and Inamuddin, Graphene and its derivatives: Synthesis, modifications, and applications in wastewater treatment. Environ. Chem. Lett. 16, 1301–1323 (2018).
  • F. Cesano, and D. Scarano, Graphene and other 2D layered hybrid nanomaterial-based films: Synthesis, properties, and applications. Coatings. 8 (2018).
  • J. Y. Lim,N. M. Mubarak, E. C. Abdullah, S. Nizamuddin, M. Khalid, and Inamuddin, Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals — A review, J. Ind. Eng. Chem. 66, 29–44 (2018).
  • A. K. Kasar, and P. L. Menezes, Synthesis and recent advances in tribological applications of grapheme. Int. J. Adv. Manuf. Technol. 97 (9-12), 3999–4019 (2018).
  • G. Kaur, K. Kavitha, and I. Lahiri, Transfer-free graphene growth on dielectric substrates: A review of the growth mechanism. Crit. Rev. Solid State Mater. Sci. 44(0 ), 157–209 (2018).
  • M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131 (10), 3611–3620 (2009).
  • L. H. Viculis, J. J. Mack, and R. B. Kaner, A chemical route to carbon nanoscrolls. Science. 299 (5611), 1361 (2003).
  • M. Velický,P. S. Toth, A. M. Rakowski, A. P. Rooney, A. Kozikov, C. R. Woods, A. Mishchenko, L. Fumagalli, J. Yin, V. Zólyomi, T. Georgiou, S. J. Haigh, K. S. Novoselov, and R. A. W. Dryfe, Exfoliation of natural van der Waals heterostructures to a single unit cell thickness. Nat. Commun. 8, 14410 (2017) doi: 10.1038/ncomms14410.
  • S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 16 (2), 155–158 (2006).
  • S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 45 (7), 1558–1565 (2007).
  • V. Huc,N. Bendiab, N. Rosman, T. Ebbesen, C. Delacour, and V. Bouchiat, Large and flat graphene flakes produced by epoxy bonding and reverse exfoliation of highly oriented pyrolytic graphite. Nanotechnology. 19(45), 455601 (2008).
  • V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Graphene based materials: Past, present and future. Prog. Mater. Sci. 56 (8), 1178–1271 (2011).
  • A. Shukla, R. Kumar, J. Mazher, and A. Balan, Graphene made easy: High quality, large-area samples. Solid State Commun. 149 (17-18), 718–721 (2009).
  • Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotech. 3 (9), 563–568 (2008).
  • C. Nethravathi, and M. Rajamathi, Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon. 46 (14), 1994–1998 (2008).
  • V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, High-throughput solution processing of large-scale grapheme. Nat. Nanotech. 4 (1), 25–29 (2009).
  • J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K. Vandersypen, Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 7 (2), 151–157 (2008).
  • A. Dathbun, and S. Chaisitsak, Effects of three parameters on graphene synthesis by chemical vapor deposition. In 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, IEEE NEMS, Suzhou, China, 1018–1021 (2013) doi:10.1109/NEMS.2013.6559895.
  • M. Reinke, Y. Kuzminykh, and P. Hoffmann, Low temperature chemical vapor deposition using atomic layer deposition chemistry. Chem. Mater. 27 (5), 1604–1611 (2015).
  • P. R. Somani, S. P. Somani, and M. Umeno, Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 430 (1-3), 56–59 (2006).
  • S. J. Chae,F. Günes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H. J. Shin, S. M. Yoon, J. Y. Choi, M. H. Park, C. W. Yang, D. Pribat, and Y. H. Lee, Synthesis of large-area graphene layers on nickel film by chemical vapor deposition: Wrinkle formation. In Proceedings of SPIE – The International Society for Optical Engineering,San Diego, Califonia, USA (2009) doi:10.1117/12.828039.
  • G. D. Yuan, W. J. Zhang, Y. Yang, Y. B. Tang, Y. Q. Li, J. X. Wang, X. M. Meng, Z. B. He, C. M. L. Wu, I. Bello, C. S. Lee, and S. T. Lee, Graphene sheets via microwave chemical vapor deposition. Chem. Phys. Lett. 467 (4-6), 361–364 (2009).
  • X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 324 (5932), 1312–1314 (2009).
  • E. Dervishi, Z. Li, F. Watanabe, A. Biswas, Y. Xu, A. R. Biris, V. Saini, and A. S. Biris, Large-scale graphene production by RF-cCVD method. Chem. Commun. (27)(27), 4061–4063 (2009).
  • E. Dervishi, Z. Li, F. Watanabe, A. Courte, A. Biswas, A. R. Biris, V. Saini, Y. Xu, and A. S. Biris, Versatile catalytic system for the large-scale and controlled synthesis of single-wall, double-wall, multi-wall, and graphene carbon nanostructures. Chem. Mater. 21 (22), 5491–5498 (2009).
  • M. Y. Lin,W. C. Guo, M. H. Wu, P. Y. Wang, T. H. Liu, C. W. Pao, C. C. Chang, S. C. Lee, and S. Y. Lin, Low-temperature grown graphene films by using molecular beam epitaxy. Appl. Phys. Lett. 101, 221911 (2012).
  • Z. Zhen, X. Li, and H. Zhu, Synthesis of two dimensional materials on extremely clean surfaces. Nano Today. 22, 7-9 (2018) doi: 10.1016/j.nantod.2018.04.013.
  • Z. Li, P. Wu, C. Wang, X. Fan, W. Zhang, X. Zhai, C. Zeng, Z. Li, J. Yang, and J. Hou, Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources. ACS Nano. 5 (4), 3385–3390 (2011).
  • R. Giorgi,T. Dikonimos, M. Falconieri, S. Gagliardi, N. Lisi, P. Morales, L. Pilloni, and E. Salernitano, Synthesis of graphene films on copper substrates by CVD of different precursors in Carbon Nanostructures, Ottaviano, L and Morandi. V., Eds., Springer., Berlin, Heidelberg, 109–118 (2012).
  • H. Kim, C. Ahn, G. Arabale, C. Lee, and T. Kim, Synthesis of MoS2 atomic layers using PECVD. ECS Trans. 58(8), 47–50 (2013) doi: 10.1149/05808.0047ecst.
  • H. A. Mehedi,B. Baudrillart, D. Alloyeau, O. Mouhoub, C. Ricolleau, V. D. Pham, C. Chacon, A. Gicquel, J. Lagoute, and S. Farhat, Synthesis of graphene by cobalt-catalyzed decomposition of methane in plasma-enhanced CVD: Optimization of experimental parameters with Taguchi method. J. Appl. Phys. 120 (2016) doi: 10.1063/1.4960692.
  • S. Gottlieb, N. Wöhrl, S. Schulz, and V. Buck, Simultaneous synthesis of nanodiamonds and graphene via plasma enhanced chemical vapor deposition (MW PE-CVD) on copper. SpringerPlus. 5 (2016) doi: 10.1186/s40064-016-2201-x.
  • L. Cheng, K. Yun, A. Lucero, J. Huang, X. Meng, G. Lian, H.-S. Nam, R. M. Wallace, M. Kim, A. Venugopal, L. Colombo, and J. Kim, Low temperature synthesis of graphite on Ni films using inductively coupled plasma enhanced CVD, J. Mater. Chem. C. 3 (20), 5192–5198 (2015).
  • G. Kalita, K. Wakita, and M. Umeno, Low temperature growth of graphene film by microwave assisted surface wave plasma CVD for transparent electrode application. RSC Adv. 2 (7), 2815–2820 (2012).
  • M. H. Rümmeli,A. Bachmatiuk, A. Dianat, A. Scott, F. Bor̈rnert, I. Ibrahim, S. Zhang, E. Borowiak-Palen, G. Cuniberti, and B. Büchner, Low temperature CVD growth of graphene nano-flakes directly on high K dielectrics. In Materials Research Society Symposium Proceedings,Materials Research Society (MRS); Pennsylvania, USA, 2011, 19–24 doi: 10.1557/opl.2011.218.
  • H. C. Lee et al., Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Adv. 7, 15644–15693 (2017).
  • O. Volotskova, I. Levchenko, A. Shashurin, Y. Raitses, K. Ostrikov, and M. Keidar, Single-step synthesis and magnetic separation of graphene and carbon nanotubes in arc discharge plasmas. Nanoscale. 2 (10), 2281–2285 (2010).
  • S. H. Chan,S. H. Chen, W. T. Lin, M. C. Li, Y. C. Lin, and C. C. Kuo, Low-temperature synthesis of graphene on Cu using plasma-assisted thermal chemical vapor deposition. Nanoscale Res. Lett. 8, 1–5 (2013).
  • C. Hudaya, M. Ahn, S. H. Oh, B. J. Jeon, Y.-E. Sung, and J. K. Lee, Simultaneous etching and transfer — Free multilayer graphene sheets derived from C60 thin films. J. Ind. Eng. Chem. 64, 70–75 (2018).
  • T. Choi,S. J. Kim, S. Park, T. Hwang, Y. Jeon, and B. H. Hong, Roll-to-roll synthesis and patterning of graphene and 2D materials, in Technical Digest – International Electron Devices Meeting, IEDM, Washington, DC, USA, 2015, 27.7.1-27.7.4
  • W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, Synthesis of graphene and its applications: A review. Crit. Rev. Solid State Mater. Sci. 35 (1), 52–71 (2010).
  • R. Addou, A. Dahal, P. Sutter, and M. Batzill, Monolayer graphene growth on Ni(111) by low temperature chemical vapor deposition. Appl. Phys. Lett. 100 (2), 021601 (2012).
  • Q. Yu,J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei, Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 93(11),113103 (2008) doi: 10.1063/1.2982585.
  • E. M. Gallo,B. I. Willner, J. Hwang, S. Sun, M. Spencer, T. Salgaj, W. C. Mitchel, N. Sbrockey, and G. S. Tompa, Chemical vapor deposition of graphene on copper at reduced temperatures, in Proc. SPIE 8462, Carbon Nanotubes, Graphene, and Associated Devices V, 846203 (27 September 2012) San Diego, California, United States doi: 10.1117/12.929094
  • B. Jang,C. H. Kim, S. T. Choi, K. S. Kim, K. S. Kim, H. J. Lee, S. Cho, J. H. Ahn, and J. H. Kim, Damage mitigation in roll-to-roll transfer of CVD-graphene to flexible substrates. 2D Materials. 4(2), 024002 (2017) doi: 10.1088/2053-1583/aa57fa.
  • S. Naghdi, K. Y. Rhee, and S. J. Park, A catalytic, catalyst-free, and roll-to-roll production of graphene via chemical vapor deposition: Low temperature growth. Carbon. 127, 1–12 (2018).
  • Y. Zhang, L. Zhang, and C. Zhou, Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46 (10), 2329–2339 (2013).
  • X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E. M. Vogel, E. Voelkl, L. Colombo, and R. S. Ruoff, Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett. 10 (11), 4328–4334 (2010).
  • E. Lee, H. C. Lee, S. B. Jo, H. Lee, N.-S. Lee, C. G. Park, S. K. Lee, H. H. Kim, H. Bong, and K. Cho, Heterogeneous solid carbon source-assisted growth of high-quality graphene via CVD at low temperatures. Adv. Funct. Mater. 26 (4), 562–568 (2016).
  • S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol. 5 (8), 574–578 (2010).
  • A. Guermoune, T. Chari, F. Popescu, S. S. Sabri, J. Guillemette, H. S. Skulason, T. Szkopek, and M. Siaj, Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon. 49 (13), 4204–4210 (2011).
  • B. Wang, Q. Y. Chang, and K. Gao, A hydrothermal reacting approach to prepare few-layer graphene from bulk graphite. Appl. Surf. Sci. 479, 20–24 (2019).
  • S. Park, and R. S. Ruoff, Chemical methods for the production of graphenes. Nat Nanotech. 4 (4), 217–224 (2009).
  • C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B. 108 (52), 19912–19916 (2004).
  • H. Zhang, F. Ding, H. Li, F. Qu, H. Meng, and H. Gu, Controlled synthesis of monolayer graphene with a high quality by pyrolysis of silicon carbide. Mater. Lett. 244, 171–174 (2019).
  • J. Hass, W. A. De Heer, and E. H. Conrad, The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Matter. 20(32), 323202 (2008) doi: 10.1088/0953-8984/20/32/323202.
  • E. Rollings, G.-H. Gweon, S. Y. Zhou, B. S. Mun, J. L. McChesney, B. S. Hussain, A. V. Fedorov, P. N. First, W. A. de Heer, and A. Lanzara, Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J. Phys. Chem. Solids. 67 (9-10), 2172–2177 (2006).
  • T. Ohta,F. El Gabaly, A. Bostwick, J. L. McChesney, K. V. Emtsev, A. K. Schmid, T. Seyller, K. Horn, and E. Rotenberg, Morphology of graphene thin film growth on SiC(0001). New J. Phys. 10, 023034 (2008) doi: 10.1088/1367-2630/10/2/023034.
  • Z. G. Cambaz, G. Yushin, S. Osswald, V. Mochalin, and Y. Gogotsi, Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC, Carbon. 46 (6), 841–849 (2008).
  • D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature. 458 (7240), 872–876 (2009).
  • B. Wang, C. Hu, and L. Dai, Functionalized carbon nanotubes and graphene-based materials for energy storage. Chem. Commun. 52 (100), 14350–14360 (2016).
  • C. D. Kim, B. K. Min, and W. S. Jung, Preparation of graphene sheets by the reduction of carbon monoxide. Carbon. 47 (6), 1610–1612 (2009).
  • W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Solid C60: A new form of carbon. Nature. 347 (6291), 354–358 (1990).
  • Y. Chen, H. Zhao, L. Sheng, L. Yu, K. An, J. Xu, Y. Ando, and X. Zhao, Mass-production of highly-crystalline few-layer graphene sheets by arc discharge in various H2-inert gas mixtures. Chem. Phys. Lett. 538, 72–76 (2012).
  • J. Xu, Z. Wang, Z. Shi, and Z. Gu, Synthesis, isolation and spectroscopic characterization of Yb-containing high metallofullerenes. Chem. Phys. Lett. 409 (4-6), 192–196 (2005).
  • N. Li, Z. Wang, K. Zhao, Z. Shi, Z. Gu, and S. Xu, Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon. 48 (1), 255–259 (2010).
  • S. Kim, Y. Song, J. Wright, and M. J. Heller, Graphene bi- and trilayers produced by a novel aqueous arc discharge process. Carbon. 102, 339–345 (2016).
  • K.-H. Tseng, C.-J. Chou, S.-H. Shih, D.-C. Tien, H.-C. Ku, and L. Stobinsk, Submerged arc discharge for producing nanoscale graphene in deionised water. Micro Nano Lett. 13 (1), 31–34 (2018).
  • N. M. Mubarak, E. C. Abdullah, N. S. Jayakumar, and J. N. Sahu, An overview on methods for the production of carbon nanotubes. J. Ind. Eng. Chem. 20 (4), 1186–1197 (2014).
  • K. S. Subrahmanyam, L. S. Panchakarla, A. Govindaraj, and C. N. R. Rao, Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C. 113 (11), 4257–4259 (2009).
  • N. Li, Z. Wang, K. Zhao, Z. Shi, Z. Gu, and S. Xu, Synthesis of single-wall carbon nanohorns by arc-discharge in air and their formation mechanism. Carbon. 48 (5), 1580–1585 (2010).
  • Z. Tu, Z. Liu, Y. Li, F. Yang, L. Zhang, Z. Zhao, C. Xu, S. Wu, H. Liu, H. Yang, and P. Richard, Controllable growth of 1-7 layers of graphene by chemical vapour deposition. Carbon. 73, 252–258 (2014).
  • F. Kazemizadeh, and R. Malekfar, One step synthesis of porous graphene by laser ablation: A new and facile approach. Physica. B: Condens. Matter. 530, 236–241 (2018).
  • M. D. Fischbein, and M. Drndić, Electron beam nanosculpting of suspended graphene sheets. Appl. Phys. Lett. 93 (11),113107 (2008) doi: 10.1063/1.2980518.
  • D. C. Bell, M. C. Lemme, L. A. Stern, J. R. Williams, and C. M. Marcus, Precision cutting and patterning of graphene with helium ions. Nanotechnology. 20 (45), 455301 (2009) doi: 10.1088/0957-4484/20/45/455301.
  • D. Fox,A. O'Neill, D. Zhou, M. Boese, J. N. Coleman, and H. Z. Zhang, Nitrogen assisted etching of graphene layers in a scanning electron microscope. Appl. Phys. Lett. 98(24), 243117 (2011) doi: 10.1063/1.3601467.
  • Y. Liu, X. Liu, M. Li, Y. Liu, Z. Guo, Z. Xue, and X. Lu, A novel synthesis of porous graphene nanoarchitectures using silver nanoparticles for fabricating enzyme sensor. RSC Adv. 5 (121), 100268–100271 (2015).
  • M. Zhang, W. X. Bao, X. L. Liu, B. Z. Yu, Z. Y. Ren, J. T. Bai, and H. M. Fan, Large-scale synthesis of porous graphene through nanoscale carbothermal reduction etching. J. Mater. Sci. 50 (24), 7875–7883 (2015).
  • G. Srinivas, J. W. Burress, J. Ford, and T. Yildirim, Porous graphene oxide frameworks: Synthesis and gas sorption properties. J. Mater. Chem. 21 (30), 11323–11329 (2011).
  • S. Z. Mortazavi, P. Parvin, and A. Reyhani, Fabrication of graphene based on Q-switched Nd:YAG laser ablation of graphite target in liquid nitrogen, Laser Phys. Lett. 9 (7), 547–552 (2012).
  • S. R. J. Pearce, S. J. Henley, F. Claeyssens, P. W. May, K. R. Hallam, J. A. Smith, and K. N. Rosser, Production of nanocrystalline diamond by laser ablation at the solid/liquid interface. Diamond Relat. Mater. 13 (4-8), 661–665 (2004).
  • H. Asano, S. Muraki, H. Endo, S. Bandow, and S. Iijima, Strong magnetism observed in carbon nanoparticles produced by the laser vaporization of a carbon pellet in hydrogen-containing Ar balance gas. J. Phys. Condens. Matter. 22(33), 334209 (2010) doi: 10.1088/0953-8984/22/33/334209.
  • Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. M. Veca, and S.-Y. Xie, Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128 (24), 7756–7757 (2006) doi: 10.1021/ja062677d.
  • P. Russo, A. Hu, G. Compagnini, W. W. Duley, and N. Y. Zhou, Femtosecond laser ablation of highly oriented pyrolytic graphite: A green route for large-scale production of porous graphene and graphene quantum dots. Nanoscale. 6 (4), 2381–2389 (2014) doi: 10.1039/c3nr05572h.
  • G. Ning, Z. Fan, G. Wang, J. Gao, W. Qian, and F. Wei, Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes. Chem. Commun. 47 (21), 5976–5978 (2011) doi: 10.1039/c1cc11159k.
  • E. Cappelli, S. Orlando, G. Mattei, C. Scilletta, F. Corticelli, and P. Ascarelli, Nano-structured oriented carbon films grown by PLD and CVD methods. Appl. Phys. A. 79 (8), 2063–2068 (2004) doi: 10.1007/s00339-004-2862-0.
  • S. J. Bertke, D. H. Tomich, J. E. Hoelscher, and R. L. Jacobsen, Laser precision-based graphene growth processes, in ICALEO 2009 – 28th International Congress on Applications of Lasers and Electro-Optics, Congress Proceedings. Orlando, Florida, USA, 1382–1387 (2009) doi: 10.2351/1.5061503.
  • S. Mitra, S. Banerjee, A. Datta, and D. Chakravorty, A brief review on graphene/inorganic nanostructure composites: Materials for the future. Indian J. Phys. 90 (9), 1019–1032 (2016) doi: 10.1007/s12648-016-0841-x.
  • P. Liu, A. L. Cottrill, D. Kozawa, V. B. Koman, D. Parviz, A. T. Liu, J. Yang, T. Q. Tran, M. H. Wong, S. Wang, and M. S. Strano, Emerging trends in 2D nanotechnology that are redefining our understanding of “Nanocomposites. Nano Today. 21, 18–40 (2018).
  • I. Heng, C. W. Lai, J. C. Juan, A. Numan, J. Iqbal, and E. Y. L. Teo, Low-temperature synthesis of TiO2 nanocrystals for high performance electrochemical supercapacitors. Ceram. Int. 45 (4), 4990–5000 (2019).
  • M. Y. Chong, A. Numan, C.-W. Liew, H. M. Ng, K. Ramesh, and S. Ramesh, Enhancing the performance of green solid-state electric double-layer capacitor incorporated with fumed silica nanoparticles. J. Phys. Chem. Solids. 117, 194–203 (2018).
  • J. Iqbal, A. Numan, S. Rafique, R. Jafer, S. Mohamad, K. Ramesh, and S. Ramesh, High performance supercapattery incorporating ternary nanocomposite of multiwalled carbon nanotubes decorated with Co3O4 nanograins and silver nanoparticles as electrode material. Electrochim. Acta. 278, 72–82 (2018).
  • D. P. Dubal, O. Ayyad, V. Ruiz, and P. Gómez-Romero, Hybrid energy storage: The merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 44 (7), 1777–1790 (2015).
  • G. Z. Chen, Supercapacitor and supercapattery as emerging electrochemical energy stores. Int. Mater. Rev. 62 (4), 173–202 (2017).
  • P. K. Sharma, A. Arora, and S. K. Tripathi, Review of supercapacitors: Materials and devices. J. Energy Storage. 21, 801–825 (2019).
  • A. Numan, N. Duraisamy, F. Saiha Omar, D. Gopi, K. Ramesh, and S. Ramesh, Sonochemical synthesis of nanostructured nickel hydroxide as an electrode material for improved electrochemical energy storage application. Prog. Nat. Sci: Mater. Int. 27 (4), 416–423 (2017).
  • T. Brousse, D. Bélanger, and J. W. Long, To be or not to be pseudocapacitive? J. Electrochem. Soc. 162 (5), A5185–A5189 (2015).
  • A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, and D. Aurbach, Carbon-based composite materials for supercapacitor electrodes: a review. J. Mater. Chem. A. 5 (25), 12653–12672 (2017).
  • X. Chen, R. Paul, and L. Dai, Carbon-based supercapacitors for efficient energy storage. Nat. Sci. Rev. 4, 453–489 (2017).
  • D. Chen, L. Tang, and J. Li, Graphene-based materials in electrochemistry. Chem. Soc. Rev. 39 (8), 3157–3180 (2010).
  • C. K. Chua, A. Ambrosi, and M. Pumera, Graphene based nanomaterials as electrochemical detectors in Lab-on-a-chip devices. Electrochem. Commun. 13 (5), 517–519 (2011).
  • A. S. Aricò, P. Bruce, B. Scrosati, J. M. Tarascon, and W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles Nature Publishing Group, UK, 148–159 (2010)doi.org/10.1142/7848.
  • M. Beaula Ruby Kamalam, B. K. Balachander, and K. Sethuraman, Solvothermal Synthesis and Characterization of Reduced Graphene oxide/ Vanadium Pentoxide Hybrid nanostructures. Materials Today: Proceedings. 3(6), 2132–2140 doi: 10.1016/j.matpr.2016.04.118.
  • Y. Cao, G. Li, and X. Li, Graphene/layered double hydroxide nanocomposite: Properties, synthesis, and applications. Chem. Eng. J. 292, 207–223 (2016).
  • D. Chen, W. Chen, L. Ma, G. Ji, K. Chang, and J. Y. Lee, Graphene-like layered metal dichalcogenide/graphene composites: Synthesis and applications in energy storage and conversion. Mater. Today. 17 (4), 184–193 (2014).
  • D. Hoon Suh, S. K. Park, P. Nakhanivej, S. W. Kang, and H. S. Park, Microwave synthesis of SnO2 nanocrystals decorated on the layer-by-layer reduced graphene oxide for an application into lithium ion battery anode. J. Alloys Compd. 702, 636–643 (2017).
  • X. Zhang, X. Huang, X. Geng, X. Zhang, L. Xia, B. Zhong, T. Zhang, and G. Wen, Flexible anodes with carbonized cotton covered by graphene/SnO2 for advanced lithium-ion batteries. J. Electroanal. 794, 15–22 (2017).
  • H. Yu, G. Guo, L. Ji, H. Li, D. Yang, J. Hu, and A. Dong, Designed synthesis of ordered mesoporous graphene spheres from colloidal nanocrystals and their application as a platform for high-performance lithium-ion battery composite electrodes. Nano Res. 9 (12), 3757–3771 (2016).
  • B. Yan, X. Li, Z. Bai, Y. Zhao, L. Dong, X. Song, D. Li, C. Langford, and X. Sun, Crumpled reduced graphene oxide conformally encapsulated hollow V2O5 nano/microsphere achieving brilliant lithium storage performance. Nano Energy. 24, 32–44 (2016).
  • Y. Wang, H. Huang, Q. Xie, Y. Wang, and B. Qu, Rational design of graphene-encapsulated NiCo2O4 core-shell nanostructures as an anode material for sodium-ion batteries, J. Alloys Compd. 705, 314–319 (2017).
  • X. Zhou, Y. Li, G. Ma, Q. Ma, and Z. Lei, One-step solid-state synthesis of sulfur-reduced graphene oxide composite for lithium-sulfur batteries. J. Alloys Compd. 685, 216–221 (2016).
  • L. Zhang, Z. Zhao, T. Xia, S. Zhang, X. Li, and A. Zhang, Anchoring Bi2WO6 nanoparticles on 3D graphene frameworks for enhanced lithium storage. Mater. Lett. 210, 345–349 (2018).
  • M. H. Yang, and B. G. Choi, Rapid one-step synthesis of conductive and porous MnO2/graphene nanocomposite for high performance supercapacitors. Electroanal. Chem. 776, 134–138 (2016).
  • D. Xiong, X. Li, H. Shan, B. Yan, D. Li, C. Langford, and X. Sun, Scalable synthesis of functionalized graphene as cathodes in Li-ion electrochemical energy storage devices. Appl. Energy. 175, 512–521 (2016).
  • Y. Xie, D. Hu, L. Liu, P. Zhou, J. Xu, and Y. Ling, Oxygen vacancy induced fast lithium storage and efficient organics photodegradation over ultrathin TiO2 nanolayers grafted graphene sheets. J. Hazardous Mater. 318, 551–560 (2016).
  • X. Wu, W. Chen, J. Key, and W. Wu, One-pot solvothermal synthesis of fern leaf-like α-Fe2O3@C/graphene from ferrocene with enhanced lithium and sodium storage properties. Powder Technol. 323, 424–432 (2018).
  • H. Song, B. Zhao, X. Xu, S. Yan, and Y. Shi, In situ reaction synthesis of GeO2/RGO nanocomposite for high performance lithium storage. Mater Sci. Eng. B: Solid-State Mater. Adv. Technol. 225, 122–127 (2017).
  • Y. Shen, J. S. Chen, J. Zhu, Q. Yan, and X. Hu, Growth of two-dimensional ultrathin anatase TiO2 nanoplatelets on graphene for high-performance lithium-ion battery. J. Nanopart. Res. 15 (10),1913 (2013)doi: 10.1007/s11051-013-1913-x .
  • H. K. Roh,H. K. Kim, M. S. Kim, D. H. Kim, K. Y. Chung, K. C. Roh, and K. B. Kim, In situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries, Nano Res., 9(6), 1–12 (2016) doi: 10.1007/s12274-016-1077-y .
  • X. Qiu, Y. Liu, L. Wang, and L. Z. Fan, Reverse microemulsion synthesis of nickel-cobalt hexacyanoferrate/reduced graphene oxide nanocomposites for high-performance supercapacitors and sodium ion batteries. Appl. Surf. Sci. 434, 1285–1292 doi: 10.1016/j.apsusc.2017.11.278 (2018).
  • H. Qiao, Z. Xia, Y. Fei, L. Cai, R. Cui, Y. Cai, Q. Wei, and Q. Yao, Electrospinning combined with hydrothermal synthesis and lithium storage properties of ZnFe2O4-graphene composite nanofibers. Ceram. Int. 43 (2), 2136–2142 doi: 10.1016/j.ceramint.2016.10.194 (2017).
  • S.-K. Park, A. Jin, S.-H. Yu, J. Ha, B. Jang, S. Bong, S. Woo, Y.-E. Sung, and Y. Piao, In situ hydrothermal synthesis of Mn3O4 nanoparticles on nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Electrochim. Acta. 120, 452–459 doi: 10.1016/j.electacta.2013.12.018 (2014).
  • J. Mei, and L. Zhang, Facile and economic synthesis of nitrogen doped graphene/manganese dioxide composites in aqueous solution for energy storage devices. Mater. Lett. 143, 163–166 doi: 10.1016/j.matlet.2014.12.095 (2015).
  • R. Mo, Y. Du, D. Rooney, G. Ding, and K. Sun, Ultradispersed nanoarchitecture of LiV3O8 nanoparticle/reduced graphene oxide with high-capacity and long-life lithium-ion battery cathodes. Sci. Rep. 6, 19843doi: 10.1038/srep19843 (2016).
  • H. Li, L. Xu, H. Sitinamaluwa, K. Wasalathilake, and C. Yan, Coating Fe2O3 with graphene oxide for high-performance sodium-ion battery anode. Compos. Commun. 1, 48–53 doi: 10.1016/j.coco.2016.09.004 (2016).
  • H. Kahimbi, S. B. Hong, M. Yang, and B. G. Choi, Simultaneous synthesis of NiO/reduced graphene oxide composites by ball milling using bulk Ni and graphite oxide for supercapacitor applications. J Electroanal. Chem. 786, 14–19 doi: 10.1016/j.jelechem.2017.01.013 (2017).
  • H. Jin, M. Gu, S. Ji, X. Xu, and J. Liu, Reduced graphene oxide anchored tin sulfide hierarchical microspheres with superior Li-ion storage performance, Ionics. 22 (10), 1811–1818 doi: 10.1007/s11581-016-1712-3 (2016).
  • T. Jayalakshmi, K. Nagaraju, and G. Nagaraju, Enhanced lithium storage of mesoporous vanadium dioxide(B) nanorods by reduced graphene oxide support. J. Energy Chem. 27 (1), 183–189 (2018).
  • K. Jang, D.-K. Hwang, F. M. Auxilia, J. Jang, H. Song, B.-Y. Oh, Y. Kim, J. Nam, J.-W. Park, S. Jeong, S. S. Lee, S. Choi, I. S. Kim, W. B. Kim, J.-M. Myoung, and M.-H. Ham, Sub-10-nm Co3O4 nanoparticles/graphene composites as high-performance anodes for lithium storage. Chem. Eng. J. 309, 15–21 (2017).
  • V. Gangaraju, D. Bhargavi, and D. Rangappa, Synthesis and Characterization of α-MoO3//RGO Composite as Anode Material for Li-Ion Batteries Using Spray Drying Combustion, Materials Today: Proceedings. 4(11), 12328–12332 doi: 10.1016/j.matpr.2017.09.167(2017).
  • J. Feng, C. Wang, and Y. Qian, In situ synthesis of cadmium germanates (Cd2Ge2O6)/reduced graphene oxide nanocomposites as novel high capacity anode materials for advanced lithium-ion batteries. Mater. Lett. 122, 327–330 doi: 10.1016/j.matlet.2014.02.081 (2014).
  • D. Cai, T. Yang, D. Wang, X. Duan, B. Liu, L. Wang, Y. Liu, Q. Li, and T. Wang, Tin dioxide dodecahedral nanocrystals anchored on graphene sheets with enhanced electrochemical performance for lithium-ion batteries. Electrochim. Acta. 159, 46–51 (2015).
  • L. Jacob, P. K, V. M.R, S. P, C. W. Lee, and V. Mittal, Binary Cu/ZnO decorated graphene nanocomposites as an efficient anode for lithium ion batteries. J. Ind. Eng. Chem. 59, 108–114 doi: 10.1016/j.jiec.2017.10.012 (2018).
  • M.-S. Kim, G.-W. Lee, S.-W. Lee, J. H. Jeong, D. Mhamane, K. C. Roh, and K.-B. Kim, Synthesis of LiFePO4/graphene microspheres while avoiding restacking of graphene sheet's for high-rate lithium-ion batteries. J. Ind. Eng. Chem. 52, 251–259 doi: 10.1016/j.jiec.2017.03.054 (2017).
  • H. Jamal, B.-S. Kang, H. Lee, J.-S. Yu, and C.-S. Lee, Comparative studies of electrochemical performance and characterization of TiO2/graphene nanocomposites as anode materials for Li-secondary batteries. J. Ind. Eng. Chem. 64, 151–166 (2018). doi: 10.1016/j.jiec.2018.03.012
  • G. P. Awasthi,D. Kumar, B. K. Shrestha, J. Kim, K. S. Kim, C. H. Park, and C. S. Kim, Layer – Structured partially reduced graphene oxide sheathed mesoporous MoS < inf > 2</inf > particles for energy storage applications. J. Colloid Interface Sci. 518, 234–241 doi: 10.1016/j.jcis.2018.02.043 (2018).
  • M. Aadil, W. Shaheen, M. F. Warsi, M. Shahid, M. A. Khan, Z. Ali, S. Haider, and I. Shakir, Superior electrochemical activity of α-Fe2O3/rGO nanocomposite for advance energy storage devices. J. Alloys Compd. 689, 648–654 doi: 10.1016/j.jallcom.2016.08.029 (2016).
  • N. Cai, J. Fu, H. Zeng, X. Luo, C. Han, and F. Yu, Reduced graphene oxide-silver nanoparticles/nitrogen-doped carbon nanofiber composites with meso-microporous structure for high-performance symmetric supercapacitor application. J. Alloys Compd. 742, 769–779 doi: 10.1016/j.jallcom.2018.01.011 (2018).
  • T. Cheng, B. Yu, L. Cao, H. Tan, X. Li, X. Zheng, W. Li, Z. Ren, and J. Bai, Synthesis and loading-dependent characteristics of nitrogen-doped graphene foam/carbon nanotube/manganese oxide ternary composite electrodes for high performance supercapacitors. J. Colloid Interface Sci. 501, 1–10 doi: 10.1016/j.jcis.2017.04.039 (2017).
  • Y. Chen, X. Zhang, D. Zhang, and Y. Ma, One-pot hydrothermal synthesis of ruthenium oxide nanodots on reduced graphene oxide sheets for supercapacitors. J. Alloys Compd. 511 (1), 251–256 doi: 10.1016/j.jallcom.2011.09.045 (2012).
  • M. Ciszewski, G. Benke, K. Leszczyńska-Sejda, and D. Kopyto, Facile synthesis of reduced graphene oxide/peroxomolybdate(VI)–citrate composite and its potential energy storage application. Appl. Phys. A: Mater. Sci. Process. 123(11), 713doi: 10.1007/s00339-017-1335-1 (2017).
  • L. Gurusamy, S. Anandan, and J. J. Wu, Synthesis of reduced graphene oxide supported flower-like bismuth subcarbonates microsphere (Bi2O2CO3-RGO) for supercapacitor application. Electrochim. Acta. 244, 209–221 doi: 10.1016/j.electacta.2017.05.098 (2017).
  • K. J. Huang, J. Z. Zhang, Y. Liu, and Y. M. Liu, Synthesis of reduced graphene oxide wrapped-copper sulfide hollow spheres as electrode material for supercapacitor. Int. J. Hydrogen Energy. 40 (32), 10158–10167 doi: 10.1016/j.ijhydene.2015.05.152 (2015).
  • M. Ishaq, M. Jabeen, W. Song, L. Xu, and Q. Deng, 3D hierarchical Ni2+/Mn2+/Al3+ layered triple hydroxide @ nitrogen-doped graphene wrapped hybrids on nickel foam for supercapacitor applications. Electroanal. Chem. 804, 220–231 doi: 10.1016/j.jelechem.2017.10.006 (2017).
  • M. M. Islam, D. Cardillo, T. Akhter, S. H. Aboutalebi, H. K. Liu, K. Konstantinov, and S. X. Dou, Liquid-crystal-mediated self-assembly of porous α-Fe2O3 nanorods on PEDOT:PSS-functionalized graphene as a flexible ternary architecture for capacitive energy storage. Part. Part. Syst. Charact. 33 (1), 27–37 doi: 10.1002/ppsc.201500150 (2016).
  • X. Ji, Q. Xu, T. Zhou, X. Wang, H. Xu, X. Yao, W. Lan, and Y. Kong, Synthesis of poly(aniline-co-m-aminophenol)/graphene/NiO nanocomposite and its application in supercapacitors. Synth. Metals. 211, 14–18 doi: 10.1016/j.synthmet.2015.11.014 (2016).
  • E. Kamali-Heidari, Z. L. Xu, M. H. Sohi, A. Ataie, and J. K. Kim, Core-shell structured Ni3S2 nanorods grown on interconnected Ni-graphene foam for symmetric supercapacitors. Electrochim. Acta. 271, 507–518 doi: 10.1016/j.electacta.2018.03.183 (2018).
  • R. Karthik, and S. Thambidurai, Synthesis of RGO–Co doped ZnO/PANI hybrid composite for supercapacitor application. J. Mater. Sci.: Mater. Electron. 28, 9836–9851 doi: 10.1007/s10854-017-6738-4 (2017).
  • D. Zhou, P. Cheng, J. Luo, W. Xu, J. Li, and D. Yuan, Facile synthesis of graphene@NiMoO4 nanosheet arrays on Ni foam for a high-performance asymmetric supercapacitor. J. Mater. Sci. 52 (24), 13909–13919 doi: 10.1007/s10853-017-1467-x (2017).
  • Y. Zhang,W. Zhou, H. Yu, T. Feng, Y. Pu, H. Liu, W. Xiao, and L. Tian, Self-templated synthesis of nickel silicate hydroxide/reduced graphene oxide composite hollow microspheres as highly stable supercapacitor electrode material, Nanoscale Res Lett. 12(1), 325, doi: 10.1186/s11671-017-2094-9 (2017).
  • L. Zhang, K. N. Hui, K. S. Hui, and H. Lee, Facile synthesis of porous CoAl-layered double hydroxide/graphene composite with enhanced capacitive performance for supercapacitors. Electrochim. Acta. 186, 522–529 doi: 10.1016/j.electacta.2015.11.024 (2015).
  • S. Min, C. Zhao, G. Chen, and X. Qian, One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors. Electrochim. Acta. 115, 155–164 doi: 10.1016/j.electacta.2013.10.140 (2014).
  • L. Zhang, H. Lin, L. Zhai, M. Nie, J. Zhou, and S. Zhuo, Enhanced supercapacitor performance based on 3D porous graphene with MoO2/nanoparticles. J. Mater. Res. 32 (2), 292–300 doi: 10.1557/jmr.2016.438 (2017).
  • X. Xu, J. Shen, N. Li, and M. Ye, Microwave-assisted in situ synthesis of cobalt nanoparticles decorated on reduced graphene oxide as promising electrodes for supercapacitors. Int. J. Hydrogen Energy. 40 (38), 13003–13013 doi: 10.1016/j.ijhydene.2015.08.021 (2015).
  • P. Nagaraju, A. Alsalme, A. Alswieleh, and R. Jayavel, Facile in-situ microwave irradiation synthesis of TiO2/graphene nanocomposite for high-performance supercapacitor applications. Electroanal. Chem. 808, 90–100 doi: 10.1016/j.jelechem.2017.11.068 (2018).
  • K. O. Oyedotun, M. J. Madito, A. Bello, D. Y. Momodu, A. A. Mirghni, and N. Manyala, Investigation of graphene oxide nanogel and carbon nanorods as electrode for electrochemical supercapacitor. Electrochim. Acta. 245, 268–278 doi: 10.1016/j.electacta.2017.05.150 (2017).
  • H. Quan, B. Cheng, Y. Xiao, and S. Lei, One-pot synthesis of α-Fe2O3/nanoplates-reduced graphene oxide composites for supercapacitor application. Chem. Eng. J. 286, 165–173 doi: 10.1016/j.cej.2015.10.068 (2016).
  • R. Rajagopal, Y. S. Lee, and K. S. Ryu, Synthesis and electrochemical analysis of Nb2O5-TiO2/H-rGO sandwich type layered architecture electrode for supercapacitor application. Chem. Eng. J. 325, 611–623 doi: 10.1016/j.cej.2017.05.120 (2017).
  • S. Ratha, S. R. Marri, J. N. Behera, and C. S. Rout, High-energy-density supercapacitors based on patronite/single-walled carbon nanotubes/reduced graphene oxide hybrids. Eur. J. Inorg. Chem. 2016 (2), 259–265 doi: 10.1002/ejic.201501001 (2016).
  • A. K. Samantara, S. Kamila, A. Ghosh, and B. K. Jena, Highly ordered 1D NiCo2O4 nanorods on graphene: An efficient dual-functional hybrid materials for electrochemical energy conversion and storage applications. Electrochim. Acta. 263, 147–157 doi: 10.1016/j.electacta.2018.01.025 (2018).
  • V. Sharavath, S. Sarkar, D. Gandla, and S. Ghosh, Low temperature synthesis of TiO2-β-cyclodextrin-graphene nanocomposite for energy storage and photocatalytic applications. Electrochim. Acta. 210, 385–394 doi: 10.1016/j.electacta.2016.05.177 (2016).
  • Z. Tong, S. Liu, Y. Zhou, J. Zhao, Y. Wu, Y. Wang, and Y. Li, Rapid redox kinetics in uniform sandwich-structured mesoporous Nb2O5/graphene/mesoporous Nb2O5 nanosheets for high-performance sodium-ion supercapacitors. Energy Storage Mater. 13, 223–232 doi: 10.1016/j.ensm.2017.12.005 (2018).
  • V. Velmurugan, U. Srinivasarao, R. Ramachandran, M. Saranya, and A. N. Grace, Synthesis of tin oxide/graphene (SnO2/G) nanocomposite and its electrochemical properties for supercapacitor applications, Mater. Res. Bull. 84, 145–151 doi: 10.1016/j.materresbull.2016.07.015 (2016).
  • J. Wang, Z. Gao, Z. Li, B. Wang, Y. Yan, Q. Liu, T. Mann, M. Zhang, and Z. Jiang, Green synthesis of graphene nanosheets/ZnO composites and electrochemical properties. J. Solid State Chem. 184 (6), 1421–1427 doi: 10.1016/j.jssc.2011.03.006 (2011).
  • S. Wang, J. Zhu, Y. Shao, W. Li, Y. Wu, L. Zhang, and X. Hao, Three-dimensional MoS2@CNT/RGO network composites for high-performance flexible supercapacitors. Chem. Eur. J. 23 (14), 3438–3446 doi: 10.1002/chem.201605465 (2017).
  • B. Xie, Y. Chen, M. Yu, T. Sun, L. Lu, T. Xie, Y. Zhang, and Y. Wu, Hydrothermal synthesis of layered molybdenum sulfide/N-doped graphene hybrid with enhanced supercapacitor performance. Carbon. 99, 35–42 doi: 10.1016/j.carbon.2015.11.077 (2016).
  • X. Xu, L. Pei, Y. Yang, J. Shen, and M. Ye, Facile synthesis of NiWO4/reduced graphene oxide nanocomposite with excellent capacitive performance for supercapacitors. J. Alloys Compd. 654, 23–31 doi: 10.1016/j.jallcom.2015.09.108 (2016).
  • X. Xu, J. Shen, N. Li, and M. Ye, Facile synthesis of reduced graphene oxide/CoWO4 nanocomposites with enhanced electrochemical performances for supercapacitors. Electrochim. Acta. 150, 23–34 doi: 10.1016/j.electacta.2014.10.139 (2014).
  • T. M. Masikhwa, M. J. Madito, A. Bello, J. K. Dangbegnon, and N. Manyala, High performance asymmetric supercapacitor based on molybdenum disulphide/graphene foam and activated carbon from expanded graphite. J. Colloid Interface Sci. 488, 155–165 doi: 10.1016/j.jcis.2016.10.095 (2017).
  • N. Ma, N. Phattharasupakun, J. Wutthiprom, C. Tanggarnjanavalukul, P. Wuanprakhon, P. Kidkhunthod, and M. Sawangphruk, High-performance hybrid supercapacitor of mixed-valence manganese oxide/N-doped graphene aerogel nanoflower using an ionic liquid with a redox additive as the electrolyte: In situ electrochemical X-ray absorption spectroscopy. Electrochim. Acta. 271, 110–119 doi: 10.1016/j.electacta.2018.03.116 (2018).
  • P. Pazhamalai, K. Krishnamoorthy, V. K. Mariappan, and S.-J. Kim, Fabrication of high energy Li-ion hybrid capacitor using manganese hexacyanoferrate nanocubes and graphene electrodes. J. Ind. Eng. Chem. 64, 134–142 (2018). doi: 10.1016/j.jiec.2018.03.009
  • L. Ma, X. Shen, Z. Ji, X. Cai, G. Zhu, and K. Chen, Porous NiCo2O4 nanosheets/reduced graphene oxide composite: Facile synthesis and excellent capacitive performance for supercapacitors. J. Colloid Interface Sci. 440, 211–218 doi: 10.1016/j.jcis.2014.11.008 (2015).
  • L. Ma, X. Shen, Z. Ji, G. Zhu, and H. Zhou, Ag nanoparticles decorated MnO2/reduced graphene oxide as advanced electrode materials for supercapacitors. Chem. Eng. J. 252, 95–103 doi: 10.1016/j.cej.2014.04.093 (2014).
  • D. Majumdar, N. Baugh, and S. K. Bhattacharya, Ultrasound assisted formation of reduced graphene oxide-copper (II) oxide nanocomposite for energy storage applications. Colloids Surf A: Physicochem. Eng. Aspects. 512, 158–170 doi: 10.1016/j.colsurfa.2016.10.010 (2017).
  • D. Majumdar, and S. K. Bhattacharya, Sonochemically synthesized hydroxy-functionalized graphene–MnO2 nanocomposite for supercapacitor applications, J. Appl. Electrochem. 47 (7), 789–801 doi: 10.1007/s10800-017-1080-3 (2017).
  • R. Madhuvilakku, S. Alagar, R. Mariappan, and S. Piraman, Green one-pot synthesis of flowers-like Fe3O4/rGO hybrid nanocomposites for effective electrochemical detection of riboflavin and low-cost supercapacitor applications. Sensors Actuators B: Chem. 253, 879–892 doi: 10.1016/j.snb.2017.06.126 (2017).
  • M. Lee,S. K. Balasingam, H. Y. Jeong, W. G. Hong, H. B. R. Lee, B. H. Kim, and Y. Jun, One-step hydrothermal synthesis of graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage. Sci. Rep. 5, 08151 doi: 10.1038/srep08151 (2015).
  • C. Lamiel, Y. R. Lee, M. H. Cho, D. Tuma, and J. J. Shim, Enhanced electrochemical performance of nickel-cobalt-oxide@reduced graphene oxide//activated carbon asymmetric supercapacitors by the addition of a redox-active electrolyte. J. Colloid Interface Sci. 507, 300–309 doi: 10.1016/j.jcis.2017.08.003 (2017).
  • Y. Ko, J. Shim, C.-H. Lee, K. S. Lee, H. Cho, K.-T. Lee, and D. I. Son, Synthesis and characterization of CuO/graphene (Core/shell) quantum dots for electrochemical applications. Mater. Lett. 217, 113–116 doi: 10.1016/j.matlet.2018.01.042 (2018).
  • Y. Fan, X. Zhang, Y. Liu, Q. Cai, and J. Zhang, One-pot hydrothermal synthesis of Mn3O4/graphene nanocomposite for supercapacitors. Mater. Lett. 95, 153–156 doi: 10.1016/j.matlet.2012.12.110 (2013).
  • W. Yang et al., Flexible conducting polymer/reduced graphene oxide films: synthesis, characterization, and electrochemical performance. Nanoscale Res. Lett. 10(1), 222 doi: 10.1186/s11671-015-0932-1 (2015).
  • B. Wei, L. Wang, Y. Wang, Y. Yuan, Q. Miao, Z. Yang, and W. Fei, In situ growth of manganese oxide on 3D graphene by a reverse microemulsion method for supercapacitors. J. Power Sources. 307, 129–137 doi: 10.1016/j.jpowsour.2015.12.136 (2016).
  • F. Wang, G. Li, Q. Zhou, J. Zheng, C. Yang, and Q. Wang, One-step hydrothermal synthesis of sandwich-type NiCo2S4@reduced graphene oxide composite as active electrode material for supercapacitors. Appl. Surf. Sci. 425, 180–187 doi: 10.1016/j.apsusc.2017.07.016 (2017).
  • N. B. Trung, T. V. Tam, D. K. Dang, K. F. Babu, E. J. Kim, J. Kim, and W. M. Choi, Facile synthesis of three-dimensional graphene/nickel oxide nanoparticles composites for high performance supercapacitor electrodes. Chem. Eng. J. 264, 603–609 doi: 10.1016/j.cej.2014.11.140 (2015).
  • Y. Tingting, L. Ruiyi, L. Xiaohuan, L. Zaijun, G. Zhiguo, W. Guangli, and L. Junkang, Nitrogen and sulphur-functionalized multiple graphene aerogel for supercapacitors with excellent electrochemical performance. Electrochim. Acta . 187, 143–152 doi: 10.1016/j.electacta.2015.11.043 (2016).
  • C. Pan, H. Gu, and L. Dong, Synthesis and electrochemical performance of polyaniline @MnO2/graphene ternary composites for electrochemical supercapacitors. J. Power Sources. 303, 175–181 doi: 10.1016/j.jpowsour.2015.11.002 (2016).
  • L. Ma, R. Liu, L. Liu, F. Wang, H. Niu, and Y. Huang, Facile synthesis of Ni(OH)2/graphene/bacterial cellulose paper for large areal mass, mechanically tough and flexible supercapacitor electrodes. J. Power Sources. 335, 76–83 doi: 10.1016/j.jpowsour.2016.10.006 (2016).
  • T. W. Kim, and S. J. Park, Synthesis of reduced graphene oxide/thorn-like titanium dioxide nanofiber aerogels with enhanced electrochemical performance for supercapacitor. J. Colloid Interface Sci. 486, 287–295 doi: 10.1016/j.jcis.2016.10.007 (2017).
  • X. He, J. Wang, G. Xu, M. Yu, and M. Wu, Synthesis of microporous carbon/graphene composites for high-performance supercapacitors, Diam Relat Mater. 66, 119–125 doi: 10.1016/j.diamond.2016.04.005 (2016).
  • V. K. Gupta, A. Fakhri, S. Agarwal, and M. Naji, Palladium oxide nanoparticles supported on reduced graphene oxide and gold doped: Preparation, characterization and electrochemical study of supercapacitor electrode. J Mol Liq. 249, 61–65 doi: 10.1016/j.molliq.2017.11.016 (2018).
  • Y. Chen,J. Xu, Y. Yang, Y. Zhao, W. Yang, X. He, S. Li, and C. Jia, Enhanced electrochemical performance of laser scribed graphene films decorated with manganese dioxide nanoparticles, J. Mater. Sci: Mater. Electron. 27, 2564–2573 doi: 10.1007/s10854-015-4059-z (2016).
  • X. Cai, X. Shen, L. Ma, Z. Ji, C. Xu, and A. Yuan, Solvothermal synthesis of NiCo-layered double hydroxide nanosheets decorated on RGO sheets for high performance supercapacitor. Chem. Eng. J. 268, 251–259 doi: 10.1016/j.cej.2015.01.072 (2015).
  • R. Boddula, R. Bolagam, and P. Srinivasan, Incorporation of graphene-Mn3O4 core into polyaniline shell: supercapacitor electrode material, Ionics. 24(5), 1467–1474 doi: 10.1007/s11581-017-2300-x (2018).
  • P. Bhattacharya, T. Joo, M. Kota, and H. S. Park, CoO nanoparticles deposited on 3D macroporous ozonized RGO networks for high rate capability and ultralong cyclability of pseudocapacitors. Ceram. Int. 44 (1), 980–987 doi: 10.1016/j.ceramint.2017.10.032 (2018).
  • D. A. C. Brownson, and C. E. Banks, The Handbook of Graphene Electrochemistry. (2014).
  • P. Roy, and S. K. Srivastava, Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A. 3 (6), 2454–2484 doi: 10.1039/c4ta04980b (2015).
  • Y. Wang, and G. Cao, Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv. Mater. 20 (12), 2251–2269 doi: 10.1002/adma.200702242 (2008).
  • Y. Ding, Y. Jiang, F. Xu, J. Yin, H. Ren, Q. Zhuo, Z. Long, and P. Zhang, Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method, Electrochem. Commun. 12 (1), 10–13 doi: 10.1016/j.elecom.2009.10.023 (2010).
  • X. Zhao, B. M. Sánchez, P. J. Dobson, and P. S. Grant, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices, Nanoscale. 3 (3), 839–855 doi: 10.1039/c0nr00594k (2011).
  • P. Xiong, C. Hu, Y. Fan, W. Zhang, J. Zhu, and X. Wang, Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance, J. Power Sources. 266, 384–392 doi: 10.1016/j.jpowsour.2014.05.048 (2014).
  • L. L. Zhang, and X. S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (9), 2520–2531 doi: 10.1039/b813846j (2009).
  • K. Wasiński, M. Walkowiak, P. Półrolniczak, and G. Lota, Capacitance of Fe3O4/rGO nanocomposites in an aqueous hybrid electrochemical storage device, J. Power Sources. 293, 42–50 doi: 10.1016/j.jpowsour.2015.05.064 (2015).
  • A. W. Anwar, A. Majeed, N. Iqbal, W. Ullah, A. Shuaib, U. Ilyas, F. Bibi, and H. M. Rafique, Specific capacitance and cyclic stability of graphene based metal/metal oxide nanocomposites: A review, J. Mater. Sci. Technol. 31 (7), 699–707 doi: 10.1016/j.jmst.2014.12.012 (2015).
  • A. Numan, N. Duraisamy, F. Saiha Omar, Y. K. Mahipal, K. Ramesh, and S. Ramesh, Enhanced electrochemical performance of cobalt oxide nanocube intercalated reduced graphene oxide for supercapacitor application. RSC Adv. 6 (41), 34894–34902 doi: 10.1039/c6ra00160b (2016).
  • W. Xiao, Z. Wang, H. Guo, Y. Zhang, Q. Zhang, and L. Gan, A facile PVP-assisted hydrothermal fabrication of Fe2O3/Graphene composite as high performance anode material for lithium ion batteries. J. Alloys Compd. 560, 208–214 doi: 10.1016/j.jallcom.2012.12.166 (2013).
  • M. M. Shahid, P. Rameshkumar, A. Numan, S. Shahabuddin, M. Alizadeh, P. S. Khiew, and W. S. Chiu, A cobalt oxide nanocubes interleaved reduced graphene oxide nanocomposite modified glassy carbon electrode for amperometric detection of serotonin. Mater. Sci. Eng. C. 100, 388–395 doi: 10.1016/j.msec.2019.02.107 (2019).
  • A. Kafy, A. Akther, L. Zhai, H. C. Kim, and J. Kim, Porous cellulose/graphene oxide nanocomposite as flexible and renewable electrode material for supercapacitor, Synth Metals. 223, 94–100 doi: 10.1016/j.synthmet.2016.12.010 (2017).
  • Z. Zhou, and X. F. Wu, Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: Synthesis and electrochemical characterization, J. Power Sources. 222, 410–416 doi: 10.1016/j.jpowsour.2012.09.004 (2013).
  • Q. Dong, G. Wang, H. Hu, J. Yang, B. Qian, Z. Ling, and J. Qiu, Ultrasound-assisted preparation of electrospun carbon nanofiber/graphene composite electrode for supercapacitors, J. Power Sources. 243, 350–353 doi: 10.1016/j.jpowsour.2013.06.060 (2013).
  • D. Selvakumar, A. Alsalme, A. Alswieleh, and R. Jayavel, Freestanding flexible nitrogen doped-reduced graphene oxide film as an efficient electrode material for solid-state supercapacitors, J. Alloys Compd. 723, 995–1000 doi: 10.1016/j.jallcom.2017.06.333 (2017).
  • K. P. Loh, Q. Bao, P. K. Ang, and J. Yang, The chemistry of grapheme. J. Mater. Chem. 20, 2277–2289 doi: 10.1039/b920539j (2010).
  • D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39 (1), 228–240 doi: 10.1039/b917103g (2010).
  • A. K. Rasheed, M. Khalid, W. Rashmi, T. C. S. M. Gupta, and A. Chan, Graphene based nanofluids and nanolubricants – Review of recent developments, Renew Sust Energ Rev. 63, 346–362 doi: 10.1016/j.rser.2016.04.072 (2016).
  • Y. Liu, N. Wang, C. Yang, and W. Hu, Sol-gel synthesis of nanoporous NiCo2O4 thin films on ITO glass as high-performance supercapacitor electrodes. Ceram. Int. 42 (9), 11411–11416 doi: 10.1016/j.ceramint.2016.04.071 (2016).
  • Z. Xing, Q. Chu, X. Ren, C. Ge, A. H. Qusti, A. M. Asiri, A. O. Al-Youbi, and X. Sun, Ni3S2 coated ZnO array for high-performance supercapacitors, J. Power Sources. 245, 463–467 doi: 10.1016/j.jpowsour.2013.07.012 (2014).
  • M. Rajesh, C. J. Raj, R. Manikandan, B. C. Kim, S. Y. Park, and K. H. Yu, A high performance PEDOT/PEDOT symmetric supercapacitor by facile in-situ hydrothermal polymerization of PEDOT nanostructures on flexible carbon fibre cloth electrodes, Mater. Today Energ. 6, 96–104 doi: 10.1016/j.mtener.2017.09.003 (2017).
  • W. Du, Z. Wang, Z. Zhu, S. Hu, X. Zhu, Y. Shi, H. Pang, and X. Qian, Facile synthesis and superior electrochemical performances of CoNi2S4/graphene nanocomposite suitable for supercapacitor electrodes, J. Mater. Chem. A. 2 (25), 9613–9619 doi: 10.1039/c4ta00414k (2014).
  • Q. Ke, and J. Wang, Graphene-based materials for supercapacitor electrodes – A review. J. Materiomics. 2 (1), 37–54 doi: 10.1016/j.jmat.2016.01.001 (2016).
  • A. A. Kalam, S. Park, Y. Seo, and J. Bae, High-efficiency supercapacitor electrodes of CVD-grown graphenes hybridized with multiwalled carbon nanotubes. Bull. Korean Chem. Soc. 36 (8), 2111–2115 doi: 10.1002/bkcs.10414 (2015).
  • V. I. Anikeev, Hydrothermal synthesis of metal oxide nano- and microparticles in supercritical water, Russ. J. Phys. Chem. 85 (3), 377–382 doi: 10.1134/S0036024411030034 (2011).
  • H. Kennaz, A. Harat, O. Guellati, D. Y. Momodu, F. Barzegar, J. K. Dangbegnon, N. Manyala, and M. Guerioune, Synthesis and electrochemical investigation of spinel cobalt ferrite magnetic nanoparticles for supercapacitor application. J. Solid State Electrochem. 22 (3), 835–847 doi: 10.1007/s10008-017-3813-y (2018).
  • J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, Evolution of nanoporosity in dealloying. Nature. 410 (6827), 450–453 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.